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RESUME :

Une procédure heuristique pour trouver l'ordonnancement qui minimise le temps
total de fabrication d'un ensemble de produits dans un systéme linéaire est proposée. Ce
probléme est NP-complet. Comparé aux algorithmes existants, celui que nous proposons
conduit a de meilleures performances.

Nous proposons également un algorithme pour minimiser le nombre de palettes
nécessaires pour un ordonnancement et une performance donnée.
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ABSTRACT:

A heuristic procedure is developed for minimizing makespan in flow-shop scheduling
problems.

In comparison with current algorithms, our algorithm seems to result in an improved
makespan with a small additional computational effort.

An algorithm is also developed to minimize the required number of pallets for a given
makespan.
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1. INTRODUCTION

Flow-shop scheduling problems form an important class of scheduling problems. A
flow-shop consists of m different machines arranged in series. A flow-shop scheduling
problem considers a set of n jobs which must all be processed using the machines in the
order of the series. On any given machine, two different jobs may require different
processing times. Furthermore, on two different machines, the sequence of jobs
proccessed is the same. A schedule is defined by specifying a sequence which the jobs
must follow on the machines. The choice of a schedule depends on the type of the
objective function of interest. Several different objective functions have been treated in
the literature.

We are interested in minimizing the duration required to complete the given set of
jobs. This duration, commonly known as the makespan, depends on the schedule. The
problem is known as n/m/F/Cmax in the literature. It can be solved in O(n log n) time
when m = 2 (see [9]) and is known to be NP-hard for m = 3 (see [11] and [17]). In the case of
n jobs and m machines, we then have to consider, at least implicitly, n! different
schedules. However, some results which reduce this number are known (see in
particular [3]).

This problem has been extensively studied in the literature (see [2], (4], [6-8], [10], [12-16],
[18] and [19]). Among these algorithms, the one proposed by CAMPBELL, DUDEK and
SMITH (see [2]), commonly known as CDS, is used as a bench-mark to evaluate the
heuristics. In this paper, we compare our algorithm with CDS and the most recently
published one PHD (Procédure de HAN et DEJAX, see [7]).

In what follows, we propose a heuristic algorithm which provides a near-optimal
solution to the problem. Another important goal is the minimization of the in-process
inventory for a given value of the makespan. In the case of a Flexible Manufacturing
System (FMS), the in-process inventory level is related to the amount of transportation
facilities required (number of pallets or number of carts for instance). Moreover these
facilities are also very expensive. We propose a fast algorithm which, for a given
makespan and the job sequence, minimizes the required number of pallets by starting the
processing of jobs on the first machine as late as possible.

This paper is organized in three sections. The second section shows how to compute
the makespan for a given job sequence. We then point out the fact that the makespan can
be interpreted as the longest path belonging to a particular set of paths. We also provide a
proof of this result for the sake of completeness. This result leads to a heuristic
algorithm. We finally give the procedure to obtain the minimal number of pallets for a
given job sequence. In section 3 of the paper, we present some numerical examples.



2. STATEMENT OF THE PROBLEM AND THE HEURISTIC PROCEDURE

In this section, we specify the notation,state the problem along with a new
representation, and develop a heuristic algorithm.

2.1. Definitions
We denote by n, the number of jobs and by m, the number of machines involved.
Machine j € (1,2,...,m) denotes the j-th machine of the series.
We define order r as the permutation:
r: {1,2,...n} = {1,2,...n}
where r(i) is the rank of the job i and r-1 (k) is job of rank k according to the order given
by r. For instance, if five jobs 1,2,3,4,5 are ordered as {2,5,1,3,4}, then:
r(1)=3;r2)=1;r3)=4;r4) =5;r(5 =2
and:
ri(1)=2;r12)=5;r1@) =1;rl4@)=3;rl(5 =4
We are given the matrix:
o=o;;}i=12..,n;j=12,.,m

with 6. ; denoting the processing time of the job i on machine j.
i,j g P g ) )

We denote by or =[9ir,j]; i=1,2,...,n;j=12,...,m the matrix © obtained after reordering
the rows according to r.
Thus:
—nr
9, = Ori),j
and i=12,.,n;j=12,..,m

r

L] er'l(i),j
It should be clear that Gf,j is the processing time of the job of rank i under order r on

machine j. Note also that 6 = 0, where I denotes the identity permutation (I(i) = i).
Furthermore, we denote by:

T =t k=12 m;j=12,.m

the matrix of completion times with ti,j standing for the completion time on machine

j, of the k-th job, i.e. the job of rank k under order r. Note that given r, the k-th job is the
job r'1(k).



