-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Allocating memory arrays for polyhedra
Doran Wilde, Sanjay Rajopadhye

» To cite this version:

Doran Wilde, Sanjay Rajopadhye. Allocating memory arrays for polyhedra. [Research Report] RR-
2059, INRIA. 1993. inria-00074613

HAL 1d: inria-00074613
https://hal.inria.fr /inria-00074613
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50450212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00074613
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I 1N RIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Allocating Memory Arrays for Polyhedra

Doran K. Wilde and Sanjay Rajopadhye

N°® 2059
Juillet 1993

PROGRAMME 1

Architectures paralléles,
bases de données,
réseaux et systemes distribués

apport
derecherche

%I NRIA

RENNES

Allocating Memory Arrays for Polyhedra

Doran K. Wilde and Sanjay Rajopadhye*

Programme 1 — Architectures paralleles, bases de données, réseaux
et systemes distribués

Projet API

Rapport de recherche n ° 2059 — Juillet 1993 — 24 pages

Abstract: We have been investigating problems which arise in compiling
single assignment languages (in which memory is not explicitly allocated)
into parallel code. Like standard parallelizing compilers, different index space
transformations are performed on variables declared over convex polyhedral
regions. Polyhedra can be transformed in such a way as to reduce the volume
of the bounding box which we use to reduce the amount of memory allocated
to a variable. Allocation of memory to variables which are defined over finite
convex polyhedral regions requires a tradeoff in the complexity of the memory
addressing function versus the amount of memory used. We present a tradeoft
in which the memory address function is limited to an affine function of the
indices (thus memory is allocated to a rectangular parallelepiped region).
Given this constraint, we seek a unimodular transformation which minimizes
the volume of the bounding box of the polyhedron. This is a non-linear
programming problem. We present a method in which the volume of the
bounding box is minimized one dimension at a time by a succession of skewing
transformations. Fach one of these is a linear programming problem.

Key-words: Memory allocation, Polyhedra, Linear programming

(Résumé : tsvp)

*This work was partially supported by the Esprit Basic Research Action NANA 2,
Number 6632

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)
Téléphone: (33) 99 84 71 00 — Téécopie: (33) 99 38 38 32

Allocation de Mémoire pour des Polyedres

Résumé : L’évaluation des équations récurrentes linéaires est plus efficace
s’il y a stockage de la mémoire assignée aux variables. I’affectation de la
mémoire aux variables qui sont basées sur les domaines convexes demande
un compromis entre la complexité de la fonction qui trouve un élément d’une
variable en mémoire, et la quantité de mémoire affectée au stockage de cette
variable. Cet article propose un compromis dans lequel la taille de le mémoire
affecté est minimisé sous contrainte que la fonction pour adresser le mémoire
soit affine.

Mots-clé : Allocation de Mémoire, Polyedres, Programmation Linéaire

Allocating Memory Arrays for Polyhedra 1

1 INTRODUCTION

In this paper we discuss an issue that arises when considering the simu-
lation or evaluation of systems of affine recurrence equations (SARE) [11].
Here, we limit our SARE’s to equations involving variables defined over fi-
nite convex polyhedral domains. We have been working with the ALPHA
environment [10, 9] which is based on the formalism of affine recurrence
equations. ALPHA is similar to the CRYSTAL language [6] in that is was
designed to facilitate space-time transformations of programs, but is less am-
bitious than CRYSTAL, and is based on the substitution principle which
allows program transformations to be done through syntatic rewriting. Sys-
tems of affine recurrence equations are referentially transparent, meaning
that an expression has the same meaning in every context and evaluation of
a recurrence equation has no side effects. This property is shared by func-
tional languages which makes describing systems with recurrence equations
very similar to programming in a functional language. Variables in a such a
system are single-assignment, meaning that each variable name is associated
with one and only one value. Another side effect of referential transparency
is that there is flexibility in the order that equations are evaluated (or ree-
valuated). As long as flow dependencies are respected, equations may be
evaluated, or may be scheduled to be evaluated, in any order—even in paral-
lel. Since variables are all single assignment, there are no write dependencies
or anti-dependencies to be concerned about.

In the simulation or execution of systems of affine recurrence equations,
there are two strategies involving variables

1. No variable storage. Variables are recomputed according to their func-
tional definitions each time they are needed. This is called demand
driven evaluation and may be implemented by graph reduction [12].

2. Variable storage. The first time a variable is computed, the result is sto-
red. The single assignment property of systems of recurrence equations
ensures that each variable will only ever have one value. If the value of
a variable is ever needed a second or subsequent time, its value is not
recomputed, but is obtained from memory. This technique is known as
applicative caching or tabulation. [3, 8]

2 Doran K. Wilde and Sanjay Rajopadhye

This paper will deal with ways to facilitate the second strategy by stati-
cally allocating memory for variables declared over arbitrary finite convex
polyhedral domains.

Ezxample. Fibonacci Series

F = {F, : F, € integer, 1 <n }
1 n=1
F, = 1 n=2

Fn—l—I'Fn—Q n>2

To compute F),, without using variable storage requires exponen-
tial time. However, if variable storage is allocated to store values
of variable F' when they are computed, then computation requires
only linear time.

