
HAL Id: inria-00074704
https://hal.inria.fr/inria-00074704

Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SIGNAL Manual
Patricia Bournai, Bruno Chéron, Thierry Gautier, Bernard Houssais, Paul Le

Guernic

To cite this version:
Patricia Bournai, Bruno Chéron, Thierry Gautier, Bernard Houssais, Paul Le Guernic. SIGNAL
Manual. [Research Report] RR-1969, INRIA. 1993. �inria-00074704�

https://hal.inria.fr/inria-00074704
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

ap por t
de r ech er ch e

1 9 9 3

PROGRAMME 0

SIGNAL MANUAL

Patricia BOURNAI, Bruno CHÉRON, Thierry GAUTIER, Bernard
HOUSSAIS and PaulLE GUERNIC

N˚ 1969

Septembre 1993

PROGRAMME 2

Calcul symbolique, programmation et
génie logiciel

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex (France)

Téléphone : (33) 99 84 71 00 - Télécopie : (33) 99 38 38 32

SIGNAL MANUAL

Patricia BOURNAI, Bruno CHÉRON, Thierry GAU-
TIER, Bernard HOUSSAIS, and PaulLE GUERNIC

Programme 2

Projet EP-ATR

Rapport de recherche n˚1969

88 pages

Abstract: SIGNAL is a language designed for the synchronous programming of
real time systems (signal processing, control-command...). A SIGNAL program
specifies an automaton via a system of dynamic equations involving “signals”. Such
systems of equations can be organized hierarchically in modules. A “signal” is a
sequence of data which has a clock associated with; this clock defines the instants
when this signal is available. Clocks need not to be related via fixed sampling rates,
but can rather have sampling rates which depend on local data or external events
(interruptions). This report is a manual for the SIGNAL language; it presents the
syntax of the H2 version of the language and introduces its semantics. Examples are
given and in the appendix A, a complete sample session using the SIGNAL com-
piler is provided.

Key-words: SIGNAL, real-time language, syntax, reference manual.

(Résumé : tsvp)

MANUEL SIGNAL
Résumé :SIGNAL est un langage conçu pour la programmation synchrone de sys-
tèmes temps réel (traitement du signal, systèmes de contrôle-commande...). Un
pogramme SIGNAL définit un automate à partir d’un système d’équations dont les
variables sont les signaux. Ces équations peuvent être organisées en sous-systèmes
(ou processus). Un signal est une suite de valeurs à laquelle est associée une horloge
qui spécifie les instants auxquels les valeurs sont disponibles. Un programme
exprime ainsi les relations fonctionnelles et temporelles qui existent entre tous les
signaux mis en oeuvre. Ce rapport est un manuel du langage SIGNAL ; il présente
la syntaxe du langage dans sa version H2 et introduit sa sémantique. Un exemple
complet d’utilisation du compilateur est donné en annexe A.

Mots-clé : SIGNAL, langage temps-réel, syntaxe, manuel de référence.

SIGNAL MANUAL 5

Chapter I. Introduction
The language SIGNAL has been defined at INRIA/IRISA in collaboration and with
support from CNET. This document is a summary of the characteristics of SIGNAL
version H2. This does not constitute a reference manual nor a user’s guide.

I-1 Main features of the language
A program written in SIGNAL defines an automaton originating from a system of
equations the variables of which are identifiers of the signals. These equations can be
organized in subsystems (or processes). A model of process, named by an identifier,
is a subsystem which can have several contexts of use; it is referred by its name.

I-1.1 Signals
A signal is a sequence of values, to which a clock is associated. All the values of a
signal appear in the same predefined domain (pure signals, Booleans, Integers, Reals,
Complex numbers) or in a domain defined in the program (Arrays). Its clock defines
the set of instants where a signal has a value.

I-1.2 Events
A communication associates a value with a variable, at a logical instant of the pro-
gram. An event is a set of simultaneous communications that forms an automaton
transition. In an event, a variable can be without an associated value, the signal is
then called absent and its value is denoted . An event includes at least one commu-
nication.
The determination of the presence of a signal in an event results from the solving of
an equation system in F 3, the body of integers modulo 3.
The value associated with a variable in an event is the result of the evaluation of its
definition expression (that cannot be implicit: circular definitions of signals that are
not boolean are forbidden).

I-1.3 Models
A model associates an identifier with a system of equations which may have local
variables, sub-models and external variables (free variables). The parameters of
models are constants for the size of arrays or initial values of signals.
A model can be defined outside the program; then it can only be seen through its in-
terface.
The invocation of a model defined in a program is equivalent to the replacement of
this invocation by the associated system of equations (macro substitution).

⊥

6 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

I-1.4 Causal relations
A real-time program should respect the principle of causal relations, the value of an
event can not depend on the value of a future event. SIGNAL respects this principle
through the implicit management of time: the user disposes of expressions that allow
him to make references to past values or current values of a signal, but not to a future
value.

I-2 Presentation form
This document presents the syntax and introduces the semantics of SIGNAL. There
are two classes of terms for the description of the syntax of the language:

• the lexical (or terminal) structures defined, at a lexical level, through
rules in a grammar the vocabulary of which is a set of characters; no
implicit character (e.g. separator) is authorized in the terms built ac-
cording to these rules.

• the syntax structure defined at a syntactical level, through rules in a
grammar the vocabulary of which is a set of terminals; between two
terminals, it is possible to insert separators.

Each language unit is introduced and then described, individually or by category,
with help of all or parts of the following paragraphs.

1. Context free grammar
It gives the Context free grammar of the considered structure according to one of
these following forms:

STRUCTURE ::=
* Derivation 1*
* Derivation 2*
**

Terminal::=
* Derivation 1 *
* Derivation 2 *
**

Derivation 1, Derivation 2 are ways of writing the variable STRUCTURE (the
same for the variable Terminal).
Each Derivation is a sequence of elements which can be of the following kinds:
* a setof characters, written in this typography (only at lexical level),
* a terminal (formed by letters), in this typography,
* a terminal symbol (formed by other allowed characters), in this typography,
* a Terminal , in this typography,

SIGNAL MANUAL 7

* a syntacticalSTRUCTURE, in this typography (only at syntactical level),

* a sequence of elements with or without separators, respectively in the following
forms:
- {element symbol...}
- {element ...}

* an optional element, written [element].

2. Representation

>Expression()<

is a generic term the formal arguments of which are denoted ; this repre-

sentation is used to define the general properties of a term in the SIGNAL language
in the following headings.

3. Definition in SIGNAL

>Term()<

is defined through a term of the SIGNAL language included in this paragraph.

4. Profile

This paragraph describes the inputs and outputs of the expression; this is obtained
with the notation ?(E) to refer to the list of inputs of E, !(E) to refer to the list of out-
puts of E and !{ } to refer the explicit set of ports . The following

operations are used: , and A-B (the set of elements in A that does

not exist in B).

5. Types

This paragraph describes the properties of the argument types with equations in the
value domains of signals. The notation is used to refer the type of the expres-

sionE

• Equation

6. Clocks

This paragraph describes the properties of argument synchronization (the values of
booleans and clocks), informally or with an equation list in the synchronization

E1 E2 …,,
E1 E2 …,,

E1 E2 …,,

a1 … an,, a1 … an,,

A B∪ A B∩

τ E()

8 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

space. The notation is used to name the clock ofE and the notation is used
to name the clock of constant expressions. An equation has the following form:

•

7. Semantics

When the term cannot be redefined in SIGNAL, its semantics is given with an infor-
mal presentation.

8. Properties

Here is given a list of properties of the construction (such as associativity, distribu-
tivity, etc.).

• Property

9. Examples

• Examples in the SIGNAL language complete the presentation.

I-3 Lexical units

The program text in SIGNAL is composed of words of the vocabulary which are built
from a set of characters.

I-3.1 Characters

The set of characters (notedcharacter) used in SIGNAL is the set of ASCII-charac-
ters which are distinguished into subgroups shown below:

1. The setcharname is the characters used to build the identifiers; this set is com-
posed of

• the setletter, the letters of the alphabet, divided into two groups:

- the group uppercase consisting of the upper case letters
of the alphabet.

- the group lowercase consisting of the lower case let-
ters of the alphabet.

ω E() h̃

E1 E2=

SIGNAL MANUAL 9

• the set digit are the digits: 0-9

Upper and lower cases are not distinguished more than concerning key words.The
key words must be written in lower case letters.

2. The suffix separator _ (underscore character)
3. The separators: space character, end of line
4. The special characters used in the language terminals.
5. The other editable characters used in the comments.

I-3.2 Vocabulary

A text in SIGNAL is a sequence of elements from the Terminal vocabulary is the
longest sequence of characters that can be built according to the rules below.

I-3.2 A Names

A name allows to refer to a signal, a parameter or a model, in a context formed of a
group of declarations. Two occurrences of the same name in two distinct contexts can
refer to different objects.

1. Context free grammar

A name is composed of a letter followed by a sequence of letters or numbers sepa-
rated by “_”, perhaps followed or preceded by separators. All the characters char-
name and the occurrences of “_” are significant.

Name ::=
* letter [{ { charname... } _ ... }] *
* letter _ { { charname... }_ ... } *

2. Examples

• a and A are identical Names.

• x_25, The_pass_word_12Xs3 are Names.

I-3.2 B Constants
A denotation of a constant value is one of the units listed below and described in
chapter II:

*Cst-boolean
*Cst-integer

10 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

I-3.2 C Comments

A comment is a sequence of characters between two occurrences of the character %.
A comment can appear anywhere between two syntactic units.

I-4 Coding of the synchronization

The verification of the properties of a SIGNAL program is done in a space of three
values for the coding of the control associated with a boolean signal which may be
absent, or if present, have the value true or false. The body of integers modulo 3 (F 3)
uses this coding:
absent -> 0
false-> -1
true -> 1

SIGNAL MANUAL 11

Chapter II. Value domains
of signals
A signal is a sequence of values associated with a clock. All these values have the
same type, we will take the liberty of considering the type of the sequence as being
the type of each value. The object of this chapter is to present the notations for rep-
resenting these types and the treatment that is attached on them. An element of the
set of types in SIGNAL is noted type.
Suppose that E is a term in SIGNAL; the type associated with the term E is denoted

 and, when E is a constant expression, the value of this expression is denoted

. The type and the value are calculated from the context where E appears.

II-1 Scalar types

The scalar types contain the synchronization types, the integer types, the real types
and the complex types; the integer, real and complex types compose the set of nu-
merical types according to the syntax below:

1. Context free grammar

Scalar-type ::=
* Synchronization-type *
* Numerical-type *

Numerical-type ::=
* Integer-type *
* Real-type *
* Complex-type *

II-1.1 Synchronization types

The synchronization types are used to build the signal clocks.They are the type event
(or pure signal) and the type logical.

Denotation of types

1. Context free grammar

τ E()
ϕ E()

12 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

Type-synchronization::=
* event *
* logical *

2. Types

• (event)=event

• (logical)=logical

Denotation of values

 *A signal of type event gets its values from a singleton: there are no associated con-
stants and a parameter cannot have this type.

* The constants of the type logical are logic values denoted according to the syntax
of a Boolean-Cst

1. Context free grammar

Boolean-Cst:=
* true *
* false *

II-1.2 Integer types

Denotation of types

1. Context free grammar

Integer-type::=
* integer *

2. Types

• (integer)=integer

Denotation of values

The positive values of the integer type are denoted according to the syntax of Inte-
ger-cst. A negative value has no direct representation: it is obtained by using the op-
erator - applied to a positive value.

τ

τ

τ

SIGNAL MANUAL 13

1. Context free grammar

 An Integer-Cst is composed of a sequence of digits.

Integer-Cst ::=
* {digit ... } *

2. Types

• The type of an Integer-Cst is the type integer.

3. Semantics

An Integer-cst denotes a positive integer value or the null value represented in the
decimal system.

II-1.3 Real types

The real values can be represented in simple precision (type real) or in double preci-
sion (type long real) . For the Fortran generator, the types real and long real are iden-
tical.

Denotation of types

1. Context free grammar

 # Real-type::=
* real *
* dpreal *

2. Types

• (real)= real

• (dpreal)= long real

A value of type real is denoted according to the syntax of a REAL-CST identical to
the representation of Fortran 77 except for the following:
The exponent mark (e or d) must always be followed by a separator (space or end of
line). A REAL-CST denotes the approximate value of a real number.

