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Volume Image Processing

Results and Research Challenges

Nicholas Ayache
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06902 Sophia-Antipolis, France
Email: ayache@sophia.inria.fr

September 1993

Abstract

The automated analysis of 3D medical images can improve significantly both di-
agnosis and therapy. This automation raises a number of new fascinating research
problems in the fields of computer vision and robotics.

In this paper, I propose a list of such problems after a review of the current
major 3D imaging modalities, and a description of the related medical needs.

I then present some of past and current work done in the research group
EPIDAURE! at INRIA, on the following topics: segmentation of 3D images, 3D
shape modeling, 3D rigid and nonrigid registration, 3D motion analysis and 3D
simulation of therapy.

Most topics are discussed in a synthetic manner, and illusrated by results.
Rigid Matching is treated more thoroughly as an illustration of a transfer from
computer vision towards 3D image processing. Last topics are illustrated by pre-
liminary results and suggest a number of promising research tracks and future
challenges.

Keywords: Voluize Liiage rrocessing, Medical Images, 3D Vision, Med-
ical Robotics, Research Trends.

'EPIDAURE is a very nice location in Greece which used to be the sanctuary of
ancient medicine. Today, for computer scientists, it is also a recursive acronym (in French):
Epidaure, Projet Image, Diagnostic AUtomatique, et RobotiquFE.



L’Analyse des Images Volumiques
Resultats et Défis Futurs

Nicholas Ayache
INRIA - B.P. 93
06902 Sophia-Antipolis, France

September 1993

Résumé

L’analyse automatique des images médicales tridimensionnelles (3D) permettra
d’améliorer de maniére significative le diagnostic et la thérapeutigue. Cette au-
tomatisation pose des problémes de recherche nouveauz et passionnant dans les
domaines de la vision par ordinateur et de la robotigue.

Dans cet article, j’etablis une liste de ces problémes aprés avoir passé en re-
vue les principales modalités d’acquisition des images médicales 3D, ainst que les
besoins médicauz associés. Je présente ensuite une partie des travauzr de recherche
menés au sein du projet de recherche EPIDAURE' & I'INRIA, sur les sujets
sutvants: segmentation des images 3D, modélisation des formes 3D, recalage 8D
de formes rigides et déformables, analyse du mouvement 3D et simulation 3D
d’opérations chirurgicales.

La plupart de ces sujets sont discutés de maniére synthétique, et illustrés par
des résultats. Seul le probléme du recalage rigide est approfondi, comme exemple
d’un transfert de la vision par ordinateur vers Uanalyse des images médicales,
Les derniers sujets sont illustrés par des résultats préliminaires, et permettent de
suggérer des directions de recherche prometteuses, ainsi gue des défis ¢ relever dans
le futur.

Mots Clés: Traitemei.>d’imagés volumiques, Images Médicales, Vision 3D,
Robotique Medicale, Directions de Recherche. ‘

'EPIDAURE est le nom d’un site magnifique en Gréce, sanctuaire de la médecine
antique. Aujourd’hui, c’est aussi un acronyme récursif: Epidaure, Projet Image, Diagnostic
AUtomatique, et RobotiquFE.



1 Introduction

1.1 New Images

Three-dimensional (3D) images are becoming very popular in the medical
field [54], [116], [97], [11], [120]. A modern hospital commonly produces ev-
ery year tens of thousands of volumetric images. They come from different
modalities like Magnetic Resonance Imagery (MRI),Computed Tomogra-
phy Imagery (CTI, also called Scanner Imagery), Nuclear Medicine Imagery
(NMI) or Ultrasound Imagery (USI).

Figure 1: A 3D display of two well known anatomical structures extracted
automatically from a single 3D Magnetic Resonance Image (MRI) of the
head. The automatic extraction and display of these structures involves
advanced 3D image processing.

These images share the particularity of describing the physical or chimical



Figure 2: A few cross-sections extracted from a 3D MRI image of the head
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equipment, which measures magnetic field variations, or functional MRI,
which provides metabolism informations (like NMI), but with a non invasive
method. These new modalities are still in the research stage, but might lead
to major 3D imaging devices in the near future.

1.2 New Markets

The market of the production of medical images was evaluated to 8 billion
of US dollars in 1991 [100], [35], and shows approximately an increase of
10% per year. Among these figures, MRI represents currently a market of 1
billion dollars, with a strong increase of approximately 20% per year [84].

Besides the production itself, 3D image processing is the most recent
market. Almost inexistent a few years ago, it is evaluated to 350 million
dollars in 1992, with a planned evolution between 20 and 40% per year during
the next 5 years.

This comes from the new capabilities demonstrated by computer vision
applied to 3D imagery. Not only it provides better diagnosis tools, but also
new possibilities for therapy. This is true in particular for brain and skull
surgery, laparoscopy and radiotherapy, where simulation tools can be tested
in advance, sometimes with the help of virtual reality, and used during the
intervention as guiding tools [62], [39], [93]. In some cases, even robots can
use pre-operative and per-operative 3D imagery to complete precisely some
specific medical gestu.¢s prepared during a simulation p..ase [94], [69].