In a system with variable storage, each variable element is computed only
once, minimizing computation time at the expense of memory allocation. Me-
thods of allocating memory for arrays can be divided into static and dynamic
methods. Static methods declare the allocation of memory for an entire va-
riable array at the beginning of a program. Static methods include the use
of pointer arrays, array linearization techniques, and static caching (repla-
cement schedule is precomputed) . In contrast, dynamic methods allocate
memory for elements, or groups of elements at run time, when they are com-
puted. Variables remain in memory until they are deallocated or replaced.
Dynamic methods include hashing and caching (with a dynamic replacement
algorithm). Infinite domains must be allocated dynamically, since they can
never exist in memory in their totality at one time. Static and dynamic me-
thods can be used together.

This paper investigates a static method of variable storage in which a
variable based on a convex polyhedron is transformed in such a way as to
reduce the volume of the bounding box containing the variable. This reduces
the amount of memory that needs to be allocated to the variable. In section
2, we present some background information and definitions referred to in
the paper. In section 3, we will show that allocation of memory to variables
which are defined over finite convex polyhedral regions requires a tradeoff
in the complexity of the memory addressing function versus the amount of
memory used. We present a tradeoff in which the memory address function

Allocating Memory Arrays for Polyhedra 3

is limited to an affine function of the indices and show that this requires
that memory be allocated to a rectangular parallelepiped region of variable
index space. In section 4, we discuss how bounding boxes are computed and
show that a unimodular transformation can be used to reduce the volume
of the bounding box of a polyhedron without changing the complexity of
the addressing function. We show how this can be done using a sequence
of skews and how those skews can be computed. We formalize this as a
non-linear programming problem. In section 5, we present an algorithm in
which the volume of the bounding box is minimized one dimension at a time
by a succession of skewing transformations. Each one of these is a linear
programming problem. In section 6, we discuss some techniques of scanning
variable spaces allocated by our method and in section 7, we present our
conclusions.

2 Review and Definitions

2.1 Review of dual representations of polyhedra

Any convex polyhedron P can be represented implicity using a homogeneous
system of inequalities

Pote:a(V)20 a0 0

where A is a constant integer matrix in which each row of A represents one
inequality constraining the domain, x is a rational vector and A is an integer
scalar such that Az is an integer vector. The set of rational points = which
satisfy the above system of constraints form a convex polyhedron P. Equation
1 is called the implicit representation of P. The polyhedron P also has an
equivalent dual parametric representation

732{:1::()‘;)23;%#20, A >0} (2)

stated in terms of the vertices (columns of integer matrix R) of the polyhe-
dron, where p is a free valued rational column vector under the positivity
restriction specified above. Procedures exist to compute the dual represen-
tations of P, that is, given A, compute R, and visa versa [7]. We have such

4 Doran K. Wilde and Sanjay Rajopadhye

a procedure in the geometric function library used by the ALPHA system.
Once R is determined, any non-negative linear combination of its columns
is a feasible solution to the system of constraints given in equation 1 and
Er

£

where ¢ > 0. If ¢ > 0, that column is called a vertex, and if £ = 0, it is called
a ray. A point(ray) in P is an extreme point(ray) if and only if it cannot

yeilds a point somewhere inside P. Each column of R is of the form

be expressed as a positive combination of other points and rays of P. If all
columns of R are vertices, the polyhedron is bounded, has a finite volume,
and is called a polytope.

2.2 Domains and Variables

Whereas a polyhedron is a region containing an infinite number of rational
points, a domain, as we use the term in this paper, only refers to the lattice
of integral points in a polyhedron.

Definition 1 A finite polyhedral domain of dimension n is defined as
D:{ieZ"ieP}=2"NnP (3)

where P is a finite convex polyhedron of dimenston n as defined in equations
1 and 2.

A domain consisting of a lattice of points inside a bounded polyhedron (or
polytope) will contain a finite number of points and is called a finite domain.
Given a domain D, we now define two functions as follows :

Definition 2 The volume function, volume : D — Z, is defined to be the

number of distinct points in the domain.

Definition 3 A lexical mapping function, lex : 2" — Z, maps each point in
a domain D to a unique integer in the set {n :n € Z,0 <n < volume(D)}.
This function is not necessarily unique.

In affine recurrence equations of the type considered here and in the language
ALPHA, every variable is declared over a convex polyhedral domain. Here,
we formalize the definition of a variable.

Allocating Memory Arrays for Polyhedra 5

Definition 4 A variable X of type datatype declared over a domain D is
defined as
X =={ X, : X, € datatype, 1 € D } (4)

where X; is the element of X corresponding to the point v in domain D.

The memory allocated for a variable X is a vector of elements of length
volume(X.D) starting at some address base. The amount of memory alloca-
ted for variable X is defined in equation 4 is

size of (X) = size of (X.datatype) x volume(X.D) (5)
and the address of an element X, of variable X is:
address(X;) = base + size of(X.datatype) x lex(z) (6)

where volume(D) and lex(i) are as previously described.

In the next section, we will present the lex() functions for rectangular and
triangular domain based variables. In sections 4.2 and 4.3, we will restrict
the complexity of the function lex() to be an affine function of the indices
of the domain, and then minimize the amount of memory allocation needed
under that constraint.