1. Context free grammar

τ

τ

14 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

There are two groups of reals: the reals with simple precision and the reals with dou-
ble precision which include the first ones.

REAL-CST ::=
* REAL-SIMPLE-PRECISION-CST *
* REAL-DOUBLE-PRECISION-CST*

REAL-SIMPLE-PRECISION-CST::=
* Integer-cst SIMPLE-PRECISION-EXPONENT *
* Fraction-part [SIMPLE-PRECISION-EXPONENT] *
A REAL-SIMPLE-PRECISION-CST can have an exponent.

REAL-DOUBLE-PRECISION-CST ::=
Integer-cst DOUBLE-PRECISION-EXPONENT
* Fraction-part [DOUBLE-PRECISION-EXPONENT] *
A REAL-DOUBLE-PRECISION-CST should have an exponent.

Fraction-part::=
* . Integer-cst *
* Integer-cst . [Integer-cst] *

SIMPLE-PRECISION-EXPONENT ::=
* e RELATIVE-CST *

DOUBLE-PRECISION-EXPONENT ::=
* d RELATIVE-CST *

RELATIVE-CST ::=
*Integer-cst *
* + Integer-cst *
* - Integer-cst *

2.Representation

> (simple precision) or (double precision) <

3. Types

• The type of a REAL-SIMPLE-PRECISION-CST is real

E1. E2e� E3 E1. E2d� E3

SIGNAL MANUAL 15

• The type of a REAL-DOUBLE-PRECISION-CST is long real.

4. Semantics

The value is 0 when is absent. If has n digits, the value of the constant

is the approximate value of

5. Examples

• The notations included in the tables below are simple precision representations re-
spectively equivalent to the values 1 and 1/100.

II-1.4 Complex type

Denotation of types

1. Context free grammar

Complex-type-::=

Table 1:

1e 0 1e +0 10e -1

1. 1.e 0 1.e +0 10.e -1

1.0 0.1e 1 0.1e +1 10.0e -1

.1e 1 .1e +1

Table 2:

1e -2

1.e -2

0.01 0.001e 1 0.001e +1 1.0e -2

.01 .001e 1 .001e +1 .1e -1

ϕ Ei() Ei E2

ϕ E1() ϕ E2() 10 n−×+() 10
ϕ E3()×

16 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

* complex *

2. Types

• (complex)= complex

Denotation of values

A value of type complexis denoted by a pair of synchronous reals where the first el-
ement is the real part and the second one the imaginary part.

1. Context free grammar

COMPLEX-CST::=
* (REAL-SIGNED-CST , REAL-SIGNED-CST) *

REAL-SIGNED-CST::=
* + REAL-SIMPLE-PRECISION-CST*
* - REAL-SIMPLE-PRECISION-CST *

2. Examples

• (1.0,-1.0)

II-2 Array types

An array is a structure which includes synchronous elements which have the same
type. The description of this structure and the access of its elements is obtained by
using constant expressions which have the syntax of expressions on signals (S-
EXPR).

Denotation of types

An array type is defined according to the syntax of the first rule shown below; the
element type of an array is described by the variable Element-type.

1. Context free grammar

ARRAY-TYPE::=
* [{ S-EXPR , ... }] Element-type *

Element-type::=

τ

SIGNAL MANUAL 17

* logical *
* Numerical-type *

2. Representation
> <

3. Types

• The values of are positive integers.

• The type of the array is:
.

4. Clocks

 The integers are defined by constant expressions.

•

5. Examples

• “[10,10] integer T” declares T as a two dimensions integer array; each dimension
starts at 1.

Denotation of values

An array constant is an enumeration of constant expressions with the same type (cf.
Expressions on arrays).

II-3 Structure of the set of types

A partial order is defined on the types which yields a “natural” immersion of a small-
er set into a larger one.

II-3.1 The set of types

The set of types is composed by types of which the expressions in SIGNAL, de-
scribed in the recapitulation below, are derived from the variableSIGNAL-TYPE:

SIGNAL-TYPE
ARRAY-TYPE

 [{ S-EXPR , ... }] Element-type

n1 … nm,,[] ν

n1�� ϕ n1()() … nm� ϕ nm()(),,

τ n1 … nm,,[] ν() 1…ϕ n1()[] … 1…ϕ nm()[]×× τ ν()→=

ni

ω ni() h̃=

18 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

Generic form of the array types:
Element-type

logical denotes the logical type
Numerical-type

integer denotes the integertype
Real-type

real denotes the real type
dpreal denotes the long real type

complex denotes the complextype
event denotes the eventtype

1. Context free grammar

SIGNAL-TYPE ::=
*ARRAY-TYPE *
*Element-type *

* event *

II-3.2 Order on the types

Order on the synchronization types
The eventtype is lower than the logical type .

Order on the numerical types
The integer type is lower than the real type. The real type is lower than the complex
type .

Order on the arrays
The order of the numerical types is extended to arrays:

* if and

only if

* k=l
*

*and

Note: One uses the notation to refer to the upper bound of two compatible

types .

1…n1[] … 1…nm[]×× µ→

1…m1[] … 1…mk[]×× µ 1…n1[] … 1…nl[]×× ν→⊆→

i 0 i k≤<(),∀ ni⇒ mi=
µ ν⊆

µ ν∪
µ�and ν

SIGNAL MANUAL 19

II-3.3 Conversions

In a binary expression, the argument of type can be implicitly converted into the

superior type if this one is the type of the second argument.

II-4 Declaration of signal identifiers

A sequence of values has a type (the type of its elements); this type is associated with
an identifier in a declaration. An identifier can name a formal signal (parameter) or
a local signal according to the same syntax of declaration. Signals must be initialized
when they are defined by a dynamic expression (delay or sliding window) or by a
memorization expression; the initialization is done at the declaration behind the key
word init.
The declarations of signal identifiers respect the following syntax:

1. Context free grammar

S-DECLARATION ::=
*SIGNAL-TYPE { SIGNAL , ... } *
*Inherited-type { SIGNAL , ... } *

SIGNAL ::=
*Signal-name [init S-EXPR] *

Inherited-type ::=
* *

2.Representation

> <

3. Types

• The declared names have to be distinct from each other. The same type

is attributed to the identifiers in the context of the declaration.

* if is a SIGNAL-TYPE then the type attributed to the identifiers is the type ;

* if is an INHERITED-TYPE (no type in the declaration), the type attributed to the
identifiers is the result of the inherited type calculus, if it exists. If an external signal has
no type in its declaration, it has the type real .

µ
ν

µ�ID 1 … IDiinit Ei … IDn,,,,

τ ID1()
ID1 … IDn,,

µ τ µ()

µ

20 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

• The type of the expression is the type eventually increased of

one dimension to the left (cf. Dynamic expressions).

4. Clocks

The expressions to initialize are constant expressions.

•

5. Semantics

The value is an initial value for the signal ; it is necessary if is a signal

obtained when applying a delay, while taking a window, or while memorizing the
current value of another signal. This value has no sense for any type of parameters
nor for pure signals (event).

6. Examples

• real X, Y, ZX init 3.14, T

• [n]real T init [{i to n}:i]

7. Anomaly

A vector parameter cannot initialize a delay.

τ Ei() Ei τ IDi()

Ei

ω Ei() h̃=

Ei IDi IDi

SIGNAL MANUAL 21

Chapter III. Expr essions of
signals
The values associated with the signals are determined by signal equations; these
equations are built by composition of sub-equations deriving from elementary equa-
tions. In this chapter, we present the expressions which allow to define a signal (S-
EXPR); this presentation is preceded by an introduction to the expressions of com-
position (P-EXPR).

III-1 Equations to define signals

III-1.1 Elementary equations

A signal definition defines a signal or a set of signals according to the following syn-
tax:

1. Context free grammar

DEFINITION-OF-SIGNALS ::=
*Signal-name:= S-EXPR *
* { { Signal-name , ... } } := S-EXPR *

2. Representation

> X := E <

3. Representation

> { } := E < with < > the signals defined by E

4. Clocks

An identifier and the signal which defines it are synchronous

•

•

5. Types

X1 … Xn,, υ1 … υn,,

ω X() ω E()=

ω Xi() ω υi()=

22 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

•

•

6. Profile

A signal definition equation has inputs and outputs defined by the following rules:

• The identifiers of the defined signals are the outputs of the equation:

- ! (X := E) = { X }

- ! ({ } := E) = { }

• The inputs of the equation are the inputs of E: they are signal identi-
fiers occurring at least once in E, directly or as visible inputs of the
model calls:

- ?(X := E)=?(E)

7. Semantics

• the signal X is equal to the signal which is the result of the evaluation
of E,

• every signal is respectively equal to the signal

8. Examples

• if x,y, z are signals:
x := y + z defines the signal designated by x, equal to the sum of the signals
respectively named by y and z; this expression has y and z as inputs, and x as
output;

• if x, y, a are signals, and Q is a model owning two outputs and one input:
{x,y} := Q{a-5} defines the signals named by x and y respectively equal to
the first and second output of model Q; this expression has a as an input and
x and y as outputs;

• if x, y, z, a are signals, P a model which has three outputs and four inputs and Q
a model which has two outputs and one input:

{x, y, z} := P { a, Q{a-5}, a+5 } defines the signals named x, y and z respec-
tively equal to the first, the second and the third outputs of model P; this
expression has x, y and z as outputs and a as input.

τ X() τ E()=

τ Xi() τ υi()=

X1 … Xn,, X1 … Xn,,

Xi νi

SIGNAL MANUAL 23

III-1.2 Composition of signal definitions

The equations of signal definition can be composed by the operator |. An expression
, called an expression on equations, defines the signals (has as outputs the sig-

nals) defined in every sub-expression and has as inputs the signal inputs of each of
its sub-expressions that are not outputs of the others; since a signal cannot have a
double definition, a signal identifier cannot be an output of two sub-expressions. The
value of an input of a sub-expression defined in the other is the value associated by
this definition.
An equation expression may have brackets to the left (|, and to the right |).
A set of outputs may be invisible by using the operator /. An expression E/

has as outputs the outputs of E that do not exist in the list and as inputs the

inputs of E.

III-2 Elementary expressions

1. Context free grammar

ELEMENTARY-S-EXPR ::=
* CONSTANT *
* Signal-name *
* INDEX *
* PRODUCTION *

CONSTANT ::=
* Boolean-cst *
* Integer-cst *
 * REAL-CST *
* CST-COMPLEX *

III-2.1 Constant expressions

A constant expression is a CONSTANT, an occurrence of a parameter identifier or
one of the following expressions having recursively constant expressions as argu-
ments:

* an ARRAY-S-EXPR
* a BOOLEAN-S-EXPR
* an ARITHMETIC-S-EXPR

E1 E2

a1 … an,,
a1 … an,,

24 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

The temporal expressions (TEMPORAL-S-EXPR) and the function calls (PRO-
DUCTION) cannot appear in a constant expression. A constant is a denotation of a
value of a scalar type.

1. Context free grammar

CONSTANT ::=
* Boolean-cst *
* Integer-cst *
* REAL-CST *
* COMPLEX-CST *

2. Profile

A constant, and consequently, a constant expression, have neither a named input nor
a named output.

A constant expression and its arguments have all of them the same clock.
The type of a constant expression is evaluated in accordance with the type of theS-
EXPR having the same syntax.

III-2.2 Occurr ence of signal identifiers

An occurrence of a signal identifier has as value the signal that defines this identifier
and as type the type of its most internal declaration; its associated profile contains as
input this unique identifier and does not contain any named outputs.

III-2.3 Index

1. Context free grammar

INDEX::=
* Signal-name [{S-EXPR , ... }] *

2. Profile

? (T[]) = { T}

3. Clocks

The signals appearing in an index are synchronous.

h̃

E1 … Em,, ?Ei()
i 1=

m

∪∪

SIGNAL MANUAL 25

• (T[])= (T)

• (T[])= ()

4. Types

• if T is an array of type , and if the values

resulting from the evaluation of the expressions are respectivelyincluded be-

tween 1 and then T[] is a scalar of type

• if T is an array of type
, and

if the values resulting from the evaluation of the expressions are respectively

included between 1 and then T[] is an array of type

• in the other cases, the index is incorrect.

5. Semantics

The value of an index is defined recursively by

• the value of T[] is the value TT[] where TT is
the value of T[].