The goal consists of finding an r* such that:

7 =Mint"
n,m . n,m

where tg, . denotes the makespan corresponding to order r.

In other words, we are looking for an r* which minimizes the time at which the last
job is completed, assuming that the first job starts at time 0.

2.2, Computation of the makespan

Two conditions have to hold before the k-th job (k>1) under a given order r begins on
machine j (j>1):

a. The k-th job must be finished on machine j-1. This event occurs at time t} j-1°

b. The (k-1)-th job must be finished on machine j, which means that the machine j

must be idle. This occurs at time t1r<—1,j-
Hence, the time at which the k-th job begins on machine j is given by:
Max (tf jo1,tho1,)
Then, we have:
thj=Max (f i1, thonj)+0k;

—_ r 3 K j I
= Max (tkfl_l'tk_l’])+er_l(k),j (1

with tj o =0and tj; = 0 for all k and j.

In order to illustrate the previous relations, we consider two examples with n = 4, m=
3. The processing times are given as follows:

9 2 1
17 6
©=5 9 3
127

Example 1 (r = I). The related matrix T! = Pt{('j]; k=1,.n;j=1,.,m,is computed in four

steps as shown in figure 1. :
9 9 11 12] 9 11 12 9 11 12

- R R 10 R 10 18 24
- 15 15 27 35
16 16 29 42

Fig. 1: Computation of a makespan: first example
In this example, therefore, the makespan corresponding to I is 42.



Example 2 (r(1) =2;1(2) = 4; r(3) = 1 ; r(4) = 3). First we reorder the rows of © according to r

to obtain:
5 9 8
9 21
r_
=127
17 6
As for order r=I, the corresponding matrix T is computed in four steps (see figure 2).
5 5 14 22 5 14 22 5 14 22
7l 14 14 16 23
= =
= = |15 15 18 30
16 16 25 36

Fig. 2: Computation of makespan: second example
Thus, the makespan corresponding to r is 36.

2.3. A basic result
From Tr, we derive the sequence S' = (s, s5,...,5[,m-1) ©of n + m - 1 elements as
follows: '
a. s;n+n—1 = t:l,m (2)
b. If s = tir,j, then:
tij-1ifi=land1<jsm

Sk-1=4tlq;if 1<i<nandj=1 @)

Max (tLq,6j1)if1<isnand1<j<m
Thus, sequence S¥ is defined backward, starting from t;, . Obviously, s] =t} ;.

Examples 1 and 2 continued. Applying relations (2) and (3), we obtain for Example 1
(see figure 1), S = {9, 11, 18, 27, 35, 42}. The sequence related to Example 2 (see figure 2) is:
Sr = {5, 14, 22, 23, 30, 36}. '

Starting from ST, we build a sequence S* ={§{,...,§fn+n_1} with the elements of O by

setting:
. I .
Sk = Bf,i = er-l(i),j if Si = t{,j 4)

fork=1,2, .. n+m-1.



More generally, we consider the set AT of all the sequences U = {u7, uj, ..., uf, -1} of
elements of Tr, of length m+n-1, and satisfying the following properties:
ifUf = {u1 - ufnm_]} € AT, then:

a. u:n+n—1 zt:\,m
b. Ifuk-tr for k > 1, then:
i,j—] 1f1=1andl<jsm
up_1= ti'_ljifl<iSnandj=1 5)

ti_ 1]ort|] 1ifl<i<nandl<j<m

Obviously, S" € AT and u] =] 1.

We also consider the set AT of all the sequences UT = (@i}, @5, ..., 45,1} of elements of
Or derived from the sequences of AT in the same way as ST has been derived from St (see
relation (4)). Note that St e AT leads to ST e Ar.

The following result allows us to call 57 the critical sequence in Ar. Such a result
appears in GRABOWSKI [5, 6]. Here we provide an alternate proof.

