-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

A Reliable multicast protocol for a white board
application
Walid Dabbous, Blaise Kiss

» To cite this version:

Walid Dabbous, Blaise Kiss. A Reliable multicast protocol for a white board application. [Research
Report] RR-2100, INRIA. 1993. inria-00074572

HAL 1d: inria-00074572
https://hal.inria.fr /inria-00074572
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50450253?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00074572
https://hal.archives-ouvertes.fr

b

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A Reliable Multicast Protocol
for a White Board Application

Walid DABBOUS
Blaise KISS

N°¢ 2100
Novembre 1993

PROGRAMME 1
Architectures parallCles,

bases de donnécs,
réseaux ct systémcs distribués

apport
de recherche

TS iy

i O

1993

Y

%N RIA

SOPHNIA ANTIPOLIS

A reliable multicast protocol for a white board
application

Walid Dabbous
Blaise Kiss

Programme 1 — Architectures paralléles, bases de données, réseaux
et systemes distribués
Projet RODEO

Rapport de recherche n * 2100 — Novembre 1993 — 14 pages

Abstract: This paper describes a proposed mechanism for a reliable multicast
protocol working on top of unreliable network service and making efficient use
of the underlying multicast facilities available on the Internet. The primary goal
is to provide a reliable multicast transport for a multi-user shared workspace
application which is commonly used with other interactive video or audio con-
ferencing tools.

Key-words: Reliable multicast, Shared white board.

(Résumé : tsvp)

Unité de recherche INRIA Sophia-Antipolis
2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex (France)
Téléphone : (33) 93 65 77 77 - Télécopie : (33) 93 65 77 65

Un protocole de diffusion fiable pour un
tableau blanc partagé

Résumé : Dans cet article nous proposons un protocole de transmission mul-
tipoint fiable. Ce protocole tourne au dessus d’un service réseau sans connexion
et tire parti du support de la transmission multipoint disponible actuellement
sur le réseau Internet. Ce protocole fournit un support de transmision fiable
pour une application de tableau blanc partagé utilisée en général en paralléle
avec d’autres outils de vidéo ou d’audio conférence.

Mots-clé : Diffusion fiable, Tableau blanc partagé.

A reliable multicast protocol for a white board application 1

1 Introduction

A reliable multicast protocol maintains uniform semantics for multicast message
delivery even in the presence of failures. Usually, such a protocol ensures the
delivery of a multicast message to either all or none of the destinations. In
addition, many protocols guarantee that multicast messages adressed to a group
are received in the same order by all the members of the group.

A number of reliable multicast protocols have been proposed [1], [2], (3],
(4], [5), [6]- Each of these protocols ensures reliable transfer of messages with
different types of message ordering. On the other hand, an unreliable IP multi-
cast service [7] is now supported on a wide part of the internet ~ the MBONE
or Multicast backBONE. However, most the reliable multicast protocols cited
above have been developed without assuming the availability of such network
level multicast. The ISIS protocol ([3],[8]) performs multicasts using s transport
protocol, such as TCP, to establish multiple reliable point to point connections.
This protocol cannot utilize an unreliable internet facility. Other protocols like
the Central Receiver Protocol (CRP) [1] and the Propagation Scheme (PS) [2]
use negative acknowledgment schemes and could perhaps utilize an unreliable
multicast facility more efficiently than ISIS. These protocols require, however,
point-to-point communication when network faults occur [9]. Other protocols
like [6] use a token scheme to provide reliability.

In this paper, we propose a reliable multicast protocol called RMP which
makes efficient use of the underlying multicast facilities. This protocol doesn’t
use a token scheme but is based on a more robust virtual distributed queue
mechansim. The primary goal is to provide a reliable transport service to be used
by multi-participant applications. The protocol is designed to run on top of UDP
transport protocol. Although the lower UDP layer is unreliable, the protocol
guarantees a reliable delivery of all messages. In general, data is delivered to
the application in sequence. However, if a packet has not been received before a
given wait interval, or if a packet is delayed in the network, out of order packets
may be delivered to the application first and the delayed packet will be delivered
on arrival. The protocol will be able to notify the upper layer on a late arrival
to be inserted in the existing list of messages.