3 Complexity of lexical functions

The lexical mapping function lex : Z" — Z maps each index point in n-
space to a unique integer and hence is an ordering function, similar to other
functions which specify an order that points in a n-dimension space are to
be read (or processed in some other way). Our ordering is simply the order
in which elements of a variable are stored sequentially in memory, and for
now we will assume that the order is unconstrained, that is any ordering is
just as good any another. In section 6.1, we will discuss the implication of
a partial ordering constraint (i.e. a timing function) being imposed on the
variable.

Since, during the course of a simulation or evalution of a system of re-
currence equations, the address() function has to be evaluated every time
a variable is accessed, and since lex() is used in the function address(), its
complexity becomes of concern. If the complexity of computing the position

6 Doran K. Wilde and Sanjay Rajopadhye

of a variable element in memory exceeds the complexity of the actual compu-
tation, then the expected advantage of using memory to store variable results
is lost.

It will be useful at this point to take a look at two special classes of
domains. The first type is the rectangular parallelepiped domain which has
affine lex() functions. The second type is the triangular domain which has po-
lynomial complexity lex() functions. It will be seen from these two examples
how the complexity of the lex() function relates to the shape of the domain
that it enumerates.

3.1 Example: lexical functions for rectangular domains

Rectangular domains are a class of domains that can be scanned by a set
of nested DO-loops with constant lower and upper bounds. This class of
domains is interesting because lexical functions for rectangular domains are
affine functions of their indices.

This class of domains has the following form:

D = {z:z€eZ" x1>2h, 1<y
9 > ly, 1y < uy
Do (7)
T 2>y, <uy)
= {z : z€ 2", [<z <u}

where z; is the 7™ index (coordinate) of the point z, and where [; and u; are
constant scalars for ¢ = 1---n, with n being the dimension of the domain.

One can define lex and volume functions for a rectangular domain in
terms of a vector w whose elements w; are defined recursively in terms of [;
and u; is defined as:

)1 when =1 (8)
Wi = wi—1(u;—y — L1+ 1) when 1<i<n+1

The scalar w; is the volume of the domain in the first : — 1 dimensions. The
lex and volume functions are then defined in terms of w:

lex(i) =) o(t—1) (9)

Allocating Memory Arrays for Polyhedra 7

volume(X. D) = wy4q (10)

where n is the dimension of X.D and the operation o is a vector dot product.
The w-vector above is called the doping vector in compiler terminology [1].

Figure 1 shows programs for rectangular domains of dimensions 1, 2, and
3 with their associated functions. It can be observed from the examples that
lexical functions for this kind of domain are always affine functions of the
indices.

‘ Nested Loop Program ‘ Lexical and Volume Functions

DO:=L;...U; lex(i) = i — L;
{ process z; } volume(?) = (U; — L; + 1)
DOi=1L;...U: lex(i,j) = (Uj = Lj +1)(2 — Li)+
DO]ILJ'...D]‘]'_L].
{ process xi; } volume(i, ;) = (U; — L; + 1)(U; — L; + 1)
DOi=1L;...U: lex(i,, k) = (Uy — Ly + 1)(U; — L + 1)(i — L)+
DOj=1L;...U; (Up — Ly + 1)(j — L)+
DOk:Lk...Uk k_Lk
{ process zijx } | volume(i, j, k) = (Uy — Ly + 1)(U; — L + 1)(U; — Li + 1)

Figure 1: Lexical functions for Rectangular Domains

3.2 Example: lexical functions for triangular domains

In this section, the class of triangular domains is investigated. This class
of domains can be scanned by a set of nested DO-loops whose lower and
upper bounds are affine functions of outer nested loop indicies. The lexical
scanning functions for this class of domains are polynomial functions of the
indices. Triangular domains are also important because all convex domains
can always be subdivided into triangular sub-domains. A similar method
was employed in [4] in which scanning functions were found for arbitrary
domains by subdividing them into trapazoidal sub-domains. Since the lex()
function of any convex domain can be expressed as a combination of the

8 Doran K. Wilde and Sanjay Rajopadhye

lex() functions of its triangular sub-domains combined with [F-statements,
the complexity of the lex() function of any convex domain is of the same

order as the complexity of triangular domains.

This class of domains has the following general form:

D= {z : z€Z" z1>b,
Ty > by + anay,

T3 > by + az1x1 + aszxy,

T < d1
r2 < dy+ e
3 < ds+ 3171 + €322

Tn Z Ln(xla o

T S Un(lfl,"‘,l’n—l) }

(11)

. 7:CTL—1)

where z; is the i'" index (coordinate) of the point =, where a;;, b;, ¢;;, and d;
are all constant valued coefficients, and where the scalar functions L;() and
U;() are the respective lower and upper bounds of the index z; for each dimen-

sion 2, and are affine functions of lower dimensioned indices x1, x3, - -

s Li—1-

Figure 2 shows programs for processing all elements in triangular domains
of dimensions 1, 2, and 3. The associated lexical functions produce an enu-
meration number for each element in D corresponding to the order in which
elements of D are processed (with 0 being the first). The complexities of