Result 1

The sum of the elements of S is equal to tn m the makespan corresponding to r.

Furthermore, the sum of the elements of any sequence Ufe AT is less than or equal to

thm- ST is referred hereafter as the critical sequence related to r.

Proof

The proof is by induction.

a. The result is obvious if n 21 and m = 1, or if n = 1 and m> 1: in both cases, AT
contains only one sequence, and the sum of the elements of this sequence is equal to

r
tn,m'

b. Let us now consider the case with n > 1 and m > 1, and assume that the result holds
for every (n-1, m) and (n, m-1) matrix. We denote by A7 _ 1,m the sequence obtained

by starting from the restriction of @F to its first n-1 rows in the same manner as S*

was obtained from OF. We also denote by A", . the sequence obtained by startin
Y Bn,m-1 q y g

from the restriction of ©OF to its first m-1 columns in the same manner as ST was



obtained from ©Ff. Then Sr is either AT o{e or Al 046
n—l,m r_l(n)'m n,m—l r_l(n),m ’
where o represents the concatenation operation. This property is also true for every

sequence of Ar. Considering our assumption and relation (1), the property holds for
dimensions (n, m).
This completes the proof. Q
We now illustrate this result using Example 1.
Example 1 continued. In this example S! = {9, 11, 18, 27, 35,42} and 5! = {9, 2,7, 9, 8, 7}, We
observe that the sum of the elements of 5! is equal to 42. We can also verify that, for each
sequence belonging to Al the sum of the elements is less than 42. It is, for instance, the
case of the following sequences:
{9,2,1, 6,8, 7} leads to the sum of 33, and
{9,1,7,6, 8, 7} leads to the sum of 38.

2.4. The algorithm

Any element of AT can be represented by a path in ©. Such a path starts from 8] 1, ends

with 6], ;, and, if we consider one element (i, j) of the path, the next one (if any) is either

the next on the right (i.e. (i, j+1)) or just below (i.e. (i+1,j)). Let W(UT) be the path related
to Ure Ar. The path related to the critical sequence is hereafter referred to as the critical
path.

Example 2 continued. Let us consider Example 2. In figure 3, we represent W(U})

corresponding to U] ={5,9,8,1,7,6}, and W(U5) corresponding to U5 ={5,9,1,2,7,6}.

_'5_9_|8
§ 2 1
o=l |
L.. 2...7
|
-1 7 6.J
— wW@@) --- W@y

Fig. 3: Two paths of AT in Or



Note that the sum of the elements of UJ (also called the length of W(UY)) is the

makespan corresponding to the order r (i.e. U] is a dominant sequence in AT).
Note also that there are (4! - 1 = 23) orders different from r.

However, according to result 1, we know that the makespan may be reduced only with

orders which reduce the length of W(U}). In the previous example, every order r'
derived from r by permutating rows {9,2,1}, {1,2,7} and {1,7,6} does not decrease the
makespan. Thus, only (4! - 3! - 1) = 17) new orders may reduce the makespan.

In the algorithm proposed hereafter, we only permute pairs of rows. We thus reach a
local optimum to the problem at hand. In the previous example, we would only try to
permute rows 1 and 2 (which would reduce the critical path by 3), 1 and 3 (which would
reduce the critical path by 11), and 1 and 4 (which would reduce the critical path by 6).

Path-Based Algorithm (PBA)

The algorithm can be described as follows:

1. Choose an initial order r and compute the corresponding makespan x.

The initial order may either be chosen at random, or be the order obtained by applying

the CDS (CAMPBELL, DUDEK and SMITH, see [2]) algorithm or the PHD (Procédure

HAN et DEJAX - HAN and DEJAX Procedure, see [7]).

2. Choose the pair of rows whose permutation leads to the maximal decrease in the

length of the previous critical path. Let r! be the order derived from r by permuting

these two rows.

For instance, if we consider figure 3, we can see that the permutation of rows 1 and 3

would lead to a decrease of 11 in the length of the critical path, which is greater than

the decrease of 3 obtained by permutating rows 1 and 2, and the decrease of 6 obtained

by permutating row 1 and 4.