• the value of T[] is the value of the element of T when k is the
integer value produced by the evaluation of

• if the number of indexes is correct, but the value of one of these in-
dexes is not included in the corresponding boundaries, then the result
is not defined.

III-2.4 Model invocation

The PRODUCTION of a process by a model invocation is realized by the macro-
expansion of the model text. The static parameters are parenthezised by (and) ; these
parameters are constant expressions used as initial values of signals or sizes of arrays.
The input signals can be associated with a model:

• either “in position” (list of expressions defining them between the
characters { and }),

ω E1 … Em,, ω

ω E1 … Em,, ω Ei

1…n1[] … 1…nm[] τ ν()→××
Ei

ni E1 … Em,, τ ν()

1…n1[] … 1…nm[] 1…nm 1+[] … 1…np[]××× τ ν()→××
Ei

ni E1 … Em,,
1…nm 1+[] … 1…np[]×× τ ν()→

E1 … Em,, E2 … Em,,
E1

E1 kth

E1

26 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

• or by identity on the signal names (empty list between the characters
{ and }).

1. Context free grammar

PRODUCTION ::=
* REFERENCE-MODEL { [{ S-EXPR , ... }] } *

REFERENCE-MODEL ::=
* CALL *
* Model-name *

CALL ::=
* Model-name ([{ S-EXPR , ... }]) *

2. Representation

> <

3. Types

• For each formal parameter (name of the parameter identifier in position i in

the declaration of P) and its associated effective value , .

• For each input (name of the input identifier in position i in the declaration of

P) and its corresponding expression , .

• For each output and its expected result , .

4. Profile

• ?()=

• !() is the set of output names in the P declaration.

III-3 Arithmetical expressions

The arithmetical expressions are synchronous expressions of signals: the input signal
and the resulting signal have the same clock. The operators defining this kind of ex-
pressions are the standard arithmetic operators extended to sequences of elements .

P V1 … Vm,,() E1 … En,,{ }

Pi

Vi τ Vi() τ Pi()=

SEi

Ei τ Ei() τ SEi()=

SSi Fi τ SSi() τ Fi()=

P V1 … Vm,,() E1 … En,,{ } ? Ei()
i 1=

n

∪

P V1 … Vm,,() E1 … En,,{ }

SIGNAL MANUAL 27

1. Context free grammar

ARITHMETIC-S-EXPR::=
* S-EXPR + S-EXPR *
* S-EXPR - S-EXPR *
* S-EXPR * S-EXPR *
* S-EXPR / S-EXPR *
* S-EXPR ** S-EXPR *
* + S-EXPR *
* - S-EXPR *

2. Priorities

These operators are ordered in increasing priority according to the following:

• binary + and - have the same priority;

• * and / have the same priority;

• **

• unary + and - have the same priority.

3. Semantics

The expressions are defined with their usual semantics. When an expression in a di-
vision is of type integer, the division is integer division.
If the result of an expression is not representable in the type of this expression, its

value is a value of type depending on the implementation.

III-3.1 Addition, substraction, multiplication, division

The binary operators with the same priority are evaluated from left to right.

1. Representation

> Op <

2. Types

• and are numerical types

•

µ
µ

E1 E2

τ E1() τ E2()

τ E1�Op� E2() τ E1() τ E2()∪=

28 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

3. Clocks

•

•

III-3.2 Power

1. Representation

> <

2. Types

• is a numerical type

• is the integertype

•

3. Clocks

•

•

4. Anomaly

The generated C code is not good for this operator.

III-3.3 The unary operators (+ and -)

1. Representation

> op E<

2. Types

• is a numerical type

•

ω E1() ω E2()=

ω E1�Op� E2() ω E1()=

E1�**� E2

τ E1()

τ E2()

τ E1�**� E2() τ E1()=

ω E1() ω E2()=

ω E1�**� E2() ω E1()=

τ E()

τ op� E() τ E()=

SIGNAL MANUAL 29

3. Clocks

•

III-4 Boolean expressions

The boolean expressions are synchronous expressions of signals: the signal argu-
ments, just as the resulting signal, have the same clock. The operators defining this
kind of expression are the standard operators of boolean elements extended to the se-
quences of elements. The boolean expressions (or expressions with boolean result)
are either relations or lattice expressions.

II-4.1 Expressions of booleans

1. Context free grammar

BOOLEAN-S-EXPR
* S-EXPR and S-EXPR *
* S-EXPR or S-EXPR *
* not S-EXPR *
* RELATION *

2. Priorities

These operators are ordered in increasing priority according to the following:

• or: logical or

• and: logical and

• not: logical not

• relation operators

3. Types

• logical

• logical

• logical

• logical

• logical

ω op� E() ω E()=

τ E1() ⊆

τ E2() ⊆

τ E1�or� E2() ⊆

τ E1�and� E2() ⊆

τ not� E1() ⊆

30 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

4. Clocks

The clocks of the arguments of the boolean expressions are identical; so, for op de-
noting the operator or or and:

•

•

•

5. Semantics

The boolean operators have their usual semantics.

6. Definition in SIGNAL

The boolean disjunction is not a primitive operator in SIGNAL:
 is equal to the process defined below.

>
 (| X := (when) default (when) default (not event)

 | synchro { , }

 |)
<

The boolean conjunction is not a primitive operator in SIGNAL:
 is equal to the process defined below.

>
 (| X := (when when) default (not event)

 | synchro { , }

 |)
<

III-4.2 Relations

1. Context free grammar

RELATION ::=

ω E1op E2() ω E1()=

ω E1op E2() ω E2()=

ω not� E1() ω E1()=

X�:=� E1�or� E2

E1 E2 E1

E1 E2

X�:=� E1�and� E2

E1 E2 E1

E1 E2

SIGNAL MANUAL 31

* S-EXPR = S-EXPR *
* S-EXPR /= S-EXPR *
* S-EXPR > S-EXPR *
* S-EXPR >= S-EXPR *
* S-EXPR < S-EXPR *
* S-EXPR <= S-EXPR *

2. Representation

> Op <

3. Types

• and have the same scalar type, but different from the complex type.

4. Semantics

In the order defined on the logical values, false is inferior to true. With this precision,
the relation operators have their usual semantics.

III-5 Temporal expressions

The temporal expressions are built on possibly different clocks.

1. Context free grammar

TEMPORAL-S-EXPR ::=
* COUNTER *
* MERGE *
* EXTRACTION *
* MEMORIZING *
* SIGNAL-CLOCK *
* CLOCK-EXTRACTION *

2. Priorities

These operators are ordered in increasing priority according to the following:

• the COUNTER operators (#)

• the MERGE operator (default)

• the EXTRACTION operator (when)

• the MEMORIZING operator (cell)

E1 E2

E1 E2

32 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

• the CLOCK-EXTRACTION operator (unary when) andSIGNAL-CLOCK
(event)have the same priority.

III-5.1 Merge

The deterministic merge (with priority) is defined according to the following syntax:

1. Context free grammar

MERGE ::=
* S-EXPR default S-EXPR *

2. Representation

> default <

3. Types

•

4. Clocks

• h =

• h =

• if is different from , h =

5. Properties

• (default) default = default (default)

6. Examples

• the values taken by X default Y are described below as the values corresponding
to X and Y as inputs:

E1 E2

τ E1�default� E2() τ E1() τ E2()∪=

ω E1�default� E2()

ω E1() h∪

ω E2() h̃ ω E1() ω E2()∪

E1 E2 E3 E1 E2 E3

SIGNAL MANUAL 33

III-5.2 Extraction

The values of a signal can be produced by extracting the values of an other signal
when the values of a boolean signal aretrue.

1. Context free grammar

EXTRACTION ::=
* S-EXPR when S-EXPR *

2. Representation

> E whenB <

3. Types

• logical

•

4. Clocks

• h =

• if then

• if is different from ,

5. Properties

• (E whenB) whenC = E when (B when C)

• E when (B when B) = E whenB

• (default) when B = (whenB) default (whenB)

Tableau 3 :

X = 1 3 7 ...

Y= 2 6 8 1 ...

X default Y = 2 1 3 8 7 ...

⊥ ⊥

⊥

τ B() ⊆

τ E�when� B() τ E()=

ω E�when� B()

ω E() h̃= h ω B() 1− B−()×=

ω E2() h̃ h ω E() ω B() 1− B−()××=

E1 E2 E1 E2

34 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

6. Examples

• the values taken by X when C are described below as the values corresponding to
X and C as inputs:

III-5.3 Signal clock

The clock of a signal is obtained by applying the event operator to this signal which
may be of any type.

1. Context free grammar

SIGNAL-CLOCK::=
* event S-EXPR *

2. Representation

> event B <

3. Types

•

4. Examples

• the values taken by event X are described below as the values corresponding to
X as input:

Tableau 4 :

X = 1 3 5 7 0 ...

C = T T F F T T ...

X when C = 1 7 0 ...

Tableau 5 :

X = 1 2 3 4 ...

event X = T T T T ...

⊥ ⊥

⊥

⊥ ⊥ ⊥ ⊥

τ event� B() event=

SIGNAL MANUAL 35

III-5.4 Clock extraction

The extraction of true values of a boolean condition is obtained by application of the
unary operator when:

1. Context free grammar

CLOCK-EXTRACTION::=
* when S-EXPR *

2. Representation

> when B <

3. Types

• logical

•

4. Definition in SIGNAL

> (event (B)) when B <

5. Clocks

•

6. Examples

• the values taken by when C are described below as the values corresponding to C
as input:

III-5.5 Equations of clocks

A CLOCK-EQUATION contributes to the construction of the clock equations sys-
tem of the program. It is the tool for programming by constraints.

Tableau 6 :

C = T T F F T ...

when C = T T T ...

τ B() ⊆

τ �when� B() event=

ω when� B() ω B() 1− B−()×=

⊥ ⊥

36 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

1. Context free grammar

CLOCK-EQUATION ::=
* synchro { { S-EXPR , ... } } *

2. Representation

> synchro { , } <

3. Profile

A clock equation is a process without any output with
?(synchro { , })=?

4. Types

• The arguments are of any types.

5. Definition in SIGNAL

synchro { , }

constrains to equalize the clocks of the signal expressions and ; this expression

is equal to the process without output defined below.
>
(| X := (event) = (event)

 |) / X
<

III-5.6 Counter

The counter expressions allow one to number the occurrences of a clock.

III-5.6 A Complete counter

The complete counter of a signal is defined according to the following syntax:

1. Context free grammar

COUNTER ::=
* # S-EXPR *

E1 E2

E1 E2 E1() ? E2()∪

Ei

E1 E2

E1 E2

E1 E2

SIGNAL MANUAL 37

2. Representation

> # <

3. Types

• logical

•

4. Clocks

•

5. Semantics

The signal N, defined at the clock H (obtained by extracting the true values of a log-
ical signal), by the expression N := # , enumerates the strictly positive inte-

gers; N counts in this way the occurrences of true values of the signal .

6. Definition in SIGNAL

N := # is equal to the process defined below.

>
(| N := ZN+1
 | ZN := N $ 1
 | synchro {N, when }

 |) / ZN
<
in which ZN has the initial value 0.

7. Examples

• The values taken by # are described below as the corresponding values of :

Tableau 7 :

 = F T T F T ...

= 1 2 3 ...

C1

τ C1() ⊆

τ #� C1() integer=

ω #� C1() ω when� C1()=

C1 C1

C1

C1

C1

C1 C1

C1

C1 ⊥ ⊥

38 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

III-5.6 B Relative counter

The relative counter is defined under two forms, according to the following syntax:

1. Context free grammar

COUNTER ::=
* # S-EXPR after S-EXPR *
* # S-EXPR from S-EXPR *

2. Representation

> # after

from <

3. Types

• logical

• logical

•

4. Clocks

•

5. Semantics

The signal N defined, at the clock H obtained by extracting the true values of a log-
ical signal , by the expression N := # mode , counts in this way the number

of occurrences of true values of the signal () since the last occurrence of the

truevalue of the signal (); when the mode is “from”, the occurences simul-

taneous to the occurrences are counted; when the mode is “after”, the occurrences

 simultaneous to the occurrences are not counted.

6. Definition in SIGNAL

N := # from

is equal to the process defined below

C1 C2

C1 C2

τ C1() ⊆

τ C2() ⊆

τ #� C1�mode� C2() integer=

ω #� C1�mode� C2() ω when� C1() �default� when� C2()()=

C1 C1 C2

C1 o1

C2 o2 o1

o2

o1 o2

C1 C2

SIGNAL MANUAL 39

>
(|

 |

 | ZN := N $ 1
 | synchro{N,(when) default (when)}

 |) / ZN,

<
in which ZN has the initial value 0.