Even if the main purpose of this protocol is to use the UDP multicast faci-
lities for multi-participant multi-media conferences, it can be used for a point
to point communication as well. A special interest, however, is given to the use
of this protocol by a shared workspace drawing application. This protocol was
implemented for a white board application and tested in a local area environ-
ment.

The packet formats are compatible with the real-time transport protocol
(RTP) (10). The use of a single RTP header for both real-time and reliable data
transfers facilitates the synchronization of the different data flows.

2 W. Dabbous, B. Kiss

In the next section, we will describe the part dealing with the reliable trans-
fer. Section 3 will detail the ordering mechanisms. Section 4 presents the packet
formats, section 5 presents future work and section 6 concludes the paper.

2 Reliability

The reliabilility is ensured by using a negative acknowledgments (Nack) scheme.
Messages can either be multicasted to the IP multicast group or sent as a point
to point datagram. In both cases, the network service is the UDP unreliable
service.

2.1 Local sequence numbers

Each station uses a local sequence number (S,) which is incremented only if
the station emits new data (e.g. a drawing data or a refresh data in the case
of a drawing application). The station can emit other packet types as well.
Each station will keep a list in memory of all other active stations (i.e. those
from which the station received at least one data message) and of their last
known sequence numbers. Each element of the active stations list will contain
the following fields:

o a station identifier provided by the lower UDP layer at the reception of a
message (e.g. IP address).

o a sequence number equal to the last valid sequence number received from
that source. A sequence number is considered valid if its value is equal to
the previous valid sequence number incremented by one.

¢ a flag indicating whether there are more elements in the list.

e a flag indicating whether the receiving station has confirmed the message
with the current sequence number or not.

e a depth parameter indicating the estimated position of the current station
in the queue of active stations (see below for further description of this
variable).

2.2 Sending Messages

Data and control messages are encapsulated with RTP data units (RPDU). The
value of the “content” field should indicate “Reliable Multicast”. The fixed RTP
header is followed by a number of options corresponding to the reliable multicast
protocol (RMP) and by the application data (application specific options).
The first byte of the option indicates, among others, the option type, and
therefore the option size for fixed length options. Otherwise, for variable length

«

RMP
packet

A reliable multicast protocol for a white board application 3

options, the size is included in the option header as described in 4.2.5 and 4.2.6.
The first bit of each option header, i.e. the *final’ flag (F), is set to zero if
there are more options following, 1 otherwise. There is a bit in the RTP header
indicating the presence of options.

The header formats are described below, and each emitter station is to fill
out the proper fields correctly before emitting a message.

e

]

Ver| ChannellD |P|S Format Sequernce Number ':'
]

Timestamp (seconds) Timestamp (fraction) ‘:,
|

{Options) "

. I

]]

1

1]

' :

]

[Data part] '

]

']

! w

]

Figure 1: RMP Packet format

Basically, there are two kinds of options:

Control options transmitted by the protocol layer for different purposes.
The packets containing only control messages are not stored in memory for
later retransmissions. Unless otherwise specified, a control option may be
present several times in the same packet with different parameters. RTP
packets containing only RMP control options are called control packets.

A data part, transmitted by the upper layer. This could be a new data, a
command to be executed on the existing data (e.g. modify the parameters
of an existing object) or a refresh of the existing data. If the RTP packet
contains a data part, the sequence number present in the RTP header
has to be incremented for reliability purposes. These packets are "stored”
in memory at reception time, for possible retransmission. RTP packets
containing application data are called data packets. Note that control
options can also be present in such packets. In a data packet, there can be
only one data part. The data is placed after the last "option” indicating
the presence of data. The length of the data part is calculated from the
current position and the length of the RMP packet (given by the lower
layer).

RTP
header

Options
and
Data part

4 W. Dabbous, B. Kiss

2.3 Confirmations

When a station receives a packet, it checks whether the emitter station is in its
list of active stations or not. If it i8 not, the receiver will add the station in its
list of active stations (with the starting sequence number of 0).

Then, the receiver will check the sequence number and the content of the
message. The sequence number has to be equal or one more than the last se-
quence number received from that same source. (This test is not performed for
retransmitted packets.)