One must notice that 3D imagery is also in expansion in other fields
than medical. In biology, confocal microscopy produces voxel images at a
microscopic scale. In the industry, non destructive inspection of important
parts like turbine blades for instance is sometimes made with CTI. Finally,
in geology, large petroleum companies like Elf-Aquitaine for instance, have
bought scanners (CTI) to analyse core samples.

1.3 New Medical Needs

Exploiting 3D images in their raw format (a 3D matrix of numbers) is usually
a very akward task. For instance, it is now quite easy to acquire MRI images
of the head with a resolution of about a millimeter in each of the 3 directions.
Such an image can have 256% voxels, which represent about 17 Megabytes
of data. High resolution 3D images of the heart can also be acquired during



a time sequence, which represent spatio-temporal data in 4 dimensions. In
both cases, displaying 2D cross-sections one at a time is no longer sufficient
to establish a reliable diagnosis or prepare a critical therapy.

Moreover, the complexity of the anatomical structures can make their
identification difficult, and the use of multimodal complementary images re-
quires accurate spatial registration. Long term study of a patient evolution
also requires accurate spatio-temporal registration.

We identified the automation of the following tasks as being crucial needs
for diagnosis and therapy improvement:

1.

Interactive Visualization must be really 3D, with dynamic anima-
tion capabilities. The result could be seen as a flight simulation within
the anatomical structures of a human body. A recent review of the
state of the art can be found in {104].

. Quantification of shapes, textures and motion must provide the

physician with a reduced set of parameters useful to establish his diag-
nosis, study temporal evolution, and make inter-patient comparisons.
This must be true for the analysis of static and dynamic images.

. Registration of 3D images must be possible for a given patient be-

tween single or multi-modality 3D images. This spatial superposition
is a necessary condition to study in great details the evolution of a
pathology, or t: take f:ll advantage of the complementarity information
coming from multimodality imagery. Extensions to the multi-patient
cases is also useful, because it allows subtle inter-patient comparisons.

Identification of anatomical structures within 3D images requires the
construction of computerized anatomical atlases, and the design of
matching procedures between atlases and 3D images. Such a regis-
tration would provide a substantial help for a faster interpretation of
the most complex regions of the body (e.g. the brain), and it is a pre-
requisite to solve the previous multi-patient registration problem, and
to help planification (see below).

. Planification, Simulation and Control of therapy, especially for

delicate and complex surgery (e.g. brain and crano-facial surgery, hip,
spine and eye surgery, laparoscopy ... ), and also for radiotherapy: this



is an ultimate goal. The therapist, with the help of interactive visual-
ization tools applied to quantified, registered and identified 3D images,
could planify in advance its intervention, taking advantage of a maxi-
mum of planification advices, and then observe and compare predicted
results before any operation is done. Once the best solution is chosen,
the actual intervention could then be controlled by passive or active
mechanical devices, with the help of per-operative images and other
sensors like force sensors for instance.

1.4 New Image Properties

To fulfill these medical needs, it is necessary to address a number of chal-
lenging new computer vision and robotics problems [3], [43]. Most of these
problems are quite new, not only because images are in three dimensions,
but also because usual approximations like polyhedral models or typical as-
sumptions like rigidity rarely apply to medical objects. This opens a large
range of new problems sometimes more complex than their counterparts in
2D image analysis.

On the other hand, specific properties of 3D medical imagery can be
exploited very fruitfully. For instance, contrary to video images of a 3D scene,
geometric measurements are not projective but euclidean measurements.
Three dimensional coordinates of structures are readily available!

Moreover, one can usually exploit the intrinsic value of inten :ty,
which is generally related in a simple way to the physical or physiological
properties of the considered region; this is almost never the case with video
images where intensity varies with illumination, point of view, surface orien-
tation etc...)

Also, a priori knowledge is high, in the sense that physicians usually
have protocols (unfortunately depending on the image modality) to acquire
images of a given part of the body, and different patients tend to have similar
structures at similar locations!

Finally, having a dense set of 3D data provides a better local regular-
ization when computing local differential properties, as we shall see later.



1.5 New Computer Vision and Robotics Issues

Having listed the medical needs and the new image properties, I now set
a list of computer vision and robotics issues which we believe are central
problems :

1.

3D Segmentation of images: the goal is to partition the raw 3D im-
age into regions corresponding to meaningful anatomic structures. It
is a prerequisite to most of the medical needs listed before. Efficient
segmentation requires the modeling and extraction of 3D static or dy-
namic edges and of 3D texture, as well as the generalization of 2D
digital topology and mathematical morphology in 3D.

3D Shape Modeling: this is mainly a prerequisite to solve the reg-
istration and identification needs, but also for efficient visualization.
It is necessary to describe non-polyhedral 3D shapes with a reduced
number of intrinsic features. This involves mainly computational and
differential geometry.

3D Matching of 3D shapes: once segmented and modeled, new algo-
rithms must be designed to reliably and accurately match such repre-
sentations together, both in rigid and nonrigid cases. This is necessary
to solve the registration and identification needs.

3D Motion Analysis: this requires the development of new tools to
process sequences of 3D images, (i.e. 4D images!), in order to track and
describe rigid and nonrigid motion of 3D anatomical structures. This
is necessary for the quantification of motion needs.