‘ Nested Loop Program

‘ Lexical Function

DO:=L;...U;

{ process z; } lex(i) =1 — L;
DO:i=1L;...U; . i-1
DO j = L;(i)...U;(i) lex(i,j) = = [Ui(a) — Lj(a)]+
{ process x;; } j N Li(3)
i—-1 Uj(a)
DO:=1L;...U;]GX(‘i,j, k) = Z [Uk(a,b)—Lk(a,b)]—l—
DO j = Lj(ig .. .)Uj(z') . a=Li b=fjia)
DO k= Li(i,7)...Ukle,g .
’ ’ Ur(i,b) — Lg(2,b
{ process x;;1 } b:%:(i)[k(2,0) k(3,0)] +

Figure 2: Lexical functions for Triangular Domains

Allocating Memory Arrays for Polyhedra 9

the lexical functions in figure 2 are polynomials of the same degree as the
dimension of the respective domains.

3.3 Limiting the complexity of lexical functions

Complex lexical functions result in complex addressing functions for variables
allocated in memory (equation 6). Since the addressing function must be
called each time a variable is accessed, the complexity of the entire simulation
is affected. It is therefore very desirable to limit, as much as is possible, the
complexity of the lexical function.

To reduce the complexity of the lexical function for a domain, more me-
mory can be allocated than is actually needed to represent the domain (more
than the volume of the domain). If an amount of memory is allocated to store
the smallest rectangular domain which contains the domain of the variable
being allocated (which we will call the bounding box from now on) then the
lexical function becomes an affine function of the indices. The cost for the
simplified lexical function is that more memory is allocated than is necessary!.
The difference in the volume of the bounding box domain and the volume
of the variable domain is the amount of unusable memory that needs to be
allocated in order to have the benefits of an affine lexical function. In this
paper, we propose to limit the complexity of the lexical function to an af-
fine function and then to try to minimize the amount of memory which is
allocated.

4 Addressing and Volume Functions for Boun-
ding Boxes

In section 3.1, we presented the lex() and volume() functions for rectangular
domains. Since the lex() function of a bounding box is an affine function, the
address() function which is based on it (equation 6) is also affine. We will
show how to compute a transformation 1" which alters the shape of a domain
D, such that the volume of the bounding box of the transformed domain D’

!The amount of memory allocated to a bounding box is limited in the worst case to
the volume of the domain times n! where n is the dimension.

10 Doran K. Wilde and Sanjay Rajopadhye

Figure 3: Domain D and its Bounding Box

is reduced. It will be shown that affine lex() functions are closed under affine
unimodular transformations of the underlying domain.

4.1 Use of bounding boxes

The figure 3 shows (on the left) a domain D and (on the right) D inside its
bounding box Dgg. In our approach, to represent D in memory, we in fact
allocate enough memory to represent Dpp, a superset of D allowing the use
of an affine function to address an element of D in memory (equations 6 and
9). The area outside of D but inside Dpp represents area which is wasted
memory. The amount of waste is proportional to volume(Dgp) — volume(D).

A bounding box of D is defined as the smallest rectangular domain Dgp
which contains D. As defined in equation 7, rectangular domains are charac-
terized in terms of constant vectors u and [. We will show how the vectors
u and [of a bounding box are computed for a given finite domain D. D is
defined implicity and parametrically as follows:

D = {x:xEZ”,A(A;)ZO, x>0} (12)
[Ax
= {x:IEZ,()\):R/L, w>0, A>0} (13)

where A and R are constant integer matrices, * and p are rational vectors,
and A is an integer scalar such that Az is an integer vector.

The columns of the R matrix represent the & extremal vertices of the po-
lyhedron. To bound a finite polyhedron, it is sufficient to bound its extremal

Allocating Memory Arrays for Polyhedra 11

Figure 4: Transformed Domain D" and its Bounding Box

vertices. The rational constants /; and wu; are therefore defined as the minima
and maxima, respectively, of the k values r;;’s in the 't row of R:

li = min(ril,rig, e 7rik)7 1< <n (14)

u; = max(ri, iz, -, rik), 1<i1<n

The bounding box Dp is defined in terms of [; and w;.

Dgp={{z : 2€Z", [;<z;<u;, 1 <i<n} 2O D (15)

4.2 Reducing the Memory Allocation

To reduce wasted memory, we try to find a linear unimodular transformation
T : D — D' which changes the shape of the domain D without changing
its volume and such that the difference between the transformed domain D’
and its bounding box, i.e. volume(D'gg) — volume(D'), is minimized. Since
the transformation 7' is unimodular (i.e. det(7") = 1) it is volume preser-
ving (volume(D') = volume(D)). Thus, to minimize the waste, it suffices to
minimize volume(D'pp).

Figure 4 illustrates domain D' which is domain D transformed under
some transformation 7. The bounding box D'gpg of the transformed domain
is smaller than the bounding box of the untransformed domain. Less memory
needs to be allocated for the bounding box of D’ than for that of the original
domain D.

The problem can now be restated in the following terms:

12 Doran K. Wilde and Sanjay Rajopadhye

Given a domain D,
Find an unimodular transformation 7': D — D’
such that the volume(D’'gg) is minimized.