3. Test

3.1. If r! does not exist, then r is the (local) optimal solution. This ends the

procedure.

3.2. Otherwise:

3.2.1. Compute x!, the makespan corresponding to rl.

3.22. If x1 2 x, return to step 2 after removing from the list of feasible
permutations the pair of rows which have been just tested, and
continue.

3.23. Ifx1 <x,setr =rl, set x = x1, return to step 2 and continue.

Hereafter, this algorithm is referred to as Path Based Algorithm (PBA for short).



Example 2 continued. Let us consider OF (see figure 3). The corresponding makespan has
been computed in section 2.2 (see figure 2) and is equal to 36. Let us permute rows 1 and 3
which leads to the maximal decrease in the length of the critical path for r. We denote by
r; the new order. O, T, and the critical path are given in figure 4.

-
|1-'°2"',7 1 3 10
9 2 1 10 12 13
gi-|| : ||
5— 98 1524 32
1 7 6 |16 31 38

Fig. 4: First trial for changing order r

As we can see, the length of the critical path for r (see the dotted line in figure 4)
decreases by 11, but a new critical path has appeared (see the continuous line), and the
makespan is finally worse than the previous one.

ll 2 6 |1 8 14

9 2 1 10 12 15
o=|l 71 _{|

|1 2 7 lll 14 22

>— %—8 16— 2533

Fig. 5: Second trial for changing order r

We next consider r obtained by permutating rows 1 and 4. It leads to ©'! and T"
represented figure 5, along with a corresponding critical path.

This second trial reduces the makespan. Thus, we set r = rj, and we try to permute two
rows in order to reduce the length of the new critical path, and so on.

Note that the algorithm is based on result 1 which states that if we change the current
order r, the makespan corresponding to the new order cannot be less than the current one
if it does not result in decreasing the length of W(SF). This property allows us to avoid
many computations of the makespan. In particular, we never try to permute two rows
having only one element each on the critical path if these elements belong to the same

column.
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It is possible to improve the algorithm described above as explained in the next sub-
section.

2.5. Improvement of the algorithm
In this sub-section, we show how to avoid some computations of makespans by
introducing a minimal bound for the makespan associated with a given order.

j* € {1,2,...,m} is said to be the slowest machine if:

n n
=VYeol.= I
Z* = 2’19,,]‘ Max Zew ©

1=

je(l,...,m} i1

If various values of j realize the maximum, then choose anyone of them.
For a given order r, we also define:

jt-1
v, = ZO{J;VT:Oifj":l
=1
* m »
we= ) 0L w=0ifj*=m

j=1"+1
The following result holds:

Result 2
The makespan corresponding to r is greater than or equal to:

Z*+V;+W;=Tr (7)
Proof

Note that v: is the time required by the first job to reach the slowest machine, z* is the
total time required by all the jobs to pass through the slowest machine if they were

already waiting for this machine, and w; is the minimal time required by the last jobs to
pass through all the machines which follow the slowest one. The sum of these values is
obviously the lower bound of the makespan.
Finally, the algorithm given in section 2.4 is modified as follows:
Replace 3.2.1 by:
3.2.1. Compute 11
3.2.1.1. If 71 2 x, return to step 2 and continue.
3.2.12. If 1 < x, compute x!, the makespan corresponding to rl.

2.6. Minimizing the required number of pallets
Having found a good order, we propose a method to minimize the maximal in-process
inventory, which is related to the number of transportation facilities like carts, pallets, etc.
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In what follows, therefore, we provide a procedure to minimize the required number of
pallets for a given makespan.

Let r be the order that we have found. Starting from it, equation (1) leads to the
makespan and the corresponding schedule. Matrix T gives the completion times of each
job on each machine. In this schedule, the beginning times of the jobs are lower bounded
by 0 and each job starts as soon as possible.

The jobs whose completion times belong to S™ can neither be started earlier in time
(because of the lower bound on the beginning times) nor be started later in time without
increasing the makespan. These jobs are called the "fixed" jobs. The completion times of
these jobs cannot be reduced. However, in some cases, the beginning times of the jobs
which precede fixed jobs can be delayed without changing the makespan.