Dynamic Physical Models of anatomical structures should be de-
velopped to provide realistic simulation of interaction with 3D images.
This is required for the planification and simulation of therapy. Physi-
cal models can also help solving the previous 3D motion analysis prob-
lems.

Geometric Reasoning is required to help therapeutic planification,
in particular to determine trajectories of beam sources in radiotherapy,
and succession of accurate medical gestures in surgery.
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7. Virtual Reality environment should be developped to provide realistic
interactive visualization and to help planification and simulation.

8. Dedicated Medical Robots, possibly passive or semi-active, equiped
with specific sensors (force sensing, optical or ultrasound positioning,
... ), must be developped for the automatic control of therapy.

As one should notice, these problems are mainly computer vision and
robotics problems, involving also graphics. In the following, I address them
(except the last one, but see Taylor-et-al’s paper in these proceeding for a
spectacular example of a dedicated medical robot) by presenting the research
conducted during the past 4 years in the research group EPIDAURE at IN-
RIA. I present the basic lines of this research, the main results, and try to
indicate some promising research tracks. References go primarily to the pa-
pers published by the EPIDAURE group, although I tried to add a significant
(but necessarily incomplete!) list of complementary references.

2 Segmentation of 3D images

Segmentation of 3D images has similarities with the classical problem of seg-
menting 2D images. The purpose is the same, namely to partition the original
set of image points into subsets corresponding to meaningful objects. As for
2D image proc_ssing, both region-based and contour-bioed approaches ap-
ply, with the specificity that regions are now volumes and that edges become
surfaces.

We found that a set of generic tools were quite effective to solve com-
pletely a number of specific segmentation problems both in static and dy-
namic images. These include 3D edge extraction, 3D digital topology and
mathematical morphology operators, 2D and 3D active contours, and 3D
texture analysis tools. We found that combined together these tools could
solve the problem of segmenting major anatomical structures in CTI and
MRI, and also the tracking of 2D and 3D structures of the beating heart in
dynamic USI and NMI [4].

11



2.1 3D Edges

As previously mentionned, a major advantage of 3D images comes from the
fact that intensity is usually a simple function of the studied structures (con-
trary to video images of a 3D scene). To segment CTI or MRI images,
assuming constant intensity plus additive noise within a given anatomical
structure 1s often a reasonable assumption in regions with low texture. In-
tensity in NMI images is also simply related to the physiological function
studied, but the resolution is often lower with a higher noise level. The most
difficult images to segment are probably USI, where intensity already mea-
sures a function of the derivative of the acoustic impedance of the tissues,
but with a strong multiplicative (in frequency domain) noise producing a
very typical “speckle” texture almost everywhere.

For regions with low texture, O. Monga [88], [89] showed that the 3D
generalization of the Deriche-Canny edge operator [32] was quite efficient to
extract edges. The superiority of 3D filtering the volumetric data instead of
successively filtering 2D cross-sections was clearly demonstrated as can be
seen in figure 4.

Because 3D filtering is computationally more intensive, the use of sepa-
rable recursive filters is crucial for the sake of computational complexity. G.
Malandain implemented a version of the 3D edge detector which has been
distributed to several places.

2.2 Digital Topology, and Mathematical Morphology

Thresholding and /or edge detection must generally be followed by some 3D
N\*matygmatical morphology operators (erosion, dilation, thinning, connected
component analysis...) to separate regions from one another. These oper-
ations require a formal analysis of the discrete notions of connectivity for
points, curves, surfaces and volumes in 3D images. This is the purpose of
digital topology [53], [65], and mathematical morphology [101], disciplines
to which G. Malandain and G. Bertrand brought recently interesting new
results and algorithms [77], {13]. For instance, they show in figure 5 the

extraction of topological singularities on the surface of 2 skulls.

12



Figure 4: 3D edge detection is more robust and coherent than 2D edge de-
tection: left, we show the result of 2D edge detection performed in successive
cross-sections which were orthogonal to the plane of the picture. Result from
one cross-section to the next is not as coherent as it is with 3D edge filtering

(right) where none of the 3 principal directions is privileged. (Courtesy of
G. Malandain and O. Monga)
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Figure 5: shows the extraction of topological singularities on the surface of
2 skulls. One should note the remarkable stability of these lines, which can
be used for registration. (Courtesy of G. Malandain and G. Bertrand)

2.3 Deformable Surfaces

This approach consists in generalizing in 3 dimensions the active contours in-
troduced by Kass, Witkin and Terzopoulos [61], [106]. A variational method
has been developped by Laurent Cohen and then by Isaac Cohen to minimize
an energy which accounts for the elasticity properties f the surfa e (internal
energy) and the proximity of detected edgels (external energy). The mathe-
matical framework is the one of the finite elements, which provides a sound
and stable analytical description of the surface. This approach provides a
good segmentation of simple surfaces with a simple topology [22], [20], [23].

We show in figures 6 an example of the segmentation of a heart ventricle
in a 3D image. After the segmentation of such a 3D image, deformable
surfaces appear to be very efficient to track a deformable structure in a time
sequences of 3D images [5]. Connected work can be found in [108], {25}, [49],
175), [42], [71], (81], [80), [29], [76], [99].