N := # after

is equal to the process defined below

>
(|

 |

 | ZN := N $ 1
 | synchro{N,(when) default (when)}

 |) / ZN,

<
in which ZN has the initial value 0.

7. Examples

• the values taken by # from and # after are described below as the

values corresponding to and as inputs:

The memorization of a signal at the clock defined by the true occurrences of a
boolean condition respects the following syntax:

1. Context free grammar

Tableau 8 :

 = F F T T T T F T F

 = T F T F F T

from 0 1 2 1 2 3 0

after 0 1 2 0 1 2 0

NIN�:=� 1�when� C1() �default�0�() �when� C2

N NIN�default� ZN 1+() �when� C1()=

C1 C2

NIN

C1 C2

NIN�:=� 0�when� C2

N NIN�default� ZN 1+() �when� C1()=

C1 C2

NIN

C1 C2 C1 C2

C1 C2

C1 ⊥

C2 ⊥ ⊥ ⊥ ⊥

C1 C2 ⊥ ⊥ ⊥

C1 C2 ⊥ ⊥ ⊥

40 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

The two arguments have a priority at the most equal to the priority of the unary ex-
traction operator.

MEMORIZATION ::=
* S-EXPR cell S-EXPR *

2. Representation

> E cell B <

3.Types

• logical

•

4. Definition in SIGNAL

X := E cell B
The value of X is either the present value of E when E is present, or the last received
value of E when B is present and true. The X signal must be initialized (cf. Declara-
tion of signal identifiers). It is equivalent to the process defined below.
>
(| X := E default (X $1)
 | synchro { X,E default (when B)}
 |)
<

5. Clocks

•

6. Examples

• the values taken by Y := X cell C are described below as the values corresponding
to X and C, under the hypothesis that Y is initialized with 0:

Tableau 9 :

X = 1 3 5 7 ...

C = T T T F T F T ...

Y = 0 1 3 3 3 5 5 7 ...

τ B() ⊆

τ E�cell� B() τ E()=

ω �E�cell�B�() ω E() 1 ω E()−() B− ω B()−()×+=

⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥

⊥

SIGNAL MANUAL 41

III-6 Dynamic expressions

The dynamic expressions allow temporal manipulations of signal values.

1. Context free grammar

DYNAMIC-S-EXPR ::=
* DELAY *
* WINDOW *

III-6.1 Delay

A delay expression is defined according to the following syntax:

1. Context free grammar

DELAY ::=
* Signal-name $ S-EXPR *

2. Representation

> X $ <

3. Types

• is a strictly positive integer

•

4. Clocks

•

5. Semantics

The initialization of the signal ZX, defined by ZX := X $ must be:

• if = 1, a constant with the same type as X,

• if > 1

N1

N1

τ X�$� N1() τ X()=

ω N1() h̃=
ω X�$� N1() ω X()=

N1

N1

N1

42 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

- if X is a scalar, an array of dimension [] the elements
of which have the type

- if X is an array of dimension [], an array of di-
mension [] the elements of which have the
type of the elements of X.

The value of the signal ZX is at each instant t the value of the delayed signal X at the
instant t - . If the delay appears as a sub-expression of the definition expression of

a signal, the initial value is undefined.

6. Examples

• the values taken by X $ 1, with the initial value 0, are described below with the
values corresponding to X as input:

III-6.2 Sliding Window

An expression of a sliding window on a signal is defined by the following syntax:

1. Context free grammar

WINDOW::=
* Signal-name [$ S-EXPR] window S-EXPR *

2. Representation

> X $ window <

3. Types

• and are two strictly positive integers; if the delay is absent, = 0

• if is scalar, then the expression is a vector owning elements

• if X is an array with type [] , the type of the window is [] .

4. Clocks

Tableau 10 :

X = 1 2 3 4 ...

X $ 1 = 0 1 2 3 4

N1
τ X()

I1 … I2,,
N1 I1 … I2,,,

N1

N1 N2

N1 N2 N1

τ X() µ= N2

I1 … I2,, µ N2 I1 … I2,,, µ

SIGNAL MANUAL 43

•

•

•

5. Semantics

In the declaration of the signal ZX defined by ZX := X $ window ,

• if + = 1 the signal ZX is not initialized

• if + > 1 the signal ZX must be initialized

- if X is scalar, by a vector of size + -1;

- if X is an array of dimension [], by an array of
dimension [+ -1,]

• BUG: the initialization of ZX is only obtained by an explicit number-
ing, even if only one value is necessary for the initialization (for in-
stance [{ to 1] : v0] or [{ 1] : v0]).

If the window appears as a sub-expression of the definition expression of a signal, its
initial value is undefined.
A window is a vector ZX each element ZX[i] of which is, at the instant t, the value of
X at the instant [t - - + i].

6.Examples

• the values taken by X $ 1 window 2, with an initialization [{to 2}:0], are de-
scribed below with the values corresponding to X as input:

III-7 Array expressions

Tableau 11 :

X = 1 2 3 4 ...

X $ 1 window 2= [0,0] [0,1] [1,2] [2,3] ...

ω N1() h̃=

ω N2() h̃=

ω X�$� N1�window� N2() ω X()=

N1 N2

N1 N2

N1 N2

N1 N2

I1 … I2,,
N1 N2 I1 … I2,,

N1 N2

44 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

The manipulation of arrays is possible by the extension of operations on scalars, the
concatenation and the numbering of elements.

1. Context free grammar

ARRAY-S-EXPR ::=
* CONCATENATION *
* NUMBERING *

III-7.1 Concatenation

1. Context free grammar

CONCATENATION ::=
* { Signal-name [||] ... } *

2. Semantics

The CONCATENATION of two arrays

•

•

builds the array T, of type
 verifying:

• if is lower or equal than

• if is strictly higher than

III-7.2 Iteration expression

1. Context free grammar

NUMBERING ::=
* [{ ITERATION , ... }] *

ITERATION :=
* SIMPLE-ELEMENT *
* MULTIPLE-ELEMENT *

SIMPLE-ELEMENT ::=

T1�of�type� 1…m1[] 1…n2[]× … 1…nm[]×× µ→

T2�of�type� 1…m2[] 1…n2[]× … 1…nm[]×× µ→

1… m1 m2+()[] 1…n2[]× … 1…n[]×× µ→

i1 m1,� T i1 i2 … im,,,[] T1 i1 i2 … im,,,[]=

i1 m1,� T i1 i2 … im,,,[] T1 i1 m1−() i2 … im,,,[]=

SIGNAL MANUAL 45

* [{ S-EXPR , ... }] : S-EXPR *

MULTIPLE-ELEMENT ::=
* { { ITERATOR , ... } } : S-EXPR *
* { { ITERATOR , ... } } : SIMPLE-ELEMENT *

ITERATOR ::=
* [indicator-name] [BEGIN] [END] [STEP] *

BEGIN ::=
* in S-EXPR *

END ::=
* to S-EXPR *

STEP ::=
* step S-EXPR *

2. Semantics

A NUMBERING defines an array T of type by

a sequence of actions executed sequentially.
Each action is either a definition of an isolated element (SIMPLE-ELEMENT), or
an ITERATION allowing to define a set of values.

• A SIMPLE-ELEMENT is defined by the couple of the list [] of its in-

dexes (in the array) and of the value in its indexes.

• An iteration is defined by the couple of a list of iterators and the value expressions
for each reached point.

• The iterators constitute a sequence of visible declarations in the rest of the defini-
tion of the MULTIPLE-ELEMENT where they are contained; they define a set
of loops embedded from left to right; the index of each loop take successively the
value (BEGIN) increased by the value (STEP), ... until the last value includ-

ed between (END) and (BEGIN)

• If a term is omitted, it is implicitly equal to 1;

• When the definition expression of a value on a point is an S-EXPR, it is equiva-
lent to a SIMPLE-ELEMENT the list of indexes of which is composed by the
sequence of identifiers (created if necessary) of iterators.

3. Examples

1…n1[] … 1…nm[]×× µ→

i1 … im,,
E I1 … Im,,[]

ϕ ϕ
ϕ ϕ

46 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

• T := [{to 10}: 0] defines a zero vector

• T := [{ to 10 , to 10}: 0 , { i in 1 to10 , j in i to 10}: (i+j)] defines an upper trian-
gular matrix

III-7.3 Extensions of scalar expressions

The expressions on scalars, except the relations, are extended term by term to the ar-
rays.

III-8 Expressions on signals

III-8.1 Scalar expressions

The arithmetic (ARITHMETIC-S-EXPR), boolean (BOOLEAN-S-EXPR), tem-
poral (TEMPORAL-S-EXPR) and dynamic (DYNAMIC-S-EXPR) expressions
compose the scalar expressions according to the grammar below:

1. Context free grammar

SCALAR-S-EXPR ::=
* ARITHMETIC-S-EXPR *
* BOOLEAN-S-EXPR *
* TEMPORAL-S-EXPR *
* DYNAMIC-S-EXPR *

2. Profile

These expressions do not produce named output; they have as inputs respectively:

• ?(op E) = ?(E) for an unary operator op

• ?(op) = for a binary operator op

A SCALAR-S-EXPR is evaluated according to the increasing priorities defined be-
low:

1.DYNAMIC-S-EXPR
2.TEMPORAL-S-EXPR
3.BOOLEAN-S-EXPR
4.ARITHMETIC-S-EXPR

E1 E2 ? E1() ? E2()∪

SIGNAL MANUAL 47

The operator priorities of each syntactical structure are described in the correspond-
ing sections. An expression which has a lower priority than the expression to which
it is argument, must be parenthesized. The parenthesizing is permitted but not neces-
sary in other cases. For the same priority, unless indicated, the evaluation order of
expressions with an arity higher than 1 is from left to right. The only expressions that
are allowed without parenthesises are built on the associative operators (or pseudo
associative as the when operator).
The extensions of the scalar expression array respect the rules announced below.

III-8.2 Embedding of expressions on signals

The expressions on signals are organized in elementary expressions, scalar structure
expressions and array structure expressions.

1. Context free grammar

S-EXPR ::=
* (S-EXPR) *
* ELEMENTARY-S-EXPR *
* SCALAR-S-EXPR *
* ARRAY-S-EXPR *

Under condition of being correctly typed, an ELEMENTARY-S-EXPR can be used
as an argument in the whole expression of signals. A SCALAR-S-EXPR cannot
have an ARRAY-S-EXPR as argument and vice versa.

48 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

SIGNAL MANUAL 49

Chapter IV. Expressions on
processes
The expressions on processes allow to compose systems of equations on signals ac-
cording to the grammar below:

1. Context free grammar

P-EXPR ::=
* (P-EXPR) *
* ELEMENTARY-PROCESSES *
* COMPOSITION *
* PROFILE *
* PROCESS-ARRAY *

IV-1 Elementary process

An elementary process is a definition of signals, a process instance or a clock equa-
tion.

1. Context free grammar

ELEMENTARY-PROCESS ::=
* PROCESS-INSTANCE *
* SIGNAL-DEFINITION *
* CLOCK-EQUATION *

PROCESS-INSTANCE ::=
* CALL *
* PRODUCTION *

The elementary processes are defined in the preceding chapter.

IV-2 Composition

The composition of processes is defined according to the syntax of the rule below:

1. Context free grammar

50 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

COMPOSITION ::=
* (| { P-EXPR | ... } |) *

2. Representation

> (| | |) <

3. Profile

• !() !() is empty

• !((| | |)) = !() !()

• ?((| | |)) = (?() - !()) (?() - !())

4. Semantics

An input signal of (respectively of) that has the same name as an output signal

of (respectively of) has as definition in (respectively in) its definition

in (respectively in).

The constraints on the types and the clocks are the ones of and .

IV-3 Profile

1. Context free grammar

PROFILE ::=
* P-EXPR ? { MODIFICATION , ... } *
* P-EXPR ! { MODIFICATION , ... } *
* P-EXPR / { Signal-name , ... } *
* P-EXPR !! { Signal-name , ... } *
* P-EXPR @ { Signal-name , ... } *

The first argument of a PROFILE expression is a P-EXPR which cannot directly be
a SIGNAL-DEFINITION.