Starting from T, we build the matrix TT =[t;,']-]; i=1,.,n;j=1,.,m as follows:
t:’] =t] ; for any pair (i,j) such that there exists a pair (s,j) with s > i and ts, €S’

tr

nj= t;’,j +1 —e;,i +1 for any j such that there exists a pair (s,j) with s <n

and tg; €S

»

t:” = Min{t;fj REL IR ALY —e{ﬂli} for any pair (i,j), i < n, such that there

exists a pair (s,j) with s <i and tg,j eS’ (8)

In other words, the elements of Tf remain unchanged in T*r if they are on the critical
path or above it. ‘

The values given by (8) are the latest completion times of the jobs without changing
the makespan, taking into account the fact that the first job begins at time 0. These values
are the same as the corresponding values of T for each completion time of a fixed job or
of a job which follows a fixed job.

Let by, k = 1,...,n, be the latest beginning times of the job of rank k:

by =tf1 -8k 1

bk is the instant job of rank k starts on the first machine.

For k = 1,...,n, we compute a(k) which is the largest integer belonging to {k,...n} and
which satisfies:

*r
tk.m > Pac) 9)

a(k) is the rank of the last job which starts before the job of rank k ends.

We set:
g(k) = a(k) - k+1 (10)

g(k) is the number of jobs in process just at the time the job of rank k ends.
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Then:
*= Max g(k)
& ke[l,...,n]g (11)

is the minimum required number of pallets for order r without affecting its makespan.
Consider the example specified by:

n=6m=4;r(i)=ifori=1,.,n
The processing times matrix is as follows:

The matrix TT is computed by the method in section 2.2. We obtain:
[2— 10 13 15

6 12 18 21
9 21— 27— 36

T =
5 22 34 4

17 26 35 4:9
53

20 28 39
The critical circuit is represented in_both matrices.
We can obtain [T™"] by using (8).

tg3=53-4=49;ty,=49-4=45;tg;=45-2=43;
ts'3 =Min {49-7,49-4)=42;t, =Min (45-2,42-1)=41;
tty=Min (43-3,41-4}=37;t{’3=Min (42-6,42-1}=36;
ti,=Min {41-4,36-7}=29; 1t} =Min {37-2,29-1}=28;
ty1 =Min {21-9,28-6}=12; )" =Min {12-2,12-3}=9

The other elements of T™* are equal to the related element of TT.
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W |12 21 27 36
28 29 36 42

37 41 42 49

43 45 49 33

Finally,

b1=0;bp=5;b3=9;bg=22;b5=35;bg =40
Starting from (9),

a(1)=3;a(2)=3;aB) =5;a4) =6;a(5)=6;a(6) =6
The maximal in-process inventory is then given by:

g*=Max {3,2,33,2,1} =3

Remark
The required number of pallets tends to increase with decreasing makespan. But it is

only a tendency, and not a rule, as it can be seen in the following counter-example.

Let us consider:

1 1 2
e'=/10 10 100
100 100 10
With the order I = {1,2,3}, we obtain:
1 2 4
TH={ 11 21 121
111 211 221

and the minimum number of required pallets is 2 with a makespan of 221.

We now consider r = {2,3,1}. It gives:
10 20 120
T' =[110 210 220
111 211 222

for which the minimum number of required pallets is 3 with the makespan of 222.
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3. COMPUTATIONAL RESULTS
Table 1: Significant results per matrix size

Avcrage value of Computation times Average number of [ Improvement

Size the Makespan (ms) pallets compared 1o
PBA (in %)

n| mi D] OS] PBA}] RD | 8 PBA JPHD| COS | PBA] PHD | (OB
2071 5 ]1353] 1325 | 1247 29 2 293 795 ]| 795 815 784 | 589
401 S 2440 | B4 292 67 50 1427 § 1225 | 1225|1240 606 | 426
60 5 | 3500 | 3459 | 3314 | 101 74 3738 | 1615} 16.15] 1675 534 | 4.3
80| 5 | 4586 | 4505 | 4370 | 146 107 6614 | 2050 | 2050 | 2075 4.70 | 298
100] 5 | 5643 ) 5595 | 5444 | 182 142 | 12235 1 26.10| 26.10{ 24.75] 3.51 2.69
2] 10)17521 1M7| 1623 62 50 580 11201 11204 11951 735 | 549