In terms of D and T', the domain D’ is defined as as:

D' = {a': 2'=Tz, ze€ D} (16)

!
= {2’ : x'EZ”,(A;):TR/L:R//L, >0, A>0} (17)

where R is a constant integer matrix, 7" is a unimodular matrix, A is an
integer scalar, and z, ' and p are rational vectors, and Az’ is an integer
vector.

Having the matrix R’ = TR, the vectors I, v’ and w’ are computed from
R’ in the same manner that /, u and w were computed from R. The new lex()
and volume() functions of the transformed domain are:

1 _ Wy 1 no__ 1 1) !
lex(z") = : oz =l')=w'oa'—wol (18)
volume(Dyg) = w4 (19)

where n is the dimension of both D’ and Dz and the operation o is a vector
dot product.

Theorem 1 The lex function of a transformed domain D' is an affine func-
tion of x.

Proof: Given lex(z’), in terms of transformed points 2/, an affine function
lex(x) may be derived as follows:

lex(z') = woa' —w' ol
w'o(Tz)—w ol
= (TTw)oz—w ol
= lex(x)

Thus, given the transformation matrix 7', the constant vectors w’ and
TTw' can be computed giving the coefficients for an affine lex() function

Allocating Memory Arrays for Polyhedra 13

in terms of points in the original domain. The integer scalar constant
w’ o [’ can also be computed. Thus,

lex(z) = (TTw') oz —w' ol (20)
is affine.

O

Next we show how to find the matrix 7" to reduce the volume of D'gp.

4.3 Minimizing the volume of the bounding box

In this section we focus on the problem of finding a transformation 7" which
minimizes the volume of the bounding box of D', where D' = D.T.
If we define the size of the bounding box in the :** dimension to be:

S; = Uj—1 — li—l + 1 (21)

then by inspecting equations 8 and 10 we can see that the volume of the
bounding box is the product of the lengths of its sides :

volume(Dpg) = w41

= 51 X Sy X - XS, (22)

To minimize the volume of the bounding box, we need to choose a trans-
formation 7' that reduces the lengths of the transformed sides, where T' is
a unimodular transformation (so that volume(D) = volume(D')). We now
define T' to be the product of n unimodular skews [14], (one for each of the
n dimensions), and an unimodular scale:

T=SxT,x --xTyxT (23)
where each T; is a unimodular skew and S is a unimodular scale as follows:
1 --- 0 0 0 ---01 (sy-- 0 0 0 -+ 0]
0 1 0 0 0 0 $,-.10 0 0 "
Ti = tli et t(i—l)i 1 t(i-l—l)i et tm S = 0 0 S; 0 0 5 H S; = 1
0 0 0 1 0 0 0 0 si41 0 =1
L 0 0 0 O 1] 1 0 - 0 0 O Sn,

(24)

14 Doran K. Wilde and Sanjay Rajopadhye

Theorem 2 An n-dimensional unimodular matriz X, with the property that
the leading diagonal submatrices (square submatrices of X containing the
element x11) have non-zero determinants, can be factored into n skews and
a scale, as given in equation 23.

Proof: The proof will be developed in terms of matrices which are transpo-
sitions of skews, but the results extend to skew matrices (7} in equation
24) by the relation:

Ay X Ay X Ag x - = (--- x AL x AT x ah)T

The example used in this proof will be shown for dimension 4, however
the proof extends to arbitrary dimensions. A matrix X (not necessarily
unimodular) may be represented as the product of matrices Y1, Yz, -,
which differ from the identity matrix in one column only as follows:

Tyl Tiz T13 T4 y11 0007 [1 1200 10y30 100 y4
Tg1 T2 23 Tog | (Y21 L OO [0y 00| O 1 yo3 0] |0 10 yog
T3 T3y T3z Taa | | Y31 01 0| [0 ys 10| |00 ys3 0| 001 ysy
T4l Tqz T43 Ty Ya1 00 1] [0 ygp 01 00 yaz 1 000 yaq
Y1 Y1211 Y13T11 + Y23%12 Y14211 T Y24%12 + Y34213
Y21 Y1221 + Y22 Y13T21 F Y23T22 Y14Z12 T Y24T22 + Y34T23

Y31 Y12T31 + Y32 Y13T31 + Y23T32 + Y33 Y14%13 + Y2432 + Y3433
Ya1 Y12T41 + Y42 Y13T41 + Y23Ta2 + Y43 Y14T14 + Y2442 + Y34T43 + Yaa

The right hand side is obtained by multiplying the Y matrices and
simplifying. Comparing the corresponding elements, one may see that
the y; ;’s may be computed, given an X matrix with the restriction
that the all square submatrices of X containing the element z;; have
non-zero determinants. Any non-singular matrix may be row or column
permuted to this form. By comparing elements, one sees that the first
column of y’s is equal to the first column of z’s. The second column
of y’s is found by solving a system of one equation and one unknown,
followed by back-substitutions. The third column of y’s is found by
solving a system of two equations and two unknowns, followed by back-
substitutions. The fourth column requires solving a system of three
equations and so forth. The restrictions on the square submatrices of

Allocating Memory Arrays for Polyhedra 15

X containing the element z1; ensure that the systems of equations that
need to be solved have solutions.