If the received packet contains a data part and the sequence number is valid,
then this sequence number is updated in the list of active stations, the A flag is
set to zero, the 'depth’ of the corresponding station is set to zero, and the data
message is delivered to the application. If the sequence number is not valid then
the packet is put in a waiting list, and a negative acknowledgement (Nack) is
sent to the message originator. The receiver station will check every second if
this Nack has been answered, and if not, it will re-send the Nack, but not more
often. If a time period of WI seconds (Wait Interval, say 10 seconds) elapsed
before the reception of the answer to the Nack, the corresponding packet is
delivered to the application. If the arriving message filled the gap between the
last valid sequence number and the waiting message, all in sequence packets are
processed and the variables (A, depth, S,) of the station in the memory list are
updated.

Every time a station sends out a packet, it includes all the last received
sequence numbers that it did not acknowledge yet, confirming this way the re-
ception of all the messages up to a certain sequence number. Confirmations of
this type constitute the piggy-backing of the acknowledgments. When a data
packet containing a confirmation option is multicasted, the A flags of the con-
firmed sequence numbers is set to 1. From that time, this sequence number will
not have to be confirmed because such a packet must be received once by every
other station (it will be stored and retransmitted if necessary).

Confirmations may be included in all packets, but they should be in a data
packet at least. Including confirmations in control packets may lead to faster
detection of errors, but it should not influence the corresponding A flags on the
emitter. This one will still have to include the confirmations until it sends a
data packet.

2.4 Last packet problem

Data packets have to be confirmed. If they are not confirmed, this means that
either no other station received them or that all other stations are quiet i.e.
have nothing to transmit (confirmations are piggy-backed in data packets). In
both cases the emitter must retransmit its last message periodically, to remind
the others his last sequence number that needs to be confirmed. If any station
did not get the last message, it will see the "reminder”, and finally confirm it.

A reliable multicast prolocol for a white board application 5

‘The "reminder” packet contains a remind number which is the number of times
this message has been re-sent.

The necessity to include the remind number is explained in the following
section (2.5).

The period of the reminder packets should be a little more than the round
trip time in bad conditions on the network, typically 0.5 to one second. Since
reminder packets are transmitted only once a second when there are no other
packets, they will not overload the network significantly.

The remind option must be present before all other options in the packet
because the following parts are no treated the same if the remind number is
different from the depth of the receiver:

- Nacks are not treated

- automatic retransmissions are not done based on faulty confirmations

2.5 Depth value

Each station has its own depth value and can be estimated by all other stations.

Whenever a station joins the group, the value of its depth is set to the
number of active stations incremented by one. When this station multicasts a
data message, its depth value is set to zero. The depth value is incremented by
one every time the station receives a multicasted message from an other station
which had a higher depth value than the receivers’.

This method helps to put all active stations in a virtual queue where whoever
emits goes to the front with a depth of zero.

When a "reminder” packet is sent, it will contain all necessary confirmations,
and the remind number. Any other station can detect whether an emitting
station missed a packet by two means:

- If the emitter confirmed an old valid S,,

- If the emitter keeps sending its reminder packets periodically whereas a
confirmation of this packet has been received. If the emitter did not get a
packet, and the receiver detects this, it will retransmit the missing message
to the emitter if its own depth value is less or equal to the remind number.

2.6 Negative acknowledgements

Each station can detect that it did not receive a message in two ways:

- First, the same emitter can send a second message, and the receiver will
see a gap in the sequence numbers.

- Second, a third station can emit a packet containing a confirmation for a
packet that the receiver did not get.

6 W. Dabbous, B. Kiss

In both cases, the receiver station can extract the address of the original sender
from the received packet, and multicast a Nack asking for the message with the
missing S,, from that a source. The Nack, if not answered, will be retransmitted
after a short period of time (say one second, same time delay as for the reminder,
but not more often, to let enough time to the retransmission to arrive). Nacks
contain the number of times they have been multicasted (Nack number). The
station whose depth value is equal or less than this number must answer the
request and retransmit the packet which was asked for. This is a practical way
of making sure that not all stations answer a multicasted Nack, and also that
some station will finally answer, if the first station on the virtual queue left the

group.

2.7 Retransmissions

Retransmissions are generally done point to point. They can also be multicasted
if there are many stations requesting the same message. Note that the way
retransmissions are done has no effect on the reliability, it’s only a question of
compromise between redundancy and the network load.