2.4 Sonar Space Filtering

In some cases, it might be interesting to perform the segmentation before 3D
image reconstruction, i.e. from the raw data obtained by the original sensor.

14



Figure 6: In this example we used a deformable surface constrained by bound-
ary conditions (cylinder type) to segment the inside cavity of the left ven-
tricle. We show the initial estimation superposed in light grey in some cross
sections of the 3D image (1st column) and the final solution (2nd column).
Bottom is the found 3-D representation of the inside cavity of the left ven-
tricle. (Courtesy of I. Cohen and L. Cohen)

15



This was clearly demonstrated for USI, with a method called Sonar Space
Filtering.

In USI, I. Herlin and R. Vojak showed that the polar geometry of USI
requires a special type of filtering which computes edges at the local resolu-
tion of the raw data. This is important, because once the image is rectified
from polar to cartesian coordinates, some information is lost, and the edge
extraction results are degraded. Results are good enough in time sequences
of echographic images to analyse the motion of the mitral valve of the heart,
with the help of the previous active contours [50] [51]. Similar results are
also obtained by I. Herlin with Markov random fields [52].

2.5 Geometric Tomography

In the same spirit as above, but for CTI, J.P. Thirion showed that it was
possible to extract directly the boundary of contrasted objects from the edges
of the sinograms (projections from which tomography is computed). The
advantage is a much faster extraction of the edges directly from the data
acquired by an X-Ray Scanner, without requiring the costly tomographic
reconstruction itself. The method, called Geometric Tomography, has been
patented by Inria [112]. It works particularly well with convex objects, as it
is reported in [110].

2.6 Ta>xture-Baseu Approaches

J. Lévy-Véhel, J.P. Berroir and P. Mignot (72], {74}, and (73], implemented
a system called ARTHUR which combines texture modelling and a sophisit-
icated discriminant analysis scheme to select a set of discriminant texture
parameters from a training set of images (this approach has similarities with
the work of [66]). The ARTHUR system can then be connected to a tex-
ture segmentation program called EXCALIBUR, which exploits the training
phase and the notion of "mixed classes” to provide automatic segmentation
of textured images. The texture operators include 2D and 3D texture oper-
ators, some of them involving advanced fractal and multifractal parameters.
Figure 7 shows the result of such a textural segmentation in a cross-section
of an MRI, at the level of the heart.
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Figure 7: Left: an MRI cross section of the body at the level of the heart.
Right: a segmentation result obtained by EXCALIBUR into 4 regions based
on texture analysis. (Courtesy of J. Lévy-Véhel).

3 Modeling Free-Form Surfaces

Once objects are segmented, they have to be modeled for further processing.
This modeling is necessary for registration (next section), which is either rigid
(some rigid part of a single patient) or deformable (nonrigid part of a single
patient, inter-patient or patient-atlas registration). This a very challenging
problem in medical image analysis, to study for instance the evolution of
a pathology such as multiple sclerosis (MRI images), or the efficiency of a
treatment against a cancer lesion (MRI or scanner images). This is also
necessary to compare patients together and help therapy planification.

3.1 Extracting Ridges

The approach successfully developped in the Epidaure project consists in
extracting typical lines, called ridges or crest lines, on the surface of the
objects in each volumetric image.

17



Our definition of ridges on a surface is the locus of points where the max-
imum curvature (in absolute value) is extremal in the direction of maximum
curvature. This definition does not apply when principal curvatures have the
same absolute value, in particular at umbilics. Anyhow, as can be seen from
experimental studies (see below) these ridges convey an intrinsic, meaningful
and compact information on many anatomical surfaces:

e intrinsic, because ridge points are invariant with respect to rigid dis-
placements (this comes from the intrinsic properties of the curvature).

e Meaningful, because ridges tend to correspond to anatomical features
(this is the case on the face, the brain and the skull for instance as can
be seen in figures 8, 15 and 10, and also in [26], [86], [87], [115], [60],
[27] ).

¢ Compact, because they represent a number of points typically 500 times
more compact than the original image.

Several definitions of ridge or crest lines can be found in [63], [33], [19]
(98], [121], [40] and [90]. The one closer to our definition is probably in the
book by Hosaka [57, page 98].

One should note that our definition of ridges is intrinsic to the isophote
surface, without privileging any particular direction of the 3D space. One
<hould refer to [64] for a rigorous and historical analysis of oriented ridges,
i.e. ridges depending on a privileged direction in space.

Computing curvatures requires the extraction of the differential properties
of the surfaces up to the 2nd order, while ridges require 3rd order differential
properties. We show in the following subsections the different approaches we
investigated to achieve a reliable ridge line extraction.

3.2 Local Fitting of Quadrics

After a segmentation of the 3D images, using for instance 3D edge detectors,
O. Monga and P. Sander showed that it was then possible to use a local
Kalman filter around each edgel, to fit a quadric surface in the least square
sense. This polynomial approximation allows the computation of differential
surface properties up to second order only (curvatures). This approach takes
into account the uncertainty attached to the edge localisation and the surface
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normal, and provides an explicit estimation of the uncertainty attached to
the computation of the principal curvatures. Unfortunately, although par-
allel in nature, the method is computationally very expensive. Curvature
information is accurately extracted, but this is not the case for ridges [85].

