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Abstract: In this note we exploit the knowledge embodied in infinitesi-
mal generators of Markov processes to compute efliciently and economically
the transient solution of continuous time Markov processes. We consider the
Krylov subspace approximation method which has been analysed by Y. Saad
for solving linear differential equations. We place special emphasis on error
bounds and stepsize control. We discuss the computation of the exponential
of the Hessenberg matrix involved in the approximation and an economic
evaluation of the Padé method is presented. We illustrate the usefulness of
the approach by providing some application examples.
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Approximation des solutions transitoires
d’un processus de Markov
dans des sous-espaces de Krylov

Résumé : Nous nous intéressons dans cet article au calcul du régime tran-
sitoire d’un processus de Markov. Un tel probleme nécessite le calcul d’une
exponentielle de matrice. En prenant en considération certaines propriétés
inhérentes aux modeles markoviens, nous examinons ’approximation dans
un espace de Krylov proposée par Y. Saad. Cela nous permet de préciser
certaines caractéristiques théoriques et de définir un algorithme fiable et ef-
ficace. Nous présentons des résultats numériques attestant de la validité de
la méthode.

Mots-clé : Chaines de Markov, exponentielle d’une matrice, espaces de
Krylov, méthode d’Arnoldi.
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1 Introduction

Problem Definition. Continuous-time Markov Chains (CTMC) are widely used in the
analysis of the behavior of many physical systems. Given a system whose evolution can
be modeled by a CTMC, X = {X(¢), t > 0} having a finite discrete state space 2 =
{1,2,..., N}, the transient analysis involves the computation of the state probability vector
(1) = (m1(t), 72(), ..., 7n(t)) where 7m;(t) = Prob{X(¢) = i} is the probability that the
Markov process X is in state ¢ at time {. Interesting measures (availability, reliability,
performability) of the behavior of the system being modeled can then be evaluated as
weighted sums of state probabilities (see, e.g, [18] and references therein). Let @ = [g;]
be the infinitesimal generator of X. Q) is also called the transition rate matriz and ¢;; >

0, ¢ # j, is the rate of transition from state ¢ to state j and ¢; = — E ;-
i#j
The evolution of the state probability vector 7(¢) can be mathematically represented by

the Chapman-Kolmogorov system of differential equations. For convenience of notation
we set
A=Q", w=r1(0), w(t)=r"(1)

and hence, the differential system under concern may be written as

dt

w(0) = v, initial state probability vector

{dw_(t) = Aw(l), telo, T]

and has the analytic solution
w(t) = e, (2)

Largeness, stiffness and accuracy are the three major difficulties related to the practical
computation of (2) [6, 11, 18].

Intrinsic Properties. There are a number of inherent characteristics of the model (see,
e.g., [4, 21] for a general overview). We give below a list of those which are relevant for

our presentation.
1A = 0 where 1 = (1,1,...,1)7.
0 < wi(t) <1 and [Jw(t)|; = 17w(t) = 1.

0 is a simple eigenvalue of A and for any non-null eigenvalue A of A, Re(A) < 0.

Hence the differential system (1) is stable and has a steady state solution.

If 7 denotes the left eigenvector of Q associated to the eigenvalue 0, i.e. 7Q) = 0

T_ Woo = lim ey and Aws = 0. The row vector 7 is known as

then, we have 7
t—00
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the stationary probability vector; i.e. 7; is the probability that the Markov chain will

be at state 7 at statistical equilibrium.

Notation. Throughout this paper we will designed by I an identity matrix whose size is
defined according to its context. The j-th canonical vector is denoted by e; and we will
also assume that its length is defined by its context. A(M ) represents the spectrum of the
matrix M. The integer m is some prescribed constant which should not exceed N, the

order of the principal matrix A. We set p = || A]|2.