Retransmissions do not need to be confirmed, because if they are not recei-
ved, they will be requested again.

The retransmitted packets contain one single option from which the receiver
station can extract the original data packet. Once this extraction is done, the
receiver simulates a late reception, checking all the contained confirmations
and other options. There is only one difference with a normal reception: the
receiver is not allowed in this case to do automatic retransmissions, because
the confirmations contained in the retransmitted packet (i.e. the state of the
original senders) may not be the same any more. However if there are any
messages confirmed that the receiver does not have, it can ask for them.

The amount of packets stored by the protocol layer for later retransmissions
can be based upon a time limit (e.g. packets older than 5 minutes are thrown
out) or upon a memory limitation (e.g. if there are more than 200 packets the
oldest ones are removed). The data for the refresh has to be stored by the
application. If the "refresh” feature is implemented in the application, the data
is always stored.

2.8 Joining a group

When joining a group, a station has to ask for the current data state (for example
a screen refresh) and also for the current sequence numbers of all active stations.
The joining station is not allowed to undertake any other actions until it comple-
ted properly the join procedures. To get all this information, the joining station
sends a join message to the group. This message can be sent only a finite number
of times (typically 5), after which, if there is no answer, the joining station can
consider itself to be alone in the group.

«F

A reliable multicast protocol for a white board application 7

The join message contains the number of times it has been sent (the join
number), and the station with the depth value equal or less than this number
must answer by sending the last sequence numbers of all stations it has in its
list, including his own. The joining station may see his own address in the list
of the station, meaning that it had a previous session. In this case the joining
station must update his own sequence number, as shown in the list.

The answering station has to ask the upper layer to send the current data
state. The messages containing this data refresh must contain sequence numbers
so that if they are lost, they can be asked for. The data is then multicasted on the
network. The join procedure is considered successfully terminated if the whole
image is received i.e. with the reception of a packet with the S bit of the RTP
header set to one. (see 4.2.5) Note that it could also be sent point to point, but
in that case the protocol would have to update the (hidden) sequence numbers
at every other station in order to avoid false gap detection by a third party
station for subsequent data packet exchange. (As other station will not receive
the refresh packet with the incremented sequence number if the retransmission
was done point to point.)

It is assumed that the local clocks at all stations are running close (e.g. by the
use of a synchronization method such as NTP [11], [12]). However, the answers
to the join message will contain a timestamp which may help to reduce the
clock offset between the joining station and the rest of the group. The joining
station can compute the difference between its own clock and the timestamps
in the packet headers. The difference with the average group time will be at
most the transmission time, which is generally under a second. So the joining
station can approximate the general time being the minimum of all timestamps
received from the answering stations. If this difference is lower than 0.5 seconds,
the time offset can be considered as null.

It is the responsibility of the answering station to tell the joining station
when the whole image has been transferred by setting the S bit to one in the
last image message.

3 Ordering

The ordering of data messages is done according to the timestamps contained
in the RTP header. If these are equal, it’s done according to the address of
the originator. For this reason, in retransmitted messages, the address of the
original sender has to be included.

It is quite possible that a message with a earlier timestamp arrives later than
an other message with a later timestamp. In this case the new message will have
to be inserted in the existing ordered list, and the upper layer will have to take
the appropriate actions to do the same. (For example, redraw all the data with
a later timestamp than the last one to arrive.)

8 W. Dabbous, B. Kiss

When a gap is detected in the received sequence numbers, the arriving packet
is put on hold in a waiting list, and a Nack is sent to get the missing packet.
However, if the request has not been answered before a given wait interval (e.g.
10 seconds), the first packet may be delivered to the application out of sequence.
The delayed packet will be delivered on arrival, and the protocol will notify the
upper layer on a late arrival to be inserted in the existing list of messages.

4 Packet formats

The packet formats are described below. They all have the same fixed size RTP
header, followed by a certain number of options.

4.1 RTP header format

Vel

=

Channel ID |P|S Format Sequence Number

RTP

. . header
Timestamp (seconds) Timestamp (fraction)

-f -

Options...