401 101 913 | 2884 | 2652 } 134 114 4554 | 1515] 15.15] 1690] 897 | 804
183 | 13794 § 1895) 1895} 2055 774 | 717
257 § 31109 f235] 235§ 450§ 747 | 7.21
329 | 46981 | 2585 2585 27.80 ] 639 | 6.14

60 | 10 § 4047 | 4022 | 3733
80| 10| 5112 5098 | 4730
100 10 | 6210 | 6193 | 5813
201 15] 2126 | 2086 | 1967
40 | 15 ] 3358 | 3301 | 3058
60| 15] 4523 | 4445 | 4100 | 352 306 | 26666 | 22.101 22.10| 2445] 9.4 | 756
80| 15 ) 5672 | 5592 | 5166 | 490 424 | 57554 § 2745] 2745 2840 892 | 7.62
100] 15 | 6781 | 6729 § 6189 | 639 550 | 110638 27404 2740 3190 873 | 803
2] 20 2492 | 45| 4| 149 123 1083 1575|1575 17,06 674 | 535
40| 20 | 3784 | 3715 | 3459 | 321 mn 10325 220§ 2220 2420 857 | 6.89
60 ] 20 | 4979 | 4906 | 4530 | 507 434 1 39497 1 26.15] 26.15] 2930 f 9.02 | 7.66
80| 20 | 6170 | 6082 | 5582 1 702 606 | 93606 § 29.75]| 29.75| 3285 953 | 83
100] 20 § 7333 | 7233 | 6650 | 910 784 | 176010} 3295 | 3295 3655 | 932 | 8.07

83 842 J 1325|1325 1465 749 | 5T

B8 ¥ g &

192 7451 | 1860 | 1860 | 2040 895 | 737

The processing times (i.e. the elements of matrices ®) have been generated randomly
between 0 and 100. The matrices considered in this section are such that n € {20, 40, 60, 80,
100} and m e {5, 10, 15, 20}. Recall that n and m are respectively the number of rows (i.e.
the number of jobs) and the number of columns of © (i.e. the number of machines).
Thus, 5 x 4 = 20 different sizes of matrices are used hereafter. For each size, 20 matrices
have been generated, which means that the following results concern 20 x 20 = 400 ©
matrices.

For each example (i.e. for each matrix ©), the initial solution is the best one among the
solutions obtained by applying the CDS (see [2]) and the PHD (see [7]) procedures.

In table 1, we present significant average values for each matrix size.
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These computations have been performed on a SUN SPARC 1+ workstation. An
important remark must be made concerning the computational results presented in this
section: because the elements of the ©® matrices have been generated at random, the
makespan values for the n! feasible schedules are only slightly different from each other.
It is then particularly difficult to find a solution significantly better than any solution
generated at random and, as a consequence, it is even more difficult to find a better
solution than the ones provided by the classical heuristic algorithms, namely PHD and
CDS. We have to keep in mind that the results presented in table 1 have been obtained in
an unfavorable context. Even so, the improvement is between 3% and 10% on the
average; the better results being obtained, still on the average, for the matrices having
larger sizes.

Furthermore, we have to outline that the heuristic algorithm presented in this paper
needs more computation time than the PHD and CDS algorithms.

We also observe that a production line managed using a PBA would require more
pallets or/and more transportation resources than if a PHD or a CDS policy is used. The
explanation is that a reduction of the value of the makespan results in a higher work-in-
process (WIP) which, in turn, results in increasing the transportation resources.

Recently, a new algorithm has been proposed in [8]. Simulation experiments presented
by the authors show that the results obtained using this algorithm are never improved by
more than 2% applying CDS, while the improvement obtained by using PBA is always
greater than 3%.

5. CONCLUSION

In this paper, we have developed heuristic procedures to minimize makespan in flow-
shop scheduling problems.

Our computational results show that, even in the unfavourable way chosen to
generate the examples used in this paper, the improvement in relation to the results
obtained by applying the most powerful existing algorithms, is significant.

Also, we have developed a procedure that computes the minimal number of required
pallets required for a given makespan. This number is greater when using our PBA
(Path-Based Algorithm) than when using PHD or CDS.
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