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Résumé

M*-OBJECT est une méthodologie pour l'analyse, la conception et l'implantation des systemes
d'information de CIM. Dans ce rapport, on présente la phase d'analyse conceptuelle. Elle commence a
partir des besoins des utilisateurs et fournit une spécification conceptuelle, ou schéma conceptuel, du
systeme d'information requis par le syst¢tme de production intégrée a concevoir. Cette phase
méthodologique s'appuie sur le modele PDN (Process and Data Net) qui intégre un modele de
données orienté objets, un langage de manipulations de données et de requétes, un modele de
traitements et un modele de description de comportement d'objets. Les traits principaux de 'approche
de spécification décrite sont : 1) les propriétés statiques, dynamiques et comportementales de
lI'information sont toutes traitées, 2) les structures de données et les manipulations de données
complexes peuvent étre spécifiées et 3) les spécifications sont exécutables pour faire du prototypage
rapide.

Mots-clés
CIM, Conception de systemes d'information, Analyse conceptuelle, Modele de données orienté
objects, Modele PDN, M* methodology

Abstract ‘

M*-OBJECT is a methodology for the analysis, design and implementation of CIM information sys-
tems. In this paper, the conceptual design phase is presented. It starts from users information re-
quirements and provides a conceptual specification, the conceptual schema, of the information system
to be used in the integrated manufacturing system to be designed. This methodological phase is sup-
ported by the Process and Data Net (PDN) model which integrates an object-oriented data model, a
query and data manipulation language, a process model, and an object behaviour description model.
The major features of the specification approach are: (1) static, dynamic, and behavioural properties of
information are fully covered, (2) complex data structures and data manipulation can be specified, and
(3) specifications are executable for rapid prototyping.

Keywords
CIM, Information system design, Conceptual design, Object-oriented data model, PDN model, M*
methodology



1. Introduction

Information systems are at the heart of Computer-Integrated Manufacturing (CIM) systems [1] and
their design is a crucial step conditioning CIM implementation. Our work in this field started with the
M* methodology which is devoted to information system analysis and design for CIM environments
[2,3]. Since the object-oriented approach [4] is gaining tremendous interest in the CIM community
because of its modelling power and expressiveness, the M* methodology has been adapted to this
new paradigm, giving birth to the M*-OBJECT methodology.

The M*-OBJECT methodology consists of three main phases: (a) Organisation Analysis, (b) Concep-
tual Design, and (c) Implementation Design.

The Organisation Analysis phase, concerned with global enterprise modelling and information system
requirements definition, has been discussed in a companion paper [5]. Methods and models used in
this phase derive from a modelling paradigm based on three modelling concepts:

 hierarchical decomposition of business activities of the object enterprise;

« specification of the intrinsic behaviour of the resulting enterprise components;

» functional description of interactions between the components.

This paper focuses on the Conceptual Design phase, i.e. the detailed specification of the information
system using object orientation. It deals with the analysis of the organisational description and the
design of a conceptual description (the conceptual schema) of the object enterprise which covers data
representation and data processing aspects.

The modelling paradigm used in this phase is completely different from the one used in the previous
phase. Conceptual Design is typically a bottom-up design phase in which, starting from elementary
components of the object enterprise, simple concepts are modelled first, and more complex concepts
are then built (at increasing levels of abstraction) and later merged into environment schemata, and
finally aggregated in a conceptual schema. The bottom-up strategy has been chosen to take full
advantage of the results obtained in the Organisation Analysis phase. Indeed, if elementary
components of the enterprise have already been analysed, the bottom-up strategy is the simplest and
most effective choice [6]. This approach is well-suited to CIM since manufacturing system
design/redesign is usually based on knowledge from existing systems or from previous solutions.
Furthermore, CIM information systems must always be designed after the analysis of the global
functional behaviour of the object enterprise.

Models used at the conceptual level of the M*-OBJECT methodology are object-oriented in order to
meet the following criteria:

» the introduction of the object type concept (or class), which groups objects which share a
common structure and have the same behaviour, is required. Complex objects (composed of
simple and/or complex objects) and inheritance are supported;

« the possible evolutions of objects during their life cycle can be specified;

« the interaction (concurrency, parallelism, causality) between activities on objects and components
of the enterprise at any level of granularity (environments, organisation units, work-centres) can
be described.

One of the major advantages of this approach is to result in detailed executable specifications, which
can be used for rapid prototyping.

The Implementation Design phase is dependent on the class of the Database Management Systems
(DBMSs) used (relational, object-oriented, or network systems) and on the physical system itself. In
M*-OBIJECT, it is a performance-driven process that maps the conceptual description of the enterprise
onto a logical-physical description that can be directly processed by the target DBMS chosen for the
implementation.