The organization of the paper is as follows. In Section 2 we consider the motivations of
a time-stepping integrator for the problem. Section 3 presents the basic Krylov subspace
approximation method and some extensions. Section 4 is concerned with the practical
computation of the exponential of the small Hessenberg matrix involved in the schemes.
Section 5 discusses the preservation of probability constraints. Section 6 considers nume-

rical issues and finally Section 7 presents some numerical examples.

2 Integration Scheme

One way to solve (1) consists in computing the matrix exponential e!4. Unfortunately as
pointed out in the survey paper of C. B. Moler and C. F. Van Loan [12] none of the methods
proposed up to now is suitable for the general use. Moreover, for large sparse matrices,
the exponential becomes full and little can be done to prevent the fill-in. Among current
methods, the Taylor expansions have been at the basis of most solution techniques used
in Markov chains analyzers. It is the case of the Standard Uniformization (SU) method
which is probably the most widely used. Another approach referred as the Uniformized
Power (UP) method which provides a new mechanism for the control of the error was
recently introduced in [1] and was found to be an improvement over the SU method in
time complexity for a class of stiff Markov processes. But it requires the full matrix and
is not intended for large systems states. However as shown by Y. Saad [19], it is more
promising to tackle the computation of the matrix exponential times a vector rather than
the matrix exponential in isolation. For our concern, a consideration is that, generally

system managers are interested in discrete observations
w(ti)ogz’gsﬂv 0=ty <h < - <lsy<typ1 =T (3)

where the observation times {#;}o<i<s+1 may or may not be uniformly spaced and may or
may not be known in advance. If we take w; = w(¢;) and 7, = t;41 — t; then, we consider

the integration scheme

wo = v
. . 4
{ Wip1 = ehw;,  i=0,1,...,s (4)



Transient Solutions of Markov Processes by Krylov Subspaces 3

so that the kernel of the problem remains the operation e”4v. The accuracy of the matrix
exponential depends heavily on the matrix norm [22] and for an arbitrary large value of ¢,
a straightforward computation of e*4v will certainly end up yielding unsatisfactory results.

To preserve accuracy, it is necessary to use a step-by-step computation as in single-step
ODE solvers.

3 Krylov Approximation

In this section, for ease of reading, we will drop the time variable and we will show later

how to easily re-insert it in the proposed schemes.

3.1 Arnoldi-based Schemes

Following the observation that a truncated power series of order m — 1, or more generally,
that approximating e4v by p,,_1(A)v where p,,_; is a polynomial of degree m — 1, will

yield an element of the Krylov subspace
K,.(A,v) = Span{v, Av,..., A" 1w}, (5)

the approximation problem can be reformulated as finding an element of K,,(A,v) that

approaches w = edv.

If Vi, = [v1, 02, ..., ) is @ basis of the Krylov subspace K,,,(A4,v) then, the best approxi-

mation @ of w in this subspace should satisfy

ol = _pin - uls
= min ||Viuy — o]z
yeR™
If we take 8 = ||v]|2 and v1 = v/( then, v = §V,,e; and from the above full rank least

square problem the desired w is

w

v, [(vn{vm)_1 VIeAy

= V| (VEVa) T VIV e (©)

If the well known Arnoldi process is used to build the basis V,, then, at completion V,, is

orthonormal, i.e. V.I'V,, = I, and an upper Hessenberg matrix H,, is constructed so that

AVm = VmHm‘|'hm—|—1,mvm—|—1€Z; (7)
vIAv,, = H,. (8)
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The optimal Krylov element in equation (6) is

@ = BV, VEeAV, e. (9)

mtm

Relation (9) remains unfortunately uncomfortable since it requires e”. However we may
approximate VX eAV,, by eVmAVm In other words, the restriction of the exponential ope-
rator e# on the subspace K,,(A,v) with respect to the basis V,, is approximated by the
exponential of the restriction of the operator A on the same subspace with respect to the

same basis. Using (8) the computed approximation is
O~ T = pV,ellme. (10)

In relation (10) we still have to compute a matrix exponential, but the matrix H,, involved
is of modest size compared to the original matrix A. Additionnally, it has a special struc-
ture. The effective computation of ef’» may be perfomed using a rational approximation

or any other suitable method among those presented in [12].