IV-3.1 Renaming

 The input or output renaming expressions are obtained by using MODIFICATIONs.

P1 P2

P1 ∩ P2

P1 P2 P1 ∪ P2

P1 P2 P1 P2 ∪ P2 P1

P1 P2

P2 P1 P1 P2

P2 P1

P1 P2

SIGNAL MANUAL 51

1. Context free grammar

MODIFICATION ::=
* Signal-name : Signal-name *

2. Semantics

An expression of renaming is a change of signal names.

• in input, the expression P ? is equal to the process P in which

the input names have been respectively changed by the names

• in output, the expression P ! is equal to the process P in

which the output names have been respectively changed by the names . The

names are all distinct; if a name is already a name of an output in P, this

name has to be renamed.

3. Examples

• Considering a process P having three inputs a, b and c and two outputs x and y

• P ? a : b has two inputs b (to which the input a of P is identified) and c

• P ! x : y is forbidden

• P ! x : y , y : x inverts the names x and y

IV-3.2 Restriction

1. Semantics

The restriction operation allows to mask outputs of a process P

• by restriction P / : the resulting process has as outputs, the outputs of P

that are not in the list

• by validation P !! : the resulting process has as outputs, the outputs of

P that are in the list

2. Examples

• Considering a process P having a, b and c as inputs and x and y as outputs

• P !! x has one output x

a1�:� b1 … an�:� bn,,
ai bi

a1�:� b1 … an�:� bn,,
ai bi

bi bi

b1 … bn,,
b1 … bn,,

b1 … bn,,
b1 … bn,,

52 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

• P / y has one output x

• P / z is equal to P.

IV-3.3 Closing

1. Semantics

The closing allows one to identify an output of a process P with an input which has
the same Signal-name; by closing P @ :

• the resulting process has as inputs, the inputs of P that are not in the list

and as outputs, the outputs of P.

• the inputs of P that are in the list have respectively as values the values

of these outputs.

2. Examples

• Considering a process P having a, b and c as inputs and a and y as outputs

• P @ a has two inputs b and c

• P @ y is equal to P

IV-4 Array of processes

A PROCESS-ARRAY builds a process by iteration of the same elementary cell.

1. Context free grammar

#PROCESS-ARRAY ::=
* array I-ARRAY of S-EXPR [with { CONNECTION , ... }] end *

I-ARRAY ::
* Index-name to S-EXPR *

CONNECTION ::=
* Signal-name [0]: Signal-name *
* Signal-name [.]: Signal-name *
* Signal-name *

2. Representation

b1 … bn,,

b1 … bn,,

b1 … bn,,

SIGNAL MANUAL 53

> array I to N of P with end <

2. Types

• =integer

3. Semantics

The process PN defined by the expression:
array I to N of P with connections end
is composed of a succession of processes built on the model of P.

• For each output x of P having the type , PN owns an output X with
the same name and with the type [1..N] , such as X[i] is the
output x of .

• if a is an input of P that is not present in the connections, a is an input
of PN which is diffused in the N cells.

• if a is an input of P present in the connections under the form a, each
input of the cell which has this name is indexed by i.

• if a is an input of P present in the connections under the form a[.]:b,
each input of the cell which has this name is indexed by i + 1; P
possesses an output with the name a.

• if a is an input of P present in the connections under the form
a[0] : b, each input of the cell which has this name is indexed by
i - 1; P possesses an output with the name a.

• Each indexed input a is connected (is equal) to the output which has
the same name and the same index.

• An input a with the index 0 (respectively N + 1) given by a [0] :b (re-
spectively a[.]:b) becomes the input b of the process PN.

• For each input x of P, indexed and not connected, having the type ,
PN possesses an input X with the same name of type [1..N] ,
such as X[i] is the input x of .

• The process PN possesses the inputs and the outputs defined accord-
ing to the rules above.

c1 � c2,

τ N()

Pi

µ
µ→

Pi

Pi

Pi

Pi

µ
µ→

Pi

54 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

• Restriction: it is not possible to have at the same time, inputs in-
dexed under the form a[0]:b and inputs indexed under the form
a[.]:b.

5. Examples

• array i to 10 of s:=a+b with a,b end is equivalent to s:=a+b

• array i to 10 of s:=a[i]+b[i] end is equivalent to s:=a+b

• array i to 10 of (| s:=y+b[i] | y:=a[i] |) with y end / y is equivalent to s:=a+b

• the process:
 (| s0:=0
| array i to 10 of s:=s+a*b with a,b,s[0]:s0 end
| ps:=s[10]
|)
delivers in ps the scalar product of the vectors a and b.

6. Bug

• If a signal external to the array of processes is used to define a clock in the array,
it is considered as input of the loop, even when it is not necessary.

• A delay in a process array causes an error of the compiler.

IV-5 Process model

A process model establishes a relation between a name and a set of equations that can
be parameterized; each reference to this name is formally replaced by the equations.
If the set of equations is empty (invocation of an external function), the replacement
is of course partial (limited to external properties of the invoked process); the effect
of the call of an external process (which may be already compiled, or not correspond-
ing to its description) cannot be more than theoretically described. Each model in-
voked in the program must have a visible declaration in the syntactical context of the
invocation. A process model is a term derived from MODEL according to the gram-
mar below.

1. Context free grammar

MODEL ::=
* EXTERNAL-MODEL *
* DESCRIBED-MODEL *

EXTERNAL-MODEL ::=

SIGNAL MANUAL 55

* function Model-name = INTERFACE *

DESCRIBED-MODEL ::=
* process Model-name = INTERFACE DESCRIPTION end *

DESCRIPTION ::=
* P-EXPR [where DECLARATIONS] *

DECLARATIONS ::=
* [{ S-DECLARATION ; ... }] [{ MODEL ; ... }] *

IV-5.1 Local declarations of the model process

The set of sub-models declared in a model P are not allowed to contain two mod-
els with the same name. A local declaration of a model Q is visible (can be the object
of a REFERENCE-MODEL) in the expression associated with P and in the expres-
sions associated with the other sub-models of P. For these expressions, it masks a
possible model with the same name which, without it, would be visible. The expres-
sion associated with a model P cannot contain recursively a reference to P.

IV-5.2 The interface of a model

The interface of a model contains an optional description of its formal parameters fol-
lowed by a description of its visible part; this is composed of possibly empty lists of
its input and output signals in this order.

1. Context free grammar

INTERFACE ::=
* [PARAMETERS] { INPUTS OUTPUTS } *

PARAMETERS ::=
* ([{ S-DECLARATION ; ... }]) *

INPUTS ::=
* ? [{ S-DECLARATION ; ... }] *

OUTPUTS ::=
* ! [{ S-DECLARATION ; ... }] *

2. Clocks

• If a sub-model is an external function, its inputs and outputs are synchronous , ex-
cept with the compiling option sep (see the appendix A).

Ψ

56 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

The names of the parameters, the input signals and the output signals must be distinct
from each other. A model must possess at least one input or one output or one com-
munication with an external process with a clock not equal to zero.

IV-5.3 Local signals

The signal names locally declared in a model must be distinct from each other; they
must be distinct from signal names of the interface and parameters.

SIGNAL MANUAL 57

Appendix A. Using the
compiler
A-1 Construction of a program

For purposes of explaination, let a program EXAMPLE in SIGNAL contained in a
file called SOURCE.
If the program has formal parameters, their values must also be contained in a file,
say PARAMETER. The first line of this file must be the line:
[OL_E_SIGN]
It is followed by the values of the effective parameters with the syntax
{S-EXPR , ...}

Calling the compiler is done by:

* if the program EXAMPLE has no parameters
sig { option list } SOURCE

* if the program EXAMPLE has parameters
sig { option list } SOURCE PARAMETER

Every option of the compiler is prefixed by the character “-” for the UNIX version of
the compiler and by the character “/” for the VMS version.
By default (without option), the compiler:

• does not generate a listing of the program with the possible errors (see the option
list).

• does not generate sequential code (see the options c and f77).

• does not give an external representation of the program obtained after resolving
the equations system (see the options tra and z3z).

• The inputs and outputs of each external model are considered as synchronous (see
the option sep).

The different options are the following:

• list: produces a file EXAMPLE_LIS.SIG where EXAMPLE is the name of the
SIGNAL program. This file contains:

- the initial SIGNAL program commented when needed with error messages or warnings.

58 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

- the possible errors due to a cycle in the data or clock dependencies.

• nowar: the compiler does not give any remarks (or warnings)

• sep: the inputs and outputs of the external processes are not considered as syn-
chronous. On the other hand, the compiler produces the transitive closure of the
graph which represents the program; the transitive closure is generated in a file
EXAMPLE.SEP (see the paragraph A-1.7).

• dbg (debug): when there is a cycle in the data or clock dependencies, a file EX-
AMPLE_CYC.SIG is created; this file contains the list of the signals belonging
to the cycles (see the paragraph A-1.4) .With the dbg option, this file contains
only one cycle for one signal and it is more understandable.

• tra: the compiler builds a file EXAMPLE_TRA.SIG which contains a SIGNAL
program equivalent to the program compiled after the clock calculus (see the par-
agraph A-1.3)

• z3z: the compiler builds a file EXAMPLE.Z3Z which contains an external repre-
sentation, under polynomial form, of the synchronization expressions after the
clock calculus.

• f77: generation of FORTRAN code; the compiler builds three files EXAM-
PLE_M.f, EXAMPLE_S.f, EXAMPLE_E.f (see the paragraph A-1.5)

• f77=x: generation of files specified by the sequence x constituted of a combina-
tion of characters “s”, “m” or “e”:

- “m” production of the file EXAMPLE_M.f

- “s” production of the file EXAMPLE_S.f

- “e” production of the file EXAMPLE_E.f

• generation of c code; the compiler builds three files EXAMPLE_M.c, EXAMP-
LE_S.c, EXAMPLE_E.c (see the paragraph A-1.6)

• c=x: generation of files specified by the sequence x constituted of a combination
of characters “s”, “m” or “e”:

- “m” production of the file EXAMPLE_M.c

- “s” production of the file EXAMPLE_S.c

- “e” production of the file EXAMPLE_E.c

The result of the compiling: the compiling can fail during the syntactical analysis,
during the analysis of contextual properties (type or profile error), or during the gen-
eration of code.

SIGNAL MANUAL 59

A-1.1 Failure during the syntactical analysis

When there is an error in the syntactical analysis, the compiler outputs the line
number where the error is and a recovery code; this code refers the smallest syntac-
tical structure in which an attempt of recovery is done. According to the correctness
of this attempt to recover, the errors detected afterwards may not be real.

Example of result:

SIGNAL -H2.4 Compiler
INRIA 1993 All rights reserved

You are entitled to use this software only
if your organization has signed an agreement with INRIA

===> Program analysis
** ERROR: Syntax Error 10 line 19

A-1.2 Failure during the analysis of contextual properties

In case of error messages from the compiler and if the user has given the option list,
the file EXAMPLE_LIS.SIG will be created. This file contains the program
SOURCE annotated with messages placed close to the instruction that caused the
problem.

A-1.2 A Warnings

The compiler can find instructions not corresponding to the definitions of SIGNAL.
If recovery is possible and judged not dangerous, the problem is only indicated to the
user as a message in the following form (extracted from the example below) and
without stopping the compiling.

%** WARNING: Output ZERO not declared in the process interface

A-1.2 B Errors

In case of error, a message is inserted close to the erroneous use of the signal; a sec-
ond message is assigned to the declaration of the causing signal.