Information system design is a time-consuming repetitive job. Currently, many prototypes provide
automatic support to designers at several levels: (a) graphical data definition [7]; (b) schema definition
and visual querying facilities [8]; (c) visual data browsing [9]; (d) integrated environments, like
DDEW [10] which extends the definition process to all phases of database design (from user require-
ments to physical design), and SUPER [11] which adds a view definition and integration tool to a
graphical schema definition and manipulation interface. A prototype of a tool for M*-OBJECT (called
M*Designer), which supports analysts in the conceptual design phase, has been developed.

Both the implementation design phase and the conceptual tool will be briefly described in this paper.
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The paper is organised as follows. Section 2 provides an overview of the Conceptual Design phase.
Section 3 presents the integrated model used at the conceptual level, the Process and Data Net (PDN)
model, which integrates an object-oriented data model, a query and data manipulation language, a pro-
cess description model, and an object behaviour description model. Sections 4 to 7 describe the differ-
ent tasks of the Organisation Analysis phase. Section 8 describes the Implementation Design phase
and Section 9 illustrates the conceptual design tool M*Designer. Section 10 states our conclusions.
Two examples are discussed throughout the paper. The first one concerns a car rental company and is
used to illustrate the conceptual model. The other one, which is used to illustrate the methodological
tasks, has been introduced in the companion paper [5] and deals with automated manufacturing.

2. The Conceptual Design Phase

The Conceptual Design phase produces a detailed design specification (conceptual schema) of the ob-
ject enterprise from the high-level, user-oriented description (system environment and system re-
quirements) given by the Organisation Analysis phase. The conceptual schema is an executable
specification of static, dynamic, and behavioural features of the enterprise information system.
Static information refers to the structure of the data which characterise the enterprise and to the in-
tegrity constraints that data must satisfy. Dynamic information refers to the evolution of the applica-
tions used by the organisation under analysis (i.e. the operations that must be performed on data and
the causal relationships existing among them) while behavioural information refers to the intrinsic
behaviour of the data.
From a terminological point of view, the term "schema" will be used to denote a complete description
of a particular object enterprise or part of it expressed in terms of a "model”. As suggested in [6],
when it is necessary to distinguish between the different components of the schema, we will use the
term "D-schema" (for Data schema) to describe static features, and the term "F-schema" (for Func-
tional schema) to describe dynamic and behavioural features.
Inputs to the Conceptual Design phase are system requirements collected in the Organisation Analysis
phase [5]. We will assume that they are collected on the basis of the organisation structure of the
object enterprise, i.e. for each environment! to be automated and for each organisation unit? we will
assume that requirements consist of:
a) a set of forms, which are documents that are used for data acquisition, output or display (e.g.
customer order forms, delivery sheets, reports, computer screen layouts, etc.);
b) a set of record formats, which describe data structures used in traditional file systems (e.g.
payroll files, bills of materials files, customer files, etc.);
c) a set of organisation nets and a set of life cycle nets of enterprise components, which describe the
flow of control of the processes of the organisation unit;
d) a set of verbal descriptions, which result from interviews and written documents. We assume that
they are used to precisely describe the processes of each organisation unit.
The focus of requirements of types (a) and (b) concerns data structures and their properties (static
requirements), while the focus of requirements of types (c) and (d) concemns the functional description
of processes and activities carried out in organisation units (dynamic requirements) and objects
behaviour (behavioural requirements).
The conceptual description of requirements related to a given organisation unit will be called a local
schema. Each local schema will be designed independently and then integrated, with the other local
schemata, into a so-called environment schema. The conceptual schema is then obtained by integrating
all environment schemata. It describes the overall information system (both data and applications).
The overall architecture of the Conceptual Design phase is illustrated in Fig. 1.
In the Conceptual Design phase, static, dynamic and behavioural requirements are analysed and
modelled (Static Modelling and Dynamic Modelling tasks). These modelling tasks produce D-
schemata and activity specifications that are co-ordinated (in the Local Design task) to construct the lo-
cal schema of each organisation unit.

1 An enterprise environment is a consistent subset of the enterprise as defined by users.
2 An organisation unit 1s an area of responsibility within an enterprise made of work centres or other organisation units.
Work centres are elementary areas of work in the enterprise.
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Fig. 1: The Conceptual Design Phase

The local schemata are then integrated to obtain the environment schema (Environment Design task),
and a further integration step (Environment Integration task) generates the conceptual schema of the
object enterprise.