3.3 Deriving the Image Intensity

Another approach is necessary to extract ridges. As we mentionned earlier, it
is often a reasonable assumption to say that the boundary of an anatomical
surface corresponds to an isophote (or iso-intensity) surface in the volume
image, especially with CTI but also with MRI and sometimes NMI. This
assumption, combined with the implicit function theorem, allows the com-
putation of the differential properties of the anatomical surface from the
derivatives of the intensity function. This method provides excellent results
in high resolution volumetric images, for a computational cost which can be
maintained to a reasonable limit thanks to separable recursive filtering, as
this is shown by O. Monga and S. Benayoun in [86] and (87], and by J.P.
Thirion in [115].

Figure 8, shows the extraction of ridges on the brain surface acquired
with MRI, while figure 15 shows the extraction of ridges on the surface of a
skuli acquired with CTI in 2 different positions.

The idea of deriving the intensity to extract different characteristic fea-
Lulse, #iher on the intensity (hyper)surface or on isop!.ote surfaces, is also
succassfully applied by (among others) [98], [121] and [90].

3.4 Using B-Spline Approximations

The previously mentionned deformable surfaces had 2 drawbacks: high com-
putational complexity, and low-order derivability. The introduction of B-
Splines with high order polynomials, thanks to their nice separability prop-
erties, reduces drastically these drawbacks while keeping the advantages of
providing simultaneously a segmentation of anatomical surfaces and their
local differential properties up to the third order for instance. This is very
useful to track time-varying structures with rigid or nonrigid motion. The
only limitation comes from the fact that the surface topology must be known
in advance. This is described in details by A. Guéziec in [46], [48].
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hirion and A. Gourdon)

Figure 8: Ridges on the brain (Courtesy of JP. T
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Figure 9 shows the segmentation of a face with a deformable B-Spline
within an image of the head acquired with MRI, while figure 10 shows the
extraction of ridges obtained from the B-Spline approximation.

3.5 The Marching Line Algorithm

In the 2 previous approaches (filtering and B-Splines), the connection of ex-
tracted ridge points to form ridges can be achieved by a very smart algorithm
invented by J.P. Thirion, and called “the marching line algorithm”. This al-
gorithm looks for the zero-crossings of an extremality criterion (here the
maximum curvature) in an isophote surface defined by a constant intensity
level I. The algorithm insures both sub-voxel accuracy and nice topological
properties like connectivity and closeness. Also, it can be applied simulta-
neously with the local filtering of isophote surfaces, to reduce drastically the
filtering computing time if one seeks the extraction of major ridges only. A
complete description of this algorithm can be found in [113], [115]. Ridges
of figures 8, 10, and 15 were extracted with the marching line algorithm.

4 Rigid 3D Registration

I now describe with more details the problem of rigid 3D registration, because
we believe it is a remarkable illustration of computer vision applied to 3D
medical images.

4.1 Importance of the Problem

As was mentionned before, a very common problem in medical image analysis
is the automatic registration of 3D images of the same patient taken at
different times, and in different positions. This is very useful to detect any
pathological evolution, and to compute quantitative measurements of this
evolution.

Performing this registration manually is a difficult task for a human oper-
ator, mainly because it requires quantitative spatial reasoning. The operator
must discover corresponding anatomical landmarks, and locate them in 3D
with a maximum accuracy. As the accuracy of the computed global registra-
tion increases with the number of matched correspondances, it is preferable
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Figure 9: This figure shows the segmentation of a face with a deformable B-
Spline within an image of the head acquired with MRI. Original MRI images
were provided by Dr. Ericke, Siemens. (Courtesy of A. Guéziec).
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Figure 10: This figure shows the ridges extracted from the previous B-Spline
approximation. (Courtesy of A. Guéziec).

23



to match as many landmarks as possible.Performing this task manually for
tens of landmarks is extremely tedious, and it becomes definitely unfeasible
with hundreds or thousands of landmarks.

Artificial landmarks could be used to simplify the point extraction and
matching process. For instance a stereotaxic frame can be rigidly attached
to the patient’s skull. In fact, this is not a very confortable solution for the
patient, and anyway such a frame cannot be worn during a long period (e.g.
6 months!). Moreover, it can happen that some displacement occurs between
the frame and the patient between the 2 acquisitions, or that some internal
organ moves with respect to the external frame (e.g. a sligth motion of the
brain with respect to the skull). Finally, the accurate localization of specific
points with artificial markers is usually not an obvious task.

For all these reasons, we believe that a fully automatic registration pro-
cedure relying only on detected anatomical landmarks is much more flexible
and powerful than a manual procedure or than a procedure relying on arti-
ficial landmarks.

The output of the registration procedure must be the 6 independent pa-
rameters of the rigid displacement undergone by the region of interest be-
tween the 2 acquisitions. More precisely, one must compute the rotation
and translation parameters which best match the two acquired images of
this region of interest. At this point, it is important to note that because of
potential occlusions, the two 3D images cannot be registered globally with a
method based on the regis?~ation of the centers and axes of inertia.