* first message:

60 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

%** ERROR (ref 1): disagreement between declaration and use of the signal WE%

* second message:

 %** ERROR: cf message No 1
 ** ERROR: cf message No 2
 %[N]real WE init[{ to N }: 0.0 e 0]

A-1.2 C Complete example

After calling the compiler, the following is shown on the screen:

SIGNAL - H2.4 Compiler
INRIA 1993 All rights reserved

You are entitled to use this software only
if your organization has signed an agreement with INRIA

 ===> Program analysis
 ===> Reduction to the kernel language
 ===> Graph generation
 ===> Clock calculus
 ===> Graph processing

The file COMPILING_ERROR_SIG contains:

process COMPILING_ERROR_LIS=
 { ?
 ! }
(| COMPILING_ERROR(4, 3, 3.0 e 0,[[1]: 1.0 e 0,[2]: 2.0 e 0,[3]:

3.0 e 0],[[1]: 3.0 e 0,[2]: 2.
0 e 0,[3]: 1.0 e 0])

 |)
where
process COMPILING_ERROR=

(integer N, M;
 real B0;
 [N-1]real B;
 [M]real A)
{ ? real E
 ! real S }

SIGNAL MANUAL 61

(S:= (E*B0)+PRODSCAL(N-1, B){ E }+PRODSCAL(M, A)
{ S })@ S

where
process PRODSCAL=

%** WARNING: Output ZERO not declared in the process
interface

%(integer N;
 [N]real COEFF)
{ ? real E
 ! real PRSC }
%** WARNING: Creation of an instance of ZERO
%(| %** ERROR (ref 1): disagreement between dimen

sions of the operands
** ERROR (ref 2): disagreement between dimen

sions of the operands
%WE:= E $1 window (N+1)
| %** WARNING: Signal or parameter not declared
 %ZERO:= 0.0 e 0
|
 array I to N
 of PS:= PS+(WE[(N+1)-I]*COEFF[I])
 with PS[0]:ZERO
 end
| PRSC:= PS[N]
 |)

where
 %** ERROR: cf message No 1
 ** ERROR: cf message No 2
 %[N]real WE init[{ to N }: 0.0 e 0], PS

end
end

end

A-1.3 Result of the compiling

In case of success in the previous steps and if the option tra is given, a program
equivalent to the program EXAMPLE (where the formal parameters have been sub-
stituted by their values) is produced in the file EXAMPLE_TRA.SIG. This program
has the same interface as the program EXAMPLE. Its body has the following struc-
ture:

62 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

• it contains a composition of processes here called clock-processes; each clock-
process is constituted

- of a clock definition H_i_H :=

- of a synchronization instruction synchro{H_i_H,
S_1,..., X_3} giving the list S_1,..., X_3 of external or
local signals synchronous to H_i_H

- of a call to a process with the same name H_i_H;

• it contains the declarations of the local signals communicated between its clock-
processes;

• it contains the declarations of the models of the local processes H_i_H called in
its process expression;

• Anomaly: The presence of arrays as parameters makes the program produced by
the compiler syntactically incorrect .

Each model H_i_H contains, according to the same structure:

• the set of signals (associated with their processing) which have a clock H_i_H or
a sub-clock of H_i_H;

• the set of clock-processes associated with the sub-clocks of H_i_H.

A clock H is a sub-clock of H_i_H if it is a function of boolean signals which have
H_i_H as clock, or the clocks of which are (recursively) a sub-clock of H_i_H.

The failure of clock calculus results in a set of more than one clock which are not sub-
clocks of a common one (there are several “main clocks”). If constraints are never-
theless expressed on these clocks, they appear under the form of synchronization in-
structions between clocks; in this case, there is not generation of sequential code.

A-1.4 Failure at the generation of code

Except for the case above, the production of FORTRAN code or C (if it is required)
can fail because of a cycle in the dependencies of data or of clocks. In this case, one
of these two messages below are displayed on the screen:

** ERROR: Dependency cycle in the graph

** ERROR: Clocks constraints

Ei

SIGNAL MANUAL 63

The file EXAMPLE_CYC.SIG contains the list of signals (or clocks), because of
which the generation has become impossible; these are the signals (or the clocks) that
belong to the cycle.

Example of a cycle on the signals:

process CYCLE_SIG=
{ ? integer a
 ! integer s }
 (s := a + s)@s

end

The file CYCLE_SIG_CYC.SIG contains:

process CYCLE_SIG_CYC=
{ ?
! }
(| (| S_2--> S_2 |)
 | (H_6_H:= event H_6_H)@ H_6_H
 |)

end

Example of a cycle on the clocks:

process CYCLE_CLOCK=
{ ? event OK
 ! integer N }
(| ZN:= N $1
 | N:= (ZN+1)when OK
 |)
where integer ZN init 0

end

The file CYCLE_CLOCK_CYC.SIG contains:

process CYCLE_CLOCK_CYC=
{ ? ! }
(| (| H_7_H--> H_7_H |)
 | (H_7_H:= OK_1 when H_7_H)@ H_7_H
 |)

end

64 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

A-1.5 Result of the generation of FORTRAN code

The generation of code produces the following files:

• EXAMPLE_S.f contains a subprogram SEXAM composed by the following ele-
ments:

- the local FORTRAN declarations corresponding to the internal signals

- an input point IEXAM called at the beginning of the execution

- an input point CEXAM called at every logical instant with a clock parameter which pro-
vokes the stop of the execution when it fails

- the calls of the external functions realized with help of the instruction FORTRAN CALL

• EXAMPLE_E.f contains

- a procedure BEGIO to open the input-output files

- a procedure RSIG to read the data of the signal SIG in the file RSIG, for each input sig-
nal; at the end of the input, the clock to stop the execution is set to false

- a procedure WSIG to write the calculated values of the signal SIG in the file WSIG, for
each output signal

-if needed (if there is not only one “main clock”), a procedure HSIG to read the boolean
signal associated with the input signal SIG, which indicates the instants where the signal
SIG is present (the value of the boolean is true) and the instants where the signal SIG is
absent (the value of the boolean is false).

- a procedure ENDIO to close input-output files

• EXAMPLE_M.f contains

- the call to the initialization BEGIO of the input-output files

- the call to the initialization IEXAM

- an iteration of the call to CEXAM until the call result is false

- the call to the closing ENDIO of the input-output files

A-1.6 Result of the generation of C code

The generation of code produces the following files:

• EXAMPLE_S.c contains

- the declarations corresponding to the signals

SIGNAL MANUAL 65

- a function iexam called at the beginning of the execution

- a function cexam called at every logical instant as long as it gives the value true and
which provokes the stop of the execution when it gives the value false

• EXAMPLE_E.c contains

- a procedure begio to open the input-output files

- a procedure rsig to read the data of the signal sig in the file RSIG.dat, for each input sig-
nal; at the end of the input, the clock to stop the execution is set to false

- a procedure wsig to write the calculated values of the signal sig, in the file WSIG.dat,
for each output signal

-if needed (if there is not only one “main clock”), a procedure hsig to read the boolean
signal associated with the input signal sig in the file HSIG.dat. This boolean indicates the
instants where the signal sig is present (the value of the boolean is true) and the instants
where the signal sig is absent (the value of the boolean is false).

- a procedure endio to close the input-output files

• EXAMPLE_M.c contains

- the call to the initialization begio of the input-output files

- the call to the initialization iexam

- an iteration of the call to CEXAM until the call result is false

- the call to the closing ENDIO of the input-output files

A-1.7 Result with the option sep

The compiler produces the transitive closure of the graph which represents the
program; this transitive closure is calculated between the inputs and outputs
of the program.
Two types of elementary processes are used:

• synchro{H,A} which specifies that H is the clock of A

• (X --> Y) when H which specifies the dependency of X

process ASYNCDEF_TRA=
{ ? integer A_1, B_2
 ! integer X_3 }

(| (| H_5_H:= event A_1|)
 | (| H_6_H:= event B_2 |)
 | (| H_8_H:= when((not H_5_H)default H_6_H)|)
 | (| H_9_H:= H_5_H default H_6_H

| synchro { H_9_H, X_3 }

66 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

| X_3:= (A_1 when H_5_H)default(B_2 when H_8_H)
|)

|)
 where
 event H_9_H, H_8_H, H_6_H, H_5_H

end

process ASYNCDEF_SEP=
{ ?
 ! }
(| synchro { H_5_H, A_1 }
 | synchro { H_6_H, B_2 }
 | (A_1--> X_3) when H_5_H
 | (B_2--> X_3) when H_8_H
 | synchro { H_9_H, X_3 }
 |)

end

A-2 A complete example: Recursive filter-
ing

Here we present a program of recursive filtering written in SIGNAL and the different
products of the compiling.

A-2.1 The SIGNAL program

process FILTER_REC_2 =
(integer N, M ;
 real B0 ;
 [N-1] real B ;
 [N] real A)
{ ? real E
 ! real S
}
(| S:= (E * B0) +

PRODSCAL (N-1,B) {E}
+
PRODSCAL (M, A) {S}

|) @ S
where

SIGNAL MANUAL 67

process PRODSCAL =
(integer N ;
[N] real COEFF)
{ ? real E

! real PRSC
}
(| WE := E $ 1 window N
 | ZERO := 0.0e 0
 | array I to N

of PS := PS + (WE [(N + 1) -I] * COEFF [I])
with PS [0] : ZERO

 end
 | PRSC := PS [N]
 |)
where

[N] real WE init [{ to N } : 0 .0e 0] , PS ;
real ZERO

end
end

A-2.2 The parameters

[OL_E_SIGN]
4,3,3.0,[[1]:1.0,[2]:2.0,[3]:3.0],[[1]:3.0,[2]:2.0,[3]:1.0]

A-2.3 The SIGNAL program produced by the compiler

process FILTER_REC_2_TRA =
{? real E_6
 ! real S_7
}
(| (| H_9_H := event E_6

 | synchro {H_9_H, S_7 }
 | H_9_H ()
 |)

|)
where event H_9_H
process H_9_H =

{ ? event H_9_H ;
 real E_6

68 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

 ! real S_7
}
(| synchro {H_9_H, PRSC_8, WE_14, PS_15, ZERO_16,

PRSC_18, WE_23, PS_24, ZERO_25}
| (| WE_23 := S_7 $ 1 window 3

 | WE_14 := E_6 $ 1 window (4 - 1)
 | ZERO_25 := 0. 0e 0 when H_9_H
 | array I_26 to 3

of PS_24 := (PS_24 + (WE_23 [(3 + 1) - I_26 *
[[1]: 3. 0e 0, [2]: 2. 0e 0, [3]: 1. 0e 0] [I_26
])) when H_9_H

with PS_24 [0]: ZERO_25
end
| PRSC_18 := PS-24 [3] when H_9_H
| ZERO_16 := 0. 0e 0 when H_9_H
| array I_17 to 4 - 1

of PS_15 := (PS_15 + (WE_14 [((4-1) + 1 - I_17] *
[[1]: 1. 0e 0, [2]: 2. 0e 0, [3]: 3. 0e 0] [I_17
])) when H_9_H

with PS_15 [0]: ZERO_16
end
| PRSC_8 := PS_15 [4 - 1] when H_9_H
| S_7 := ((E_6 * 3. 0e 0) + PRSC_8 + PRSC_18) when

H_9_H
|)

|)
where

real PRSC_8, ZERO_16, PRSC_18, ZERO_25 ;
[3] real WE_14 init [{XZX_11 to 4 - 1} : 0. 0e 0] ;
[3] real PS_15 ;
[3] real WE_23 init [{XZX_20 to 3} : 0. 0e 0] ;
[3] real PS_24 ;

end
end

A-2.4 The FORTRAN programs produced by the compiler

A-2.4 A The main program

C

SIGNAL MANUAL 69

LOGICAL H
 H = .TRUE.
 CALL BEGIO
CALL IFILT

1 CALL CFILT(H)
IF(H) GOTO 1
CALL ENDIO
 END

A-2.4 B The input-output subprogram

C
SUBROUTINE EFILT
LOGICAL H4H,H9H
INTEGER IE6
REAL TE6(0:3)
INTEGER IS7
REAL TS7(0:3),PRSC8
INTEGER XZX11,IWE14
REAL PS15(0:4),ZER16
INTEGER I17
REAL PRS18
INTEGER XZX20,IWE23
REAL PS24(0:4),ZER25
INTEGER I26

C Input-output initializations
INPUT BEGIO
OPEN (10,FILE = ‘RE’,STATUS = ‘OLD ‘)
REWIND (10)
OPEN (11,FILE = ‘WS’,STATUS = ‘NEW ‘)
REWIND (11)
RETURN

C Close input-output files
INPUT ENDIO
CLOSE (10)
CLOSE (11)
RETURN

C Read input : E
INPUT RE(TE6,IE6,H4H)
READ (10,*,END = 1) TE6(IE6)
RETURN

C Write output : S
INPUT WS(TS7,IS7)

70 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

WRITE (11,*) TS7(IS7)
RETURN

1 H4H= .FALSE.
END

A-2.4 C The treatment subprogram
C

 SUBROUTINE SFILT
C Declaration of signals

 LOGICAL H4H
 REAL A5(1:3),B4(1:3)
 INTEGER IE6
 REAL TE6(0:3)
 INTEGER IS7
 REAL TS7(0:3),PRSC8
 INTEGER XZX11,IWE14
 REAL PS15(0:4),ZER16
 INTEGER I17
 REAL PRS18
 INTEGER XZX20,IWE23
 REAL PS24(0:4),ZER25
 INTEGER I26