Therefore the approximation of w by w involves three levels of approximations :

e considering e?v as an element of K,,(A4,v) instead of Ky(A4,v)
o considering €V 4Vm instead of VEedy,,
e considering (rational) approximation of eVmAVm,

However the technique has been successfully used. In [8] (see also references therein) it

is reliably used to solve parabolic partial differential equations and in [19] the following

comforting results were proved.

Theorem 3.1 (Saad 1992) Let 3 = ||v||2, p = ||A||2 and A(H,,) be the set of Ritz values
of A over V,, i.e. the eigenvalues of H,,.

1. The approzimation (10) is mathematically equivalent to approzimating ev by p,, _1(A)v
where p,,_1 is the (unique) polynomial of degree m — 1 which interpolates the exponential
function in the Hermite sense on the set A(H,,) with each Ritz value repeated according

to its multiplicity and the following a priori error bound is satisfied

lleAv — BV, eflme ||, < 28

(11)

pre’
-

2. Let
A
Toss = (h . 0). (12)

m—I—l,mem
The corrected approzimation
Weop = ﬂ"fm—}-leHm-l-l €1 (13)

is mathematically equivalent to approzimating e*v by p,,(A)v where p,, is the (unique)

polynomial of degree m which interpolates the exponential function in the Hermite sense
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on the set \(H,,) U {0} with each Ritz value repeated according to its multiplicity and the

following a priori error bound is satisfied

_ (m+1) .p
p e
||€A’U — ﬁvm+1€Hm+1€1||2 < Qﬂm (14)
3. Let
¢o(z) = €,
¢k(2) = <15k—1(2) —Gﬁk—l( )7 k>,
z
o 2 1
= > — = — (¢ —er1(2)),
itk 2
k-1 Zi
where e_1(z) = E — is the (k—1)-st partial sum of the power series of €*. The following
=0 v
expansion holds
k .
v = Ve + Bhingimn Y endi(Hn)er AV opgn + A, (15)
7=1
= ﬁVmGHmel —|— ﬁhm—l—l,m Z eTanbj(Hm)elAj_lva (16)
7=1
where
37]; = ¢r(A)vy — Vi o (H e (17)
Proof. See [19] O

In correlation with the results of this theorem there are several mathematical properties.

Among them we have :

e The corrected approximation (13) is simply the first truncated term in the expansion
(16), i.e.
fwcor = ﬁvmeHmel + ﬁhm—l—l,mez;bél(Hm)elvm—l—l- (18)

e If the minimal degree of v is some integer v (v < m < N) then, an invariant subspace
is found and the approximation 3V,ef’ve; is exact. In exact arithmetic this situation,

which is usually referred as a (breakdown), happens at least when m = N.

e Since VTZ(TA)VM = 7H,, for any arbitrary scalar 7, we have

ey = w(r) m @(1) = BVe me. (19)
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e The functions ¢ are positive, increasing and ¢gy; < %cbk in [0,00). Moreover as k

increases, they become smoother. For > 0 we have the following bounds

1 . et e*
i < ¢p(z) < min <F’ x_k) .

In the neighborhood of the origin, the upper bound can be improved

kE+1 2 142
x<%:>¢k(x)§min<— g)

Indeed if z < in then, the inequality ¢r(z) < % comes directly from the definition of