It can also be shown that the above sequence of products can be re-
written as:

1 0007 [1 %z 0071048011004 My 0 0 0
#1000 1 00| o140 lo10¥)) 0 yyy 0 0
FLOo10(]0 %32 10[|00 1 0[]|001%pBL11 0 0 yss 0

71001|]|0 2 o1] |00 ¥ 1]][000 1 0 0 0 yaq

One can see that the scaling matrix can be “factored” out as long as
none of the elements 1, y22, - - are equal to zero. This is ensured by
the fact that the determinant of X (= y11 X y22 X -+ -) is not zero.

Thus, given a matrix X with the appropriate properties, a factorization
into the type described above (equation 23) can be made. If [T, yi;; = 1

then then entire product is also unimodular.
O

Given the factorization of T' in equation 23, the following properties are
observed:

1. T is the transformation resulting from skewing D in each of its n di-
mensions followed by a volume preserving scale.

2. T is unimodular. (det 7' = det Ty x det Ty X - -+ x det T, x det S = 1)

3. The skew T} only affects the :** component of a vertex. All other com-
ponents are left unchanged,

) o
Zo :
L1 Ti-1
Tix=T;| . | =|tuzo+ - +ii—1iTiot + i +EapiTivr + - + tiTs
. Tit1
T, :
L Tn

and thus 7} will only change the size s; of the bounding box in the 7*}
dimension (see equations 21 and 22).

16 Doran K. Wilde and Sanjay Rajopadhye

4. Since the elements ¢;; in the skew transformation matrices are rational,
a skew may map a point from an integral grid to a non-integral grid.

5. The scaling transformation S may be used to realign points onto integer
gridlines which where misaligned by the skews.

One more important observation is that in each dimension z, there exist at
least two vertices r, and ry (columns of R), 1 < a,b < k that determine the
length of the :** side.

T1a 1
794 T2b
T, = v Th =
T'na T'nb
u; = max{ry,ro,c,Tin}
= Tia = (ra)i
L; = min{ry,ri, 1}
= 1 = (1)
s = Ui — i +1

= max{r, —rp+ 1}
for all pairs of columns (a,b) in R : 1 <a,b<k

Theorem 3 The skew transformation T; which minimizes the size of a boun-

ding box in the i™ dimension may be found by setting up the following linear
programming problem. Minimize s, where:

Ti(re —ms)i + 1
Ti(re —ra)i +1 for all pairs (a,b) : 1 <a<b<k (25)

s; 2
>

»
S~ L~

Proof: After transformation by 75,

1 S
SZ' - Og%?k{rla rzb —I_ 1}
= og,aék{Ti(ra)i —Ti(re): + 1}

= Ogigk{Ti(ra — 1) + 1}

Allocating Memory Arrays for Polyhedra 17

where r, and r, are columns of ray matrix R. The minimum s} which
satifies those constraints is max{7T;(r, — r4); + 1}, which leads to the
integer programming problem described above with the cost function
cost = si.

O

A dual optimization problem can be formulated using the duality theorem of
linear programming [13] which does not need to generate all pairs of vertices
to find the minimum transformed size.

The minimum bounding parallelpiped problem
Given a domain D, find a unimodular matrix H and vectors [and
u, which specify the parallelepiped Dj that bounds the domain
D as follows:

Dpn={z|l<Hz<u} OD
and such that the volume of the parallelepiped Dy, is minimized.

Theorem 4 The minimum bounding parallelepiped problem is an equivalent
problem to the minimum bounding box problem.

Proof: Given a domain specified by D = {z : Az > b}, we can view a
unimodular n X n transformation H as follows. Each row of H is a vector
h; which is normal to a pair of parallel hyperplanes defined by the equa-
tions h;x = [; and h;x = u; such that domain D is entirely contained
between the hyperplanes. The scalars [; and u; are chosen such that the
difference u; — [; is minimal, which means that the hyperplanes bound
domain D as tightly as possible. We call the parallelepiped whose sides
are the n pairs of hyperplanes D), and define it as follows:

Dy, = {a2|l<Hz<u} OD, where

h11 h12 s hln h1 11 Uy

h h s ho, I ,
Ho= |0 T = I e T

hnl hn? e h'rm hn Zn Unp

18

Doran K. Wilde and Sanjay Rajopadhye

The volume of Dy, is:
(u1 — Zl) X (UQ — ZQ) X X (un — Zn)
det(H)
= (w1 —h) X (ug — 1) x -+ X (u, — 1), (since det(H)

Volume(Dy,) =

Let D}, be the domain obtained by computing Dy.H as follows:

D, = {a'|2'=Hz, zeDy}, det(H) =1
= {2 |1<2' <u}
Volume(D;) = (u1 —) X (ug —lg) x -+ X (up, — 1)

Thus, D} = Dy.H is the bounding box of the domain D.H (compare to
equation 7), and hence the volume of the bounding box of D.H is the
same as the volume of parallelepiped D), defined by H. Thus to find H,
we can formulate the following minimization problem:

Vo= min[(u; — L) X (ug = lz) X -+ X (un, — 1,)]
such that : (Vo : (Az >b) — [< Hz <wu), det(H)=1

n

= min [[[max hip—q)]

det(H)=1 o1 (Ap<b, Ag<b)

By the duality theorem of linear programming, the following is obtai-
ned:

n

= min H [min (yi1 + yi2)b |
det(H)=1 (yi1A=h;, yio A=—h;,
¥i1 20, y;2>0)

This is a non-linear optimization problem consisting of the product
of linear optimization problems all under a common constraint that

det H = 1.