Figure 2: RTP header

The ChannellD field serves for multiplexing/de-multiplexing at the RTP level
(several audio or video channels within the same conference). The P bit indicates
whether or not the RTP fixed header is followed by on or more options. The § bit
can be used as an indicator for the end or the start of a synchronization unit. The
format field indicates the format of the RTP payload (e.g. RMP packets). The
sequence number field is used to restore packet sequence and identify packets to
the application. reflects the wall clock time when the RTP packet was generated.
It wraps around approximately every 18 hours.

4.2 Options

The packet header is followed by options, if any, and the media data. Optional
fields are summarized below. Unless otherwise noted, each option may appear
several times per packet. Each packet may contain any number of options.

The option header always starts with the (F') flag which is set to zero if
this is the last option in the message. The following 7 bits indicate the type of
the option. The RMP protocol will use the following options types: Join, Nack,
Confirm, Reminder, Image, Data and Retransmit.

-}

A reliable multicast protocol for a white board application 9

F Join Join number Start sequence number = 0

Figure 3: The Join option

4.2.1 Join

Final-flag (F=0): 1 bit
This value is set to one if this is the last option in the message, zero
otherwise. This must be a unique option, so the value of F must be zero.
A station can not emit any kind of data, if it did not complete properly
the join procedure.

Join: 7 bits
The option type is join (66).

Join number: 8§ bits
The number of times this join message has been sent.

4.2.2 Nack

F Nack Nack number Missing sequence number

Original source identifier of the lost message

Figure 4: The Nack option
Nack: 7 bits
The option type is a Nack (67).

Nack number: 8 bits
The number of times this Nack has been sent.

Missing sequence number: 16 bits
The sequence number of the message that has not been received.

Source identifier: 32 bits
The identifier of the original source of the message.
4.2.3 Confirm

Confirm: 7 bits
The message type is confirm (68)

10 W. Dabbous, B. Kiss

F Confirm MBZ Confirmed sequence number

Source identifier of the confirmed message

Figure 5: The Confirm option

Confirmed sequence number: 16 bits
This field contains the sequence number that is confirmed.

Source identifier: 32 bits
The identifier of the original source of the message.

4.2.4 Remind

F Remind Remind number

Figure 6: The Remind option

This option is inserted in front of all other options if the message is the last
message of a station and is periodically repeated.

Remind: 7 bits
The message type is remind (69)

Remind number: 8 bits
This field contains the number of times this message has been repeated

(modulo 256).
4.2.5 Image
F Image L MBZ MBZ
Image...
Figure 7: The Image option
Image: 7 bits

The message type is image(70)

«}

A reliable multicast protocol for a white board application 11

Last: 1 bit
This bit is set to one if this image part is the last one to complete the
image transfer.

An image message is the refresh of the current data state. Messages of this type
are requested when joining the group, or at any other time for a refresh.

4.2.6 Data

F Data type MBZ MBZ

Data...

Figure 8: The Data option

Data: 7 bits
The message type is data(71)

A data part may contain new data to be added to the already existing, or a
command to be executed on the existing data.

4.2.7 Retransmit

-

Retransmit Length MBZ

Original source identifier

Data part ...

Figure 9: The Retransmit option

The original packet is placed in the data part of this option. The retransmissions
are done point to point. The insertion of control options in the same packet is
optional.

Final-flag (F): 1 bit
This value is set to one because this is the unique option of the message.
The options contained in the original message are stored in the data part.

Retransmit: 7 bits
The message type is retransmit(72)

12 W. Dabbous, B. Kiss

Length: 15 bits
This field indicates the length of the data part.

Original Source identifier: 32 bits
The identifier of the original source of the message.

Data part:
Contains the original RMP packet.

5 Adaptation to network conditions

The protocol has been implemented for a white board application and tested in
a local area environment over UDP/IP multicast. Inital results show acceptable
performance: the protocol works correctly for this application, requiring reliable,
ordered and relatively slow data exchange. However, when this protocol was
tested in lossy environement (over the MBONE), it was clear that a rate based
flow control mechanism [13] is missing for the following reasons:

e Consider that the amount of data sent on the network exceeds de size of the
input buffer. Many packets will be lost. Consider that there is a maximum
number of packets stored in the protocol layer for retransmission. If the
number of sent packets exceeds this limit, the sender station will no more
remember it’s first packets which may have been lost. In that case the
sender will no more be able to retransmit it’s message, if the Nack did not
arrive before the old packet has been discarded.

o Consider that the number of lost packets is greater that the number of
Nack options a packet can contain. This leads to problems as well.