4.2 Using Ridges and Geometric Hashing

The idea is to extract the maximum number of euclidean invariants computed
exclusively on ridges and to use them for registration.

4.2.1 Euclidean Invariants on Surface Curves

We consider not only the curvature k& and torsion 7 of the ridge lines (the
parameters which characterize completely a curve up to a rigid displacement),
but also the maximum curvature of the surface, k;, the angle 8 between
curve and surface normals and the angle ¢ between the curve tangent and
the direction of the maximum curvature k; (see figures 11 and 12). These 5
intrinsic parameters are independent and allow for instance the computation
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of the second principal curvature of the surface through the computation of
the normal curvature k,, as well as the geodesic curvature k£, and torsion 7,
of the surface.

Figure 11: Surface ribbon around a space curve: at each curve point, one
can compute the curve Frenet frame (¢,7n,b), where t and n are respectively
the curve tangent and normal, and the local surface frame (e;, e5, N), where
e1 and e, are the principal directions of curva’ ires in the tangent plane of
the surface, and N the surface normal. (Courtesy of A. Guéziec).

As the extraction of the ridge points required the computation of differen-
tial properties of the surface up to the 3rd order, the values of the maximum
curvature value k; and direction e;, as well as the surface normal N are
readily available. But to compute the 5 intrinsic parameters (k, 7, ky, 6, ¢),
we need to compute also the differential properties of the curve itself up to
the 3rd order. A. Guéziec found that an efficient method was to approximate
each ridge line (a discrete set of ridge points connected by the marching line
algorithm) by a constrained B-Spline [47] (the B-Spline is constrained to have
a tangent orthogonal to the surface normal). This provides a good estimation
of the Frenet frame of the curve, (¢,n,b), as well as the local curvature k and
torsion 7. It is then immediate to compute & = angle(n, N), and ¢ = angle

(t,el).
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Figure 12: Left: Darboux frame (¢, N,g) computed along the ridge line, on
the surface. Middle: ¢ is the angle between the direction e; of the largest
principal curvature k; with ¢. Right: 6 is the angle between the curve normal
n and the surface normal N. (Courtesy of A. Guéziec).

4.2.2 Matching Algorithm

Once we know how to extract ridge points and how to compute the quanti-
ties (k, 7, k1,0, ) at each ridge point, it is possible to design an extremely
efficient matching algorithm. This algorithm, proposed by A. Guéziec, has 2
main stages, namely preprocessing and recognition, and combines geometric-
has.ing, accumulation, and prediction-verification [67], [6], [96], [2], [45],
(119], [103], [37]-

Preprocessing stage This stage can be applied off-line, a soon as the first
image, called the model image, is acquired. The ridge lines are extracted from
this image, and each ridge point with its Frenet frame (¢, n,b) is stored in a
5 dimensional hash table based on the 5 intrinsic parameters (k, 7, k;, 8, ¢)
attached to the ridge point.

The 5-dimension hash table is stored in a 1 dimensional array using clas-
sical but efficient hashing techniques (see figure 13).

Recognition stage Once the second image, called the scene image is ac-
quired, it is necessary to apply the recognition stage on-line. The algorithm
considers each ridge point S; of the scene, and looks in the hash table for a
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Figure 13: Preprocessing: each ridge point of the model, is stored in a hash
table of dimension 5, after the computation of 5 independent intrinsic pa-
rameters. At recognition time, the same ridge point, although in another

position and orientation, will point towards the same cell of the hash table.
(Courtesy of A. Guéziec).
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model point with similar intrinsic parameters (k, 7, k1,6, ¢). A difficult point
is the notion of similarity, and a preliminary statistical study allowed for
the definition of a statistical distance (Mahalanobis distance) based on the
covariances of these parameters.

If a model point M; is found with similar parameters in the hash table,
the Frenet frames of both points are used to predict a rigid transformation
T which maps both points with their Frenet frames (see figure 14). This
transformation is accumulated in a 6 dimension accumulator of rigid trans-
formations .4, by incrementing the cell whose coordinates correspond to T,
and by keeping a pointer towards M; and S;. The uncertainty attached to
the position of M; and S; is represented by 2 covariance matrices which are
used to compute a covariance matrix ¥ which represents the uncertainty on
T.

When the accumulator cell already contains a rigid transformation 7'~
and a covariance £~, both are updated with a recursive least square proce-
dure (the extended Kalman filter), and a new value T is stored, with a new
covariance matrix £+ [2].

When all scene points have been treated, the algorithm looks for the ac-
cumulator cell which had the maximum number of access. This cell contains
a transformation 7™ with a covariance matrix £*, and it is chosen as being
the solution of the registration problem.

In the presented skull example, this transformation corresponds to the
matching of 335 couples of ridge points. We can apply this transformation
to all the ridge points of the model, and verify that they superimpose very
nicely on the scene ridge points, as can be seen in figure 16. A quantitative
analysis showed that the accuracy of the registration was better than one
millimeter within the volume of the head [7].