A resulting H matrix found by the solution of the above problem can be
used as a transformation on D to minimize the volume of the bounding
box. We also note that the order of the rows of H is unimportant, thus
having found one matrix H which minimizes the bounding box, we can
induce a set of equivilant solutions consisting of all row permuations of
H. By performing row permutations, we can always find a solution H

1)

Allocating Memory Arrays for Polyhedra

which satisfies the conditions of theorem 2, and thus be factored into a
set of skews.

1 0 O

1 0 O
hq X

= : - 1__[CFZ ’ TZ - tzl ti? tn tzn
hn i=n

L0 0 0 1 |
1
hz =1; X H T] 5 t;, = [tzl tio tin

The minimization problem above may now be reformulated in terms of
the finding the sequence of skews which minimizes the bounding box.

1

bo (ioq b= 221_[1 Ap<rrbla31(q<b) -]‘22111 T](p— q)]
Using the relation {Tp | Ap < b} "= {q | AT ¢ < b} = {p | AT 'p <
b} and the fact that (H] L THt = H§;11 Tj_l the following formulation
is obtained:

n

V = min max ti(p —

ey LU 8 W0

Alp<b, Alg<h
n
= oI max ti(p—q)]

(H:‘l:1 tii=1) =1 A'.—{ A when =1
CloALTT
Alp<b, Alg<h

By the duality theorem of linear programming, the following is obtai-
ned:

= [min (yir + yi2)b |
(1_[l 1 t”—l) 21_[1 Al A when =1
o A; 1Tz_1 7

yiJA/—tu yz2A =—t,
¥i120, yi22>0

20 Doran K. Wilde and Sanjay Rajopadhye

We have shown that the skew formulation is equivalent to the hyper-

plane formulation of the problem.
O

Conjecture 5 The volume of the transformed domain Dy

volume(Dyg) = 87 X 8y X -+ X s,

n

is globally minimized by sequentially minimizing the s; terms using the linear
programming procedure described in theorem 3.

Discussion: This proof is an open problem. A sketch of a proof is as fol-
lows. There is a unique minimum volume for every every instance of
the minimum parallelepiped problem (and therefore for the minimum
bounding box problem). Given a matrix H which is a solution, a se-
ries of skews can be found whose product is H (or a row permutation
of H). The algorithm presented in this paper produces those skews.
In changing the problem from computing hyperplanes to computing
skews, the global condition det H = 0 is transformed into computing
the each skew, based on a previous skews. This is done by transforming
the domain at each step by the newly computed skew. The fact that
there is a class of solution matrices H (which are row permutations of
each other), means that there is also a class of solution skew sequences
all of which arrive at the same minimum volume. The ‘greedy’ nature
of the algorithm does not lock us into local minimum as is usually the
case in these kinds of problems, but instead leads to a unique solution

from among the class of minimum skew sequence solutions.
O

5 Algorithm

Given D , a domain of dimension n represented as a set of vertices, compute
T by:
Fori=1---n do steps 1 through 4.

1. Compute a list
E={ej : e =r;—r;, ry r;verticesof D, i< j}

Given k vertices, there will be k x (k — 1) elements in E.

Allocating Memory Arrays for Polyhedra 21

2. Create a polyhedron consisting of the constraints:

s; > T;yxe, forall ein K
si > T;x(—e), forallein £

3. Using linear programming, find 7; so as to minimize s;.

4. Replace D by D.T;

Repeat for each dimension @

5. Compute the unimodular scale transformation S to make the resulting
transformation 7" an integer matrix (if possible).

6. Compute T'=T; xTy x ---xT, xS

6 Scanning a Domain

Once a domain is allocated in memory using the methods described in this
paper, it can be scanned relatively easily in the order it has been allocated
by scanning the bounding box using nested DO-loops [2, 5, 4] with constant
upper and lower bounds. The lex() function itself gives the order in which
each element will be accessed. Elements of Dgpg allocated in memory which
do not belong to D can be filtered out by putting a domain membership
test in the loop body. The indices i, j, ... could be tested against the
equations which define the domain D-—however this can be costly in terms
of run time. Another solution is that there could be a tag bit associated
with each element which tells whether that element is a member of D or
not. Such a procedure is illustrated in figure 5. This would be faster than
a program which did a membership test using the domain constraints, but
has the expense of a tag bit for each element. Also this tag bit would need
to be computed and preinitialized by the compiler, adding to the compile
time. An even faster method can be found by noticing that elements that are
outside of the domain usually come in contiguous sequences, that is, there are
usually several in a row. By skipping over all of a string of outside elements
at once, the time spent processing elements outside of the domain could be
further reduced. The unused value fields of outside elements could be used

22 Doran K. Wilde and Sanjay Rajopadhye

a = D.base;
for (i=0; i<si; 1i++)
for (j=0; j<sj; j++)

{ if (*a.tag == outside) { a++; continue; }
Compute(*a.value); /* D[i,j,...] */
at+;

}

Figure 5: Scanning an allocated polyheron

and preprogrammed to store information needed to skip to the next good
element or another table could be used to store skip information.