1 sl 2tk
or(e) = = (1+x§7@+k+ 1)!) |

¢r. Moreover

But
k! B 1 < 1
(G+Ek+1)! (B+1)---(i+k+1) = (B+ 1)
thus _
s z'k! =1
> <) =2
=0 (Z—I_k—l_l)' 2:02
We can also state the following result.
Proposition 3.1 Let
J+1
0, = J]hrs-1, ¥i21
k=2
D,, = diag (1, Iy, 72105, ..., Tm_IHm_l)
H, = D,YtH,)D,
Thll
1 Thgg h”
— 0 1 Th33
0 ... 0 1 rThpu,
where ‘
j
hij = T]_Z-Hhij H hk,k—l-
k=1+1
Then,
e™ v = gV, e™me, 4+ ™I, Z eﬁqu(ﬁm)el(TA)j_lva. (20)

J=1



Transient Solutions of Markov Processes by Krylov Subspaces 7

Proof. The main key for the proof is the relation
e?ncbj(THm)el = Tm_lﬂm_legbqu(ﬁm)el

which is valid since

Dye, =™, _q, D;blel =1

and

T 7 T 77 -1 m—1 T 77t
en(THy) e1 =€, Dy H D “e; =7 ,,_1e,, H; e1.

m-7m

Thus using (16)

o0
ey = BVeTme + ﬁrm_lﬂm_lrhmﬂm Z eﬁqﬁj(ﬂm)el(TA)]_lva
i=1

— ﬁVmeTHmel + AL, Z 6£¢j(ﬁm)61(7ﬁ4)j_1’0m+1.
i=1

O

The expansion provided by this proposition takes into account the stepsize 7, the order m
and all the subdiagonal elements of H,,. It is well known that some of these elements are

very small when we tend to an invariant Krylov subspace.

3.2 Extended Arnoldi Schemes
3.2.1 k-corrected Schemes

A natural way for attempting to improve the approximation (10) is to ask whether or
not more terms of expansion (15) can be accumulated. We must keep in mind that going
through this expansion requires the determination of the coeflicients hm+17me£bobj(ﬂm)el
and extra matrix-vector products. This last aspect gives rise to discussion because if we
perform additional matrix-vector multiplications we may happily compute the approxi-
mated solution in the associated higher order Krylov subspace. However here we give a

simple procedure to compute the desired coefficients of the expansion.

Proposition 3.2 Let h = hy,q1,4, and

H, 0
hel 0
I oY € Rim DX (m) (21)

mtk = 0 1 0
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th
€en eHm O
hegé1(Hyp) 1
_ hel ¢o(H,y,) 1/1! 1
lmir = : /20 1/11 1 : (22)
heTanﬁ,;(Hm) 1/(k—1)! 1/§! 1/i! 1

Proof. Let us consider the block lower triangular decomposition

0 0
— H, 0 1 0
Hm-l—k: <h€1€T J)’ J = :[627"'7€k70]‘
0 1 0
Then
1 0 1.
_ Hm 1/1! 1
eHm+k:<€F e(?’) ¢ = / S , F= f2
1(k—=1) ... 1/1' 1 I

But since ﬁm+keﬁm+k = eﬁm+k]7m+k we have
FH, —JF=h (616,,1; exp(H,,) — eXp(J)ele?n) .

Multiplying on the left by eZT to extract the ¢-th row, we obtain the recurrence relations

J1. = hGTTn¢1(Hm)7
Jilm = fio1—hep oy, 1<i<k
and therefore by induction f; = heg (cbi_l(Hm) — qbi_l(O)I)HT;l = he?nqbi(Hm). |

This result shows that the desired coefficients are on the first column just below the
m-th row of efm+s. These coefficients will also be used later for error estimation and
stepsize control. The following result gives an a priori upper bound on the error when the

k-corrected scheme is used.