4.2.3 Introduction of Extremal Points

J. P. Thirion introduced recently {111], [114] a new subset of intrinsic points
he called “extremal points”, which can be defined as the subset of ridge
points for which the second principal curvature ks is also extremal in the
associated direction e;. These points have the nice property of being extrema
of curvature of the 2 principal curvatures simultaneously, and can be defined
as the intersection of 3 iso-surfaces: a chosen iso-intensity surface, and the two
surfaces defined by the zero-crossings of the derivatives of k; in the direction
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Figure 15: Top: Ridges (in black) extracted on the surface of a skull scanned
in 2 different positions (left and right). Original 3D images are produced by
a GE-CGR CT-Scan. (Courtesy of J.P. Thirion and A. Gourdon)

Figure 16: Automatic registration of the two sets of ridge lines (respectively
solid and dotted lines), allowing a sub-voxel comparison of the 2 original 3D
images. (Courtesy of A. Guéziec).
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e; for 1 = 1,2. These derivatives can be computed everywhere but at points
where the principal curvatures have identical absolute values, which includes
again the umbilics..

Not only the extremal points have the property of being very stable and
compact on anatomical surfaces (a few hundreds in a high resolution 3D
image of the head), but some of them tend to be extremely stable from
one patient to another one. They are therefore very good candidates as
anatomical features for the Atlas Matching Problem described in a further
section.

4.3 Matching a Cross Section with a 3D image

Another interesting problem is the matching of a cross-section with a 3D
image. This happens when the patient must be registered with previously
acquired 3D images during surgery for instance. In this case, only a a few
(possibly a single) cross-sections are acquired with a given modality, possibly
with a laser range finder, and have to be matched with a surface extracted
from a 3D image.

A. Gourdon showed that it was possible to exploit differential geometry
constraints between the curve and the surface, to guide efficiently the cor-
respondance algorithm. This is detailed in a forthcoming INRIA research
report {44] and a typical result is shown in figure 17.

4.4 Matching with a Potential-Based Method

Computing ridges and euclidean invariants of second and third order requires
high resolution images. This is currently not possible with NMI. Therefore, in
this case, and in particular to combine together images of different modality
like NMI and MRI for instance, other methods, usually based on potentials
of attractions, can be used efficiently [78], [59], [117], [68], [14], [123]. Con-
trary to the method described in the previous section based on geometric
hashing and euclidean invariants, potential-based methods require a prelim-
inary estimation of the correct superposition, which might limit sometimes
their robustness. Anyhow, excellent results can be obtained, as it is shown
in figure 18 extracted from Malandain’s and Rocchisani’s work [78].
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Figure 17: Left: a surface is extacted from a 3D CTI image and a curve
is extracted from another 2D cross section. Right: the curve is matched
on the surface, with the use of differential geometry constraints. Bottom:
superposition of the curve in the image plane extracted from the 3D image.
(Courtesy of A. Gourdon).
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Figure 18: A potential based method allows the registration of an MRI image
(top left) with a NMI image of the head (top right). Interpolated cross section
of the registered 3D MRI is computed, and its edges are shown superimposed
on the NMI images (bottom). Images are courtesy of Jael Travere, from
the Cyceron Center in Caen, France. (Courtesy of G. Malandain and J.M.
Rocchisani).
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5 Deformations

Relaxing the rigidity assumption is necessary in two different problems, which
are the atlas-matching problem and the analysis of nonrigid motion.

5.1 The Atlas Matching Problem

Building an “electronic atlas” of the human body is again a very challenging
issue for the future, and several teams have contributed to this topic. Among
them, one must aknowledge the pioneering work of [8] more than 10 years
ago!

Some recent work, like the one of [55] is more oriented towards the con-
struction of a visualization database. Our goal is oriented towards the au-
tomatic registration of such an atlas against the 3D image of an arbitrary
patient. For doing this, we believe that ridge lines are good anatomical in-
variants, and can therefore serve as a sound geometrical basis to build a
computerized anatomical atlas of some parts of the human body. This as-
sumption is supported by our experimental studies, and by statistical and
anthropological studies [27], [60].

Having built a “generic model”, the problem is then to find a matching
algorithm which can register it with the 3D image of an arbitrary patient.
Such an algorithm could also help making inter-patient registrations, and
~omparisons.

The current strategy within the Epidaure project, is to define a con-
strained network of ridge lines and extremal points [105], [111], [114], which
could deform itself to adapt to the geometry of a given patient. The spirit is
similar to the one introduced by [122]. Having matched this subset of char-
acteristic lines and points, it should be possible to obtain registration every-
where, by applying for instance a constrained interpolation with B-splines
[17], [16], [28].

The ideas of [24], who take advantage of a principal components analy-
sis of a training data set to constrain the deformation of the model, could
certainly be applied fruitfully.