For these reasons, special care must be taken when large amounts of data trans-
fers are expected (e.g. for the refresh state). We are working on the design of a
flow control mechanism to improve this protocol.

On the other hand, at this point, the joining station has to wait, either the
correct reception of the current state (refresh) or a few seconds with no answer
to its join message (in which case it decides that it must be alone in the group)
before giving back the hand to the application. The joining procedure may also
be done in a passive way: the station could simply listen and ask a refresh
directly to the first active station.

We are also studying a mechanism to avoid the use of join messages, because
their loss may lead to a joining station thinking to be alone in the group although
it 1s not. It will then notice that all active stations have huge sequence numbers,
and will expect a retransmission of all the “missing packets”.

-

-

A reliable multicast protocol for a white board application 13

6 Conclusion

In this paper we presented a reliable multicast protocol which makes efficient
use of the underlying network multicast facilities. This protocol has been im-
plemented for a white board application and tested in a local environment. The
test results are satisfactory in such low loss rate environment. A flow control
mechanism is currently under study in order to have efficient operation of the
protocol over the multicast back-bone over the Internet.

References

(1] J.M. Chang and N.F. Maxemchuk, “Reliable Broadcast Protocols,” ACM
Transaction on Compuler Systems, Vol. 2, No 3, August 1984.

[2] H. Garcia-Molina and A. Spauster, “Message Ordering in a Multicast En-
vironment,” Technical Report, CS-TR-161-88, Dept. of Computer Science,
Princeton University, June 1988.

(3] T.A. Joseph and K.P. Birman, “Reliable Communication in the Presence of
Failures,” ACM Transaction on Computer Systems, Vol. 5, No. 1, February
1987.

[4] S-W. Luan and V. D. Gligor, “A Fault-Tolerant Protocol for Atomic Broad-
cast,” Proc. IEEE 7th Reliable Distributed Systems Symposium, pp. 112-
126, 1988.

(5] F. Schneider, D. Gries, and R. Schlichting, “Fault-Tolerant Broadcasts,”
Science of Computer Programming, Vol. 4, No 1, April 1984, pp. 1-15.

[6] S. Armstrong, A. Freier and K. Marzullo, “Multicast Transport Protocol,”
RFC 1801, February 1992.

[7] S. E. Deering and D. P. Cheriton, “Multicast Routing in Datagram Inter-
networks and Extended LANs,” ACM Trans. on Computer Systems, Vol .8,
May 1990, pp. 85-110.

[8] T.A. Joseph and K.P. Birman, “Reliable Broadcast Protocols,” Distriuted
Systems, Sape Mullender (Ed), Addison-Wesley, pp. 293-317, 1989.

(9] B. Rajagopalan, “Failsafe Routing and Multicasting in Dynamic Internets,”
PhD Thesis, University of Illinois at Urbana-Champaign, 1991.

[10) Henning Schulzrinne, “A Transport Protocol for Real-Time Applications,”
Internet Draft, September 15, 1993.

[11] David L. Mills, “Network Time Protocol,” RFC 1805, March 1992.

14 W. Dabbous, B. Kiss

[12] David L. Mills, “Internet Time Synchronization,” RFC 1129, September
1989.

[13] R. Braudes and S. Zabele, “Requirements for Multicast Protocols,” RFC
1458, May 1993.

Unité de Recherche INRIA Sophia Antipolis
2004, route des Lucioles - B.P. 93 - 06902 SOPHIA ANTIPOLIS Cedex (France)

Unité de Recherche INRIA Lorraine Technopdle de Nancy-Brabois - Campus Scientifique
615. rue du Jardin Botanique - B.P. 101 - 54602 VILLERS LES NANCY Cedex (France)
Unité de Recherche INRIA Rennes IRISA. Campus Universitaire de Beaulieu 35042 RENNES Cedex (France)
Unité de Recherche INRIA Rhone-Alpes 46, avenue Félix Vialiet - 38031 GRENOBLE Cedex (France)
Unité de Recherche INRIA Rocgquencourt Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 LE CHESNAY Cedex (France)

EDITEUR
INRIA - Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 LE CHESNAY Cedex (France)

ISSN 0249 - 6399

AR

r~