Theorem 3.2 If the k-corrected scheme is used, i.e. if we approzimate w = e“v by

k
fwk-cor = ﬁ"[meHmel + ﬁhm—l—l,m Z €£¢j(ﬂm)€1A‘7_1’0m+1 (23)
i=1
then
plmtk)gr

(m+ k) (24)

||w - wk-cor”? S 26
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Moreover if we assume that p < %’“‘H then
pm—}-k
|w — Wg-corll2 < 4ﬁm- (25)

Proof. The proof is an extended version of that of Theorem 4.7 in [19]. Let

ei1(z) =) — and ti(z) =€ —eii(2) = 3 -
7=0 J i=i J:

For any polynomial p,,_1 of degree m — 1, setting r,,(2) = ¢r(2) — pm—1(2), we can write
sfn = ¢r(A)vy — Vior(Hi)er = rp(A)vy — Vir (Hp er. (26)

Thus for the polynomial defined by

—

m—

_ emyk-1(2) — ex-1(2) 2
m—11%2) = = -
pro(?) E; 2 T
we have
_ e’ —ep-1(2)  emtr-1(2) — ex-1(2) btk (2)
T(2) = Or(2) — pm—1(2) = . - - = —
B ]; (J+ k)
It follows that ‘
— btk (p)
(Ao < - = .
a3 e =
The function tm:ﬁ(p) is increasing and from Lemma 4.2 of [19], we know that
m+k _p
p e
i, <2<
-HC(p) = (m—}—k)'
Using (15) and (26), since ||V||]2 = 1 and p = ||Hn||2 < ||A]|2 = p we can write
[ = Brecorllz = (|84 s, |2
< B lrm(A)orllz + Vit (HoJer]|2)
< Qﬁtm-}-k(p)
m+k _p
ptre
< 20—.
- ﬁ(m + k)!
If in addition we assume that p < %’“‘H then,
0 m+k+] m+k 00 7 m
p p p p
t = _ < <2 .
+4(p) ;(m+k+])! = (m+k)!j§(m+k+ i = “(m+ k)

O

Notice that the exponential factor e” is dropped when we analyse only the bound near the

origin. This will be exploited for the selection of the first stepsize in §6.3.
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3.2.2 Restart and Inclusion of Eigenvectors

Another way for attempting to improve the approximation (10) is to adapt a restart.
Unfortunately if restarting is a trivial matter in linear systems and eigenvalue problems,
the situation here is quite different. Indeed if restarting is done, we will end up with a
subspace which has nothing to do with (5). However we can obtain via Krylov subspace

projection methods or any suitable method a set of real Schur vectors
X = [.’El,l‘g, ey .’E{]

which spans the unique invariant subspace associated with some eigenvalues Ay, Ag, ..., Ay
(see [9, chap.7]). We then proceed by computing a basis which is orthogonal to X . Prac-
tically, this is performed by a slight modification in the Arnoldi process (see algorithm in

§6.4). Formally let us consider the decomposition

£
v="3" B+ Bor where |juis = 1.

=1
Using a modified Arnoldi procedure we may construct a system V,. such that [X,f/m]

is a basis of Span{zy,xy,...,zs, v1, Avy, ..., A" o1} with ‘7er = 0 and ngfm =1. We

consider the approximation

@ = Vegmeeem Vo (27)
where
%+m = [vam] (28)
- ~ ~ XTax xTav,
Hyprn = ‘f’ﬁmAWer:( 0 VTZAf/m) (29)
Vi o = (B B0 5,0,...,0)T (30)

Since vectors in X are real Schur vectors, X7 X = I and XTAX is upper quasi-triangular
i.e. triangular with possibly nonzero 2 x 2 blocks along the diagonal (it is primordial to
choose { such that this is achieved otherwise the scheme fails). Moreover Vn{Af’m = flm is
upper Hessenberg. In the same spirit as in Theorem 3.1 the computed approximation (27)
will correspond to the Hermite interpolation of the exponential on the set {A1, Ag, ..., Ag} U
/\(ﬁm) We expect this extended scheme, which is a form of deflation, to be satisfactory
especially when v has rich components in X or when the {);};,=1 ¢ are close to zero. We
can combine it with the k-corrected scheme to estimate errors sharply and we point out
that X is computed once and is used for varying v’s. Moreover the computation of eHerm

is done by blocks.