We show in figure 19 a preliminary result of the matching of a skull atlas
on a 3D CT image of a patient.
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Figure 19: (a) Simplified geometric “atlas” based on a few characteristic
ridges placed in “mean’ position; (b) Ridges of Arthur; (c) Automatic con-
vergence of the atlas towards the corresponding ridge lines of Arthur; (d)
Characteristic ridges of Arthur are now labelled with correct anatomical
names. (Courtesy of G. Subsol and J.P. Thirion)
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5.2 Analyzing nonrigid motion

In time sequences of 3D images, like USI, MRI or NMI images of the beating
heart, it would be extremely profitable not only to track the motion of moving
structures, but also to provide the physicians with a reduced set of pertinent
parameters which describe their nonrigid motion. Usually, the problem is
dual: first it is necessary to find the motion of individual points, then it is
necessary to approximate this motion with a reduced number of parameters.

5.2.1 Motion of Individual Points

Tracking structures with deformable models like snakes usually does not pro-
vide the motion of each individual point, but only a global registration of
a curve (or surface) against a curve (or surface). A post-processing, which
takes into account the presence of geometric singularities along the tracked
structures, and in particular curvature singularities, can be used to find point
to point correspondences [21}], [12], [34], [1], (83] [38], [99]- A typical result is
shown in figure 20.

Good results can also be obtained with a physically-based deformable
model which provides tracking and point-to-point correspondences at the
same time [92], [109]. Figure 21 shows the use of the deformable model of C.
Nastar to track the mitral valve in images of the heart acquired with USI,
and get point to point correspondances.

5.2.2 Global Analysis of motion

Once point-to-point correspondances have been established, it is possible to
project on a reduced basis the set of displacements. This is the purpose
of modal analysis, where the basis corresponds to a reduced set of some
“qualitative” deformations [56], [95], or to the major monofrequency vibra-
tion harmonics of the elastic structure [92] (see figure 22 for an illustrative
exemple of the principal energy-increasing vibration modes of a cylinder).

A major advantage of the latest approach is the possibility to compute
analytically [91] the modes beforehand, which reduces tremendously the com-
putational complexity. Figure 23 shows a modal approximation of the 2D
motion of the mitral valve shown in figure 21 while figure 24 shows the modal
approximation of the 3D motion of the surface of the heart ventricle, between
diastole and systole.
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Figure 20: Motion analysis i+ a time sequence of MRI. (Courtesy of S. Be-
nayoun).

Global analysis of nonrigid motion can also be obtained with parametra-
ble deformable shapes using for instance superquadrics [10], [107], [82], [118]
or Fourier models [102].
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Figure 21: From left to right and top to bottom: (a)(b) Segmentation and
(c-g) tracking of the mitral valve of the heart in a sequence of USI using
the active physical model of C. Nastar. (g) shows the obtained point to
point correspondances. These images were preprocessed with the sonar-space
filtering method of I. Herlin referenced in the text. (Courtesy of C. Nastar).
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Figure 22: Energy-increasing vibration modes of a cylinder
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Figure 23: From left to right and top to bottom: four high amplitude eigen-
modes of the valve (a,b,c,d). Their superposition (e) compared to the ex-
pected result (f). (Courtesy of C. Nastar).
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Figure 24: Left : segmented diastole (mesh), tracked to the systole (plain).
Right : modal approximation of the motion ; the factor of compression is 40,
using 300 modes. (Courtesy of C. Nastar.)
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6 Surgery Simulation

A fascinating new field, at the intersection of computer vision, computer
graphics, and robotics, is the exploitation of 3D images to planify, simulate,
and even control some complex therapy (e.g. [94],(69], [9]). Among them,
cranofacial surgery or laparoscopy for instance, are desperatly seeking for
pre-operative simulation [26], [79]. This can be done with the help of pre-
operative 3D image analysis, and the use of advanced interactive 3D graphics
involving virtual reality for instance [93], [39], [62].

Currently, in the Epidaure project, H. Delingette and G. Subsol, with the
help of S. Cotin and J. Pignon [31], [30] are looking closely at the problem of
simulating cranio-facial surgery, following the ideas of the pioneering work of
Terzopoulos and Waters [109]. This is illustrated by figure 25 and figure 26.

Another related impressive work is the simulation of birth delivery, stud-
ied by B. Geiger and J.D. Boissonnat within the Prisme project at Inria [41],
[15].

7 Conclusion

I tried to show in this paper that automating the analysis of 3D medical
images was an abundant field of new research topics in computer vision and
rnbotics. I presented the past and current work of the research group EPI-
DAURE at INRIA, and tried to define current trends and future challenges
for research.

One of these challenges will be the capability of transferring the knowledge
from the research centers to the hospitals. This will require the creation of
a number of companies starting selling dedicated software and hardware.

J. Engelberger [36] made the prediction in 1988 that the new big market
for robotics was the domestic robot, and his prediction was including medical
robotics. I feel that a potentially enormous new market for computer vision
itself is going to be 3D medical image processing.
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Figure 25: Top Left: an elastic model of the head is designed from the 3D
image of the head. Top Right: the skull is cut and its shape is modified with
a virtual 3D hand. Middle and Bottom: the elastic model of head of the
patient deforms itself accordingly to the modified shape of the skull, and the
expected result (a deformed Herve Delingette!) can be observed (possibly
with texture) before any real surgery is done. (Courtesy of H. Delingette, G.
Subsol, S. Cotin and J. Pignon).
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Figure 26: Virtual reality environment for cranofacial surgery simulation.
(Courtesy of A. Eidelman).
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