C Declaration of clocks
 LOGICAL H9H

C Body of the initialization procedure
 INPUT IFILT
 A5(1)=3.0E0
 A5(2)=2.0E0
 A5(3)=1.0E0
 B4(1)=1.0E0
 B4(2)=2.0E0
 B4(3)=3.0E0
 IE6=2
 IS7=2
 IWE14=0
 DO 1 XZX11=1,3

1 TE6(MOD(IWE14+ XZX11- 1,4))=0.0E0
 IWE14=3
 IWE23=0
 DO 2 XZX20=1,3

2 TS7(MOD(IWE23+ XZX20- 1,4))=0.0E0
 IWE23=3
 ZER16=0.0E0

SIGNAL MANUAL 71

 ZER25=0.0E0
 RETURN

C Body of the program
INPUT CFILT(H4H)
 H9H= .TRUE.
 IF (IE6 .EQ. 3)THEN
 IE6=0
 ELSE
 IE6=IE6+ 1
 ENDIF
 CALL RE(TE6,IE6,H4H)
 IF (.NOT. (H4H))RETURN
 IF (IWE14 .EQ. 3)THEN
 IWE14=0
 ELSE
 IWE14=IWE14+ 1
 ENDIF
 PS15(0)=0.0E0
 DO 3 I17=1,3
 PS15(I17)=(PS15(I17- 1))+ ((TE6(MOD(IWE14+ ((3)+ 1)- (I17)- 1,4)))
 &* (B4(I17)))

3 CONTINUE
 PRSC8=PS15(3)
 IF (IWE23 .EQ. 3)THEN
 IWE23=0
 ELSE
 IWE23=IWE23+ 1
 ENDIF
 PS24(0)=0.0E0
 DO 4 I26=1,3
 PS24(I26)=(PS24(I26- 1))+ ((TS7(MOD(IWE23+ ((3)+ 1)- (I26)- 1,4)))
 & * (A5(I26)))

4 CONTINUE
 PRS18=PS24(3)
 IF (IS7 .EQ. 3)THEN
 IS7=0
 ELSE
 IS7=IS7+ 1
 ENDIF
 TS7(IS7)=((TE6(IE6))* (3.0E0))+ (PRSC8)+ (PRS18)
 CALL WS(TS7,IS7)
 RETURN
 END

72 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

A-2.5 The C programs produced by the compiler

A-2.5 A The main program

typedef int event;
typedef int logical;

#define TRUE 1
#define FALSE 0

extern logical cfilter_rec_2();
extern void ifilter_rec_2();
extern void begio();
extern void endio();

extern int main()
{

 begio();
 ifilter_rec_2();
while(cfilter_rec_2());
endio();

}

A-2.5 B The input-output subprogram

#include <stdio.h>

typedef int event;
typedef int logical;

#define TRUE 1
#define FALSE 0

FILE
 *fre_6,
 *fws_7;

int i01, i02, i03, i04, i05, i06, i07, i08, i09, i010;

extern void begio()
{

SIGNAL MANUAL 73

fre_6 = fopen(“RE.dat”,”r”);
fws_7 = fopen(“WS.dat”,”w”);

}

extern void endio()
{

close(fre_6);
fclose(fws_7);

}

extern void re_6(te_6,ie_6,h_4_h)
float te_6[4];
int ie_6;
event *h_4_h;
{

 *h_4_h = (fscanf(fre_6,”%f”,&te_6[ie_6])!=EOF);
}

extern void ws_7(ts_7,is_7)
float ts_7[4];
int is_7;
{

 fprintf(fws_7,”%f\n”,ts_7[is_7]);
}

A-2.5 C The treatment subprogram

typedef int event;
typedef int logical;

#define TRUE 1
#define FALSE 0

extern void re_6();

extern void ws_7();

/*C Declaration of signals */

float a_5[4], b_4[4];

int ie_6;

74 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

float te_6[4];

int is_7;
float ts_7[4];

float prsc_8;
int xzx_11, iwe_14;
float ps_15[5], zero_16;
int i_17;
float prsc_18;
int xzx_20, iwe_23;
float ps_24[5], zero_25;
int i_26;

int i01, i02, i03, i04, i05, i06, i07, i08, i09, i010;

/*C Declaration of clocks */

event h_9_h;

event h_4_h;

/*C Body of the program */

extern void ifilter_rec_2()
{

 a_5[1] = 3.0e0;
 a_5[2] = 2.0e0;
 a_5[3] = 1.0e0;
 b_4[1] = 1.0e0;
 b_4[2] = 2.0e0;
 b_4[3] = 3.0e0;
 ie_6 = 2;
 is_7 = 2;
 iwe_14 = 0;
 for (xzx_11 = 1;xzx_11<=3;xzx_11++)

te_6[(iwe_14+xzx_11-1)%4] = 0.0e0;
iwe_14 = -1;
 iwe_23 = 0;
 for (xzx_20 = 1;xzx_20<=3;xzx_20++)

 ts_7[(iwe_23+xzx_20-1)%4] = 0.0e0;

SIGNAL MANUAL 75

 iwe_23 = -1;
 zero_16 = 0.0e0;
 zero_25 = 0.0e0;

}

/* Body of the program */

extern logical cfiltre_rec_2()
{

 h_9_h = TRUE;
 ie_6 = (ie_6+1)%4;
 re_6(te_6,ie_6,&h_4_h);
 if (!h_4_h) return FALSE;

 iwe_14 = (iwe_14+1)%4;
ps_15[0] = 0.0e0;
for (i_17 = 1;i_17<=3;i_17++)

 {
ps_15[i_17] = ps_15[i_17-1] + te_6[(iwe_14+((3 + 1) - i_17)-

1)%4] * b_4[i_17];
 }

 prsc_8 = ps_15[3];
 iwe_23 = (iwe_23+1)%4;
ps_24[0] = 0.0e0;
 for (i_26 = 1;i_26<=3;i_26++)

 {
 ps_24[i_26] = ps_24[i_26-1] + ts_7[(iwe_23+((3 + 1) - i_26)-

1)%4] * a_5[i_26];
}

 prsc_18 = ps_24[3];
is_7 = (is_7+1)%4;
 ts_7[is_7] = (te_6[ie_6] * 3.0e0 + prsc_8) + prsc_18;
 ws_7(ts_7,is_7);

 return TRUE;
}

76 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

A-3 An example of hierarchy

Here we present a program of a mouse handler written in SIGNAL and the SIGNAL
program resulting from the compiling.

A-3.1 The SIGNAL program

 process MOUSE=
{ ? event CLICK, TOP
 ! integer M }
(| (| N:= (0 when RESET)default(ZN+1)

 | synchro { N, TOP }
 | ZN:= N $1
 | RESET:= when(ZN=4)
 |)

 | (|X:= (0 when RESET)default NEW_X
 | synchro { X, CLICK default RESET }
 | NEW_X:= MIN{ 2, ZX+1 }
 | ZX:= X $1
 |)

| (| M:= (NEW_X when CLICK when RESET)default(X when RESET)|)
|)

where
integer X, NEW_X, ZX init 0, N, ZN init 0;
event RESET

 function MIN=
{ ? integer U, V
 ! integer V }

end
end

A-3.2 The SIGNAL program produced by the compiler

process MOUSE_TRA=
{ ? event CLICK_1, TOP_2
 ! integer M_3 }
(| (| synchro { TOP_2, TOP_2 }

 | TOP_2()
 |)

 | (| H_14_H:= when((not RESET_15)default CLICK_1) |)

SIGNAL MANUAL 77

| (| synchro { CLICK_1, CLICK_1 } |)
 | (| H_22_H:= RESET_15 when CLICK_1 |)
| (| H_27_H:= when((not H_22_H)default RESET_15) |)
 | (| H_29_H:= RESET_15 default CLICK_1

| synchro { H_29_H, X_10, NEW_X_11 }
| H_29_H()
|)

|)
where

event H_29_H, H_27_H, H_22_H, H_14_H, RESET_15;
integer X_10, NEW_X_11

process TOP_2=
{ ? event H_27_H, H_22_H;

 event TOP_2;
 integer X_10, NEW_X_11

 ! event RESET_15;
integer M_3 }

(| synchro { TOP_2, N_13, ZN_14 }
 | (| H_8_H:= when((not RESET_15)default TOP_2) |)
 | (| RESET_15:= when(ZN_14=4)

 | synchro { RESET_15, M_3 }
 | M_3:= (NEW_X_11 when H_22_H)default(X_10 when H_27_H)
 |)

 | (| ZN_14:= N_13 $1
| N_13:= (0 when RESET_15)default((ZN_14+1)when H_8_H)
|)

 |)
where

event H_8_H;
integer N_13, ZN_14 init 0

 end;
process H_29_H=

{ ? event H_29_H, H_14_H, RESET_15
 ! integer X_10, NEW_X_11 }
(| synchro { H_29_H, ZX_12, V_18, U_19 }
 | (| ZX_12:= X_10 $1

 | X_10:= (0 when RESET_15)default(NEW_X_11 when H_14_H)
 | V_18:= (ZX_12+1)when H_29_H
 | U_19:= 2 when H_29_H
 | NEW_X_11:= MIN{ U_19, V_18 }
 |)

|)
where integer ZX_12 init 0, V_18, U_19

78 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

end;
function MIN=

{ ? integer U, V
! integer V }

end

SIGNAL MANUAL 79

Appendix B. The messages
from the compiler
B-1 Principles

The messages sent by the compiler are either errors or warnings, prefixed respective-
ly by “** ERROR:” and “** WARNING:”. They are given under one of these fol-
lowing forms:

* simple message, as:
“** ERROR: constant not allowed”

* message specified by the name of the signal, parameter, process,...causing the er-
ror, such as:
“** ERROR Double declaration of TOTO”

*set of three messages concerning the errors in a process call as in the following ex-
ample:

process P=
{ ? %** ERROR: cf message No 1

%logical B
 ! integer C }
%** ERROR (ref 1): disagreement between type and use of

the signal
%C := PP {B}
where
process PP=

{ ? integer I
 ! integer Z }
%** ERROR: disagreement between types of the

operands
%Z := I**2

end
end

- the first message is attached to the declaration of the concerned signal.
- the second one is attached to the call of the process.

80 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

- the third one is attached to the instruction in the called process where the signal is
incorrectly used.

This appendix contains the list of messages, with comments if necessary.

B-2 Errors

B-2.1 Syntactical analysis

The errors found during the syntactical analysis appear under the following form:
Syntax Error code line n
in which n is the number of the erroneous line and code refers the erroneous syntac-
tical structure according to the coding below:

* 10: syntax error in a MODEL
* 13: syntax error in a model INTERFACE
* 14: syntax error in a P-EXPR (process expression)
* 16: syntax error in an S-DECLARATION (signals declaration)
* 54: syntax error in an S-EXPR (signals expression)

B-2.2 Compiler call

Conflicting number of parameters: compiler call with an incorrect file of param-
eters.

B-2.3 Declaration of a MODEL

Process XXX undeclared: process or external function undeclared.

Incorrect process declaration: needs input or output

Parameters not allowed in an external process declaration: an external process
is a signal function which cannot have any parameter.

Parameter not declared: an identifier has been determined as a parameter and is
not declared.

Conflicting number of input signals

Input XXX not declared in the process interface

Conficting number of ouput signals

SIGNAL MANUAL 81

Output XXX not defined in the process body interface

B-2.4 S-DECLARARATION

Signal-index identifier conflict: XXX

Double declaration of XXX

B-2.5 P-EXPR

Conflicting output names : XXX

Conflict while relabelling a process array: opposite connections of signals in a
process array (X and Y in the following example).
example:
array I to N of

with X[.]:B, Y[0]:A end

Not an output: Closing operation on an input without output with the same name,
as in the following example:

(C := B*2) @ B

B-2.6 S-EXPR

Identifier conflict: use of a signal (resp. a parameter or an index), in a context
where a signal (resp. a parameter or an index) is forbidden.

Expected a process call: in the context of a multiple definition, the right term must
be a call.

B-2.7 Dimensions

Dimensions of XXX incompatible with its use

Dimensions of operands incompatible: for instance, the sum of two arrays which
do not have the same dimension.