6.1 Scanning with a given schedule

Often, there is a timing function associated with a domain which dictates
the order in which the domain is to be scanned. If this timing function is a
full ordering of the points, then it can be used itself as a the lex() function
and memory can be allocated in that order. However, if it is only a par-
tial ordering, then we can use methods developed in this paper to create a
full ordering lex() function which respects the timing function and reduces
memory.

Assume that in a multidimensionsional domain, the domain has already
been transformed to reflect the timing function in its first ¢ (of n) dimen-
sions. To respect the timing function, those dimensions cannot be skewed, or
if they are skewed, loops must be written that scan those indices in the uns-
kewed order. However, we can use our methods on the last n — ¢ dimensions
to reduce the amount of memory required under the timing function cons-
traint. Scanning techniques discussed above will work, as long as the timing
dimensions are made the outer loops.

Allocating Memory Arrays for Polyhedra 23

7 Conclusion

Memory allocation for domain based variables is required for efficient execu-
tion of recurrence equations. In this paper, we have demonstrated a method
of allocating memory for arbitrary convex polytopes that involves finding a
bounding box of the variable domain after being transformed by a unimodu-
lar matrix. The method we have described produces a memory allocation in
which positions of variable elements in memory can be computed by an af-
fine addressing function while at the same instant, attempting to reduce the
amount of memory allocated to the variable. We have shown that the compu-
tation of the optimal transformation is a non-linear programming problem.
Our method finds a transformation by solving a sequence of dependent linear
programming problems. While we believe that the transformation produced
by our method is the optimal one, the proof is still an open problem.

We have also shown methods to scan memory allocated by such a pro-
cedure. One such method with a tag bit for each element and a forwarding
address for elements outside of the domain, is especially attractive in terms
of execution time. Its has been shown how allocation and scanning may be
done with repect to a given timing function.

The methods introduced in this paper are useful in the compilation of
recurrence equations into efficient executable code.

References

[1] A. V. Aho and J. D. Ullman. Principles of Compiler Design. Addison-
Wesley, Reading, Mass., 1977.

[2] C. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In
Third Symposium on Principles and Practice of Parallel Programming

(PPoPP), pages 39-50, ACM SIGPLAN, ACM Press, 1991.

[3] R. S. Bird. Tabulation techniques for recursive programs. Computing
Surveys, 12(4):403-419, Dec 1980.

[4] Zbigniew Chamski. Environnement logiciel de programmation d’un ac-
célérateur de calcul paralléle. PhD thesis, ’Université de Rennes I,
Rennes, France, Feb 1993.

24

Doran K. Wilde and Sanjay Rajopadhye

[5]

[6]

(7]

[10]

[11]

Zbigniew Chamski. Scanning polyhedra with DO loop sequences. In
Workshop on Parallel Algorithms, Sophia, Bulgaria, August 1992.

M.C. Chen. Transformations of Parallel Programs in Crystal. Technical
Report YALEU/DCS/RR-469, Yale University, 1986.

F. Fernandez and P. Quinton. Fztension of Chernikova’s Algorithm
for Solving General Mized Linear Programming Problems. Technical
Report 437, IRISA, Oct 1988.

R. M. Keller and M. R. Sleep. Applicative caching. ACM Transactions
on Programming Languages and Systems, 8(1):88-108, January 1986.

H. Le Verge, C. Mauras, and P. Quinton. The ALPHA language and its
use for the design of systolic arrays. Journal of VLSI Signal Processing,
3(3):173-182, September 1991.

Christophe Mauras. Alpha, un langage équationnel pour la conception
et la programmation d’architectures paralléles synchrones. PhD thesis,
I’Université de Rennes I, Rennes, France, Dec 1989.

Christophe Mauras, Patrice Quinton, Sanjay V. Rajopadhye, and Yan-
nick Saouter. Scheduling affine parameterized recurrences by means of
variable dependent timing functions. In S. Y. Kung and E. Swartzlander,
editors, International Conference on Application Specific Array Proces-
sing, pages 100-110, IEEE Computer Society, Princeton, New Jersey,
Sept 1990.

Simon Peyton Jones. The Implementation of Functional Programming
Languages. PHI Series in Computer Science, (editor, Hoare, C. A. R.),
Prentice Hall, 1987.

A. Schrijver. Theory of Integer and Linear Programming. John Wiley
and Sons, 1986.

M. Wolfe. Optimizing Supercompilers for Supercomputers. MIT Press,
Cambridge, Mass., 1989.

JINRIA

Unité de recherche INRIA Lorraine, Techndpole de Nancy-Brabois, Campus scientifique,
615 rue de Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité derechercheINRIA Rennes, IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité derecherche INRIA Rhone-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1
Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité derecherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