Disagreement between types of the concatenation operands: only a Vector-
Name is allowed as argument of a concatenation.

82 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

Scalar operands expected for the relation expression: the arrays are not allowed
in a relation expression.

B-2.8 Types

Disagreement between type and use of the signal

Disagreement between dimensions of operands

XXX, used in a process array, is not defined

B-2.9 Constant integers

Process array and data dimension conflict for XXX

Strictly positive integer expression expected

Disagreement between the iteration bound on XXX and its step size

Step size of iteration on XXX equal to zero

Integer type expected

B-2.10 Clocks

Constant not allowed: the current context does not allow the use of a constant.

Cannot define the clock of the expression: the use of a constant in a context in
which no clock can be associated, for instance X:= 3 cell C.

B-2.11 Diverse

Error: error caused by a division by zero
 or
 by a cycle in the process instantiations

B-3 Warnings

B-3.1 MODEL declaration

SIGNAL MANUAL 83

$ External function lacks input

$ Input XXX unused in the process body

$ Output XXX not declared in the process interface

B-3.2 S-DECLARATION

$ Identical name for output and local signal (local ignored)

$ Signal or parameter not declared

B-3.3 P-EXPR

$ Unknown output: masking of an output which does not exist.
$ Double relabelling of an input: for example, relabelling X[.]:X in a process array.

B-3.4 S-EXPR

$ Useless operation: for instance, P!A:B where A is not an output of P.

B-3.5 Dimensions

$ Range of an index of XXX can’t be verified: an array index is a signal or an arith-
metic expression the bounds of which cannot be determined.

$ The bounds on XXX cannot be controlled: iteration expression the bounds of
which cannot be determined.

$ A vector element cannot be controlled: an index of a vectorial element is either
a signal or an arithmetic expression where the bounds cannot be determined.

B-3.6 Diverse

$ The two operands have no type (no verification possible)

$ The initialization of XXX is not necessary: initialization of XXX not used.

$ XXX should be initialized: XXX is the result of a delay expression ($ or window)
or of a cell.

$ Creation of an instance of XXX: a signal is used but not declared.

84 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

SIGNAL MANUAL 85

Appendix C. SIGNAL
grammar
C-1 The equations

C-1.1 The expressions on equations

As first profile operators argument (?, !, /, !!, @), a signal definition (:=) must be sur-
rounded by parentheses.

* Context free grammar P-EXPR

P-EXPR ::=
* Signal-name := S-EXPR *
* { { Signal-name , ... } } := S-EXPR *
* Model-name ([{ S-EXPR , ... }]) *
* Model-name ([{ S-EXPR , ... }]) { [{ S-EXPR , ... }] } **
* Model-name ([{ S-EXPR , ... }]) *
* synchro { { S-EXPR , ... } } *
* (P-EXPR) *
* (| { P-EXPR | ... } |) *
* P-EXPR ? { Signal-name : Signal-name , ... } *
* P-EXPR ! { Signal-name : Signal-name , ... } *
* P-EXPR / { Signal-name , ... } *
* P-EXPR !! { Signal-name , ... } *
* P-EXPR @ { Signal-name , ... } *
* array I-ARRAY of S-EXPR [with { CONNECTION , ... }] end *

I-ARRAY ::=
* Index-name to S-EXPR *

CONNECTION ::=
* Signal-name *
* Signal-name [0]: Signal-name *
* Signal-name [.]: Signal-name *

C-1.2 Declaration of equation models

86 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

* Context free grammar MODEL

MODEL ::=
* function Model-name = INTERFACE *
* process Model-name = INTERFACE P-EXPR

[where [{ S-DECLARATION ; ...}] [{ MODEL ; ... }]] end *

C-1.3 Interface of a model

* Context free grammar INTERFACE

INTERFACE ::=
* [([{ S-DECLARATION ; ...}])]

 { ? [{ S-DECLARATION ; ...}]
! [{ S-DECLARATION ; ...}] } *

C-2 The signals

C-2.1 The signal and parameter declarations

* Context free grammar S-DECLARATION

S-DECLARATION ::=
* { Signal-name [init S-EXPR] , ...} *
* SIGNAL TYPE { Signal-name [init S-EXPR] , ...} *

SIGNAL-TYPE ::=
* event *
* Element-type *
* [{ S-EXPR , ... }] Element-type *

Element-type ::=
* logical *
* Numerical-type *

Numerical-type ::=
* integer *
* real *
* dpreal *
* complex *

SIGNAL MANUAL 87

Scalar-type ::=
* Synchronization-type *
* Numerical-type *

Synchronization-type ::=
* event *
* logical *

C-2.2 The expressions on signals

An elementary expression (ELEMENTARY-S-EXPR) can be argument of a scalar
expression (SCALAR-S-EXPR) or of an array expression (ARRAY-S-EXPR)
without being within parentheses.

* Context free grammar S-EXPR

S-EXPR ::=
*ELEMENTARY- S-EXPR *
* SCALAR-S-EXPR *
* ARRAY-S-EXPR *

ELEMENTARY-S-EXPR ::=
* Signal-name [[{ S-EXPR , ... }]] *
* Model-name [({ S-EXPR , ... })] { [{ S-EXPR , ... }] } *
* (S-EXPR) *

C-2.2 A The scalar expressions

They appear in decreasing priority order except the dynamical expressions which
cannot be direct argument of unary arithmetic operators and which allow as second
integer argument these same operators.

* Context free grammar SCALAR-S-EXPR

SCALAR-S-EXPR ::=
* DYNAMICAL-S-EXPR *
* ARITHMETIC-S-EXPR *
* BOOLEAN-S-EXPR *
* TEMPORAL-S-EXPR *

88 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

#TEMPORAL-S-EXPR ::=
* Signal-name $ S-EXPR *
* Signal-name [$ S-EXPR] window S-EXPR *

ARITHMETIC-S-EXPR ::=
* Integer-cst *
*REAL- CST *
* COMPLEX-CST *
* + S-EXPR *
* - S-EXPR *
* S-EXPR * S-EXPR *
* S-EXPR / S-EXPR *
* S-EXPR ** S-EXPR *
* S-EXPR + S-EXPR *
* S-EXPR - S-EXPR *

BOOLEAN-S-EXPR ::=
* true *
* false *
* S-EXPR = S-EXPR *
* S-EXPR /= S-EXPR *
* S-EXPR > S-EXPR *

* S-EXPR >= S-EXPR *
* S-EXPR < S-EXPR *
* S-EXPR <= S-EXPR *
* not S-EXPR *
* S-EXPR or S-EXPR *
* S-EXPR and S-EXPR *

TEMPORAL-S-EXPR ::=
* # S-EXPR [from S-EXPR] *
* # S-EXPR after S-EXPR *
* S-EXPR default S-EXPR *
* S-EXPR when S-EXPR *
* S-EXPR cell S-EXPR *
* event S-EXPR *
* when S-EXPR *

C-2.2 B The array expressions

* Context free grammar ARRAY-S-EXPR

SIGNAL MANUAL 89

ARRAY-S-EXPR ::=
* { Signal-name || ... } *
* [{ ITERATION , ... }] *

ITERATION ::=
* [{ S-EXPR , ... }] : S-EXPR *
* { { [Index-name] [in S-EXPR] [to S-EXPR] [step S-EXPR] , ... }

} : [[{ S-EXPR , ... }]] : S-EXPR *

90 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

SIGNAL MANUAL 91

Table of contents

Chapter I. Introduction .5
I-1 Main features of the language 5

I-1.1 Signals 5
I-1.2 Events 5
I-1.3 Models 5
I-1.4 Causal relations 6

I-2 Presentation form 6
I-3 Lexical units 8

I-3.1 Characters 8
I-3.2 Vocabulary 9

I-4 Coding of the synchronization 10

Chapter II. Value domains of signals .11
II-1 Scalar types 11

II-1.1 Synchronization types 11
II-1.2 Integer types 12
II-1.3 Real types 13
II-1.4 Complex type 15

II-2 Array types 16
II-3 Structure of the set of types 17

II-3.1 The set of types 17
II-3.2 Order on the types 18
II-3.3 Conversions 19

II-4 Declaration of signal identifiers 19

Chapter III. Expressions of signals .21
III-1 Equations to define signals 21

III-1.1 Elementary equations 21
III-1.2 Composition of signal definitions 23

III-2 Elementary expressions 23
III-2.1 Constant expressions 23
III-2.2 Occurrence of signal identifiers 24
III-2.3 Index 24
III-2.4 Model invocation 25

III-3 Arithmetical expressions 26

92 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

III-3.1 Addition, substraction, multiplication, division 27
III-3.2 Power 28
III-3.3 The unary operators (+ and -) 28

III-4 Boolean expressions 29
II-4.1 Expressions of booleans 29
III-4.2 Relations 30

III-5 Temporal expressions 31
III-5.1 Merge 32
III-5.2 Extraction 33
III-5.3 Signal clock 34
III-5.4 Clock extraction 34
III-5.5 Equations of clocks 35
III-5.6 Counter 36

III-6 Dynamic expressions 41
III-6.1 Delay 41
III-6.2 Sliding Window 42

III-7 Array expressions 43
III-7.1 Concatenation 44
III-7.2 Iteration expression 44
III-7.3 Extensions of scalar expressions 46

III-8 Expressions on signals 46
III-8.1 Scalar expressions 46
III-8.2 Embedding of expressions on signals 47

Chapter IV. Expressions on processes . 49
IV-1 Elementary process 49
IV-2 Composition 49
IV-3 Profile 50

IV-3.1 Renaming 50
IV-3.2 Restriction 51
IV-3.3 Closing 52

IV-4 Array of processes 52
IV-5 Process model 54

IV-5.1 Local declarations of the model process 55
IV-5.2 The interface of a model 55
IV-5.3 Local signals 56

Appendix A. Using the compiler . 57
A-1 Construction of a program 57

A-1.1 Failure during the syntactical analysis 59
A-1.2 Failure during the analysis of contextual properties 59

SIGNAL MANUAL 93

A-1.3 Result of the compiling 61
A-1.4 Failure at the generation of code 62
A-1.5 Result of the generation of FORTRAN code 64
A-1.6 Result of the generation of C code 64
A-1.7 Result with the option sep 65

A-2 A complete example: Recursive filtering 66
A-2.1 The SIGNAL program 66
A-2.2 The parameters 67
A-2.3 The SIGNAL program produced by the compiler 67
A-2.4 The FORTRAN programs produced by the compiler 68
A-2.5 The C programs produced by the compiler 72

A-3 An example of hierarchy 76
A-3.1 The SIGNAL program 76
A-3.2 The SIGNAL program produced by the compiler 76

Appendix B. The messages from the compiler .79
B-1 Principles 79
B-2 Errors 80

B-2.1 Syntactical analysis 80
B-2.2 Compiler call 80
B-2.3 Declaration of a MODEL 80
B-2.4 S-DECLARARATION 81
B-2.5 P-EXPR 81
B-2.6 S-EXPR 81
B-2.7 Dimensions 81
B-2.8 Types 82
B-2.9 Constant integers 82
B-2.10 Clocks 82
B-2.11 Diverse 82

B-3 Warnings 82
B-3.1 MODEL declaration 82
B-3.2 S-DECLARATION 83
B-3.3 P-EXPR 83
B-3.4 S-EXPR 83
B-3.5 Dimensions 83
B-3.6 Diverse 83

Appendix C. SIGNAL grammar .85
C-1 The equations 85

C-1.1 The expressions on equations 85
C-1.2 Declaration of equation models 85

94 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

C-1.3 Interface of a model 86
C-2 The signals 86

C-2.1 The signal and parameter declarations 86
C-2.2 The expressions on signals 87

Éditeur

Inria, Domaine de Voluceau, Rocquencourt, BP 105 LE CHESNAY Cedex (France)

ISSN 0249-6399

Unité de recherche INRIA Lorraine, technopôle de Nancy-Brabois, 615 rue du jardin botanique, BP 101, 54600 VILLERS-LÈS-NANCY
Unité de recherche INRIA Rennes, IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex

Unité de recherche INRIA Rhône-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex1
Unité de recherche INRIA Rocquencourt, domaine de Voluceau, Rocquencourt, BP 105, LE CHESNAY Cedex

Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

96 P. BOURNAI, B. CHÉRON, T. GAUTIER, B. HOUSSAIS & P. LE GUERNIC