3. The Integrated Model Supporting Conceptual Design

At the conceptual level, a complete and formal description of all the information aspects of the object
enterprise must be produced. These descriptions are specified by means of an executable model, called
Process and Data Net (PDN) model, which integrates data representation and data processing.

3.1 The data model

In the PDN model, a system can be described in terms of its states which are specified, at any moment
in time, as a set of objects stored in the system database and the condition (active or inactive) of the
events to which the system is responsive.

Objects represent real-world entities. They are characterised by their class which defines their list of
attributes. Objects are also made of a collection of operations (or methods) which share a set of
internal variables that are accessible only by the object methods. The collection of methods determines
the object behaviour and therefore the way its state can evolve.

The data model provides the designer with four basic abstraction mechanisms:

1) classes: A class E groups a set of objects (class occurrences) of interest for the system (tools,
parts, machines, ...) which share a common structure and have the same behaviour. Each object
has an identity, i.e. it has a unique system-defined identifier (OID);

2) arntributes : The structure of a class E is described by means of a set of attributes. An attribute x of
E is a binary relation which describes a characteristic of the class and has a name and a type. If the
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type of x refers to a simple or complex domain, it is called a structural (simple or aggregate) at-
tribute. If the type of x is a class F (i.e. it can take as values OIDs of F objects), it describes a
relationship between the classes E and F and there exists an attribute y of F which describes the
inverse relationship; the attributes x and y are called relationship attributes and the pair <x, y> will
be used to denote the relationship. The properties of an attribute x can be specified by means of
two natural numbers (min, max) which mean that an object e of E must take a minimum of min
and a maximum of max values. If x is a relationship attribute this means that e must be related to a
minimum of min and a maximum of max objects in F, at all times. If min=0 the attribute is op-
tional, i.e. it may not be specified, and a null value (nil) is added to each domain or class of the
schema to deal with this case. If min2>1 the attribute is mandatory and (at least) a value must be
specified for each object. If max=1, the attribute is simple (mono-valued), otherwise it is called
multi-valued. A simple attribute can also be calculated. A class identifier of E is a set of one or
more attributes which uniquely identify a class occurrence (if this set includes an identifier of an-
other class related to E, E is said to be a dependent class);

3) data abstraction: 1t is the ability to allow the definition of a set of operators (called methods) that
can be applied to objects of a particular class. Every access to an object is constrained to be via
one of the methods. The definition of a class is splitted into two parts, a public interface, where
structural and relationship attributes are specified and methods are declared, and a private imple-
mentation part, where procedures and functions are introduced to specify methods and calculated
attributes at run-time, respectively. The implementation part may be changed without affecting the
interface (encapsulation principle);

4) class hierarchies: Classes can be organised into class hierarchies. Two types of hierarchies can be
used to specify the data structure of the system:

* a generalisation allows a class E (the superclass) to be defined as a generalisation of a set
{Eq, E2, ..., Ep} of classes (the subclasses or specialisations of E) if each occurrence of a
subclass is also an occurrence of the superclass. Every specialisation inherits attributes and meth-
ods from the superclass (but not vice versa!) and in addition may have specific attributes and
methods. Since generalisation can be applied recursively, classes and superclasses can be
organised into a generalisation hierarchy. Two basic types of generalisation can be considered:

- the subset is the case in which specialisations are not disjoint (i.e. the occurrences of E,,

Ej, ..., Ep are potentially overlapping subsets);

- the partition is the case in which specialisations are disjoint and complete (i.e. each

occurrence of E is also an occurrence of one and only one of E,, Ea, ..., Ep);

In the PDN model, a generalisation hierarchy can be organised as a direct acyclic graph with one
root only, i.e. a class can be a specialisation of several superclasses, but not at the top level! In
this way, a set of classes structured into a generalisation hierarchy can be considered as a
hierarchical class in which the root class is specialised at different level of detail (see the example
of Fig. 2);
- an aggregation allows a class (the composite class) to be specified as a composition of
existing classes (the component classes). Applying aggregation recursively, an aggregation
hierarchy can be built. Aggregation hierarchies can be structured as a direct acyclic graph.
A graphical formalism is used to represent such concepts. Rectangular boxes represent classes, circu-
lar boxes represent attributes, diamond boxes are used for relationship attributes, dotted arcs denote
class identifiers, and different types of arrows represent hierarchies, as described in Table 1.
Figure 2 illustrates a hierarchical class in which a person can be specialised to be an employee or a
student or a professor (a student cannot be a professor and vice versa). A subset of students is formed
by graduate students, and some of these students can be employed as assistants.
Let us consider now a simple real-world example (adapted from [12]).

The Car Hire (CH) Service : A customer willing to rent a car asks for a car to the service administra-
tion of a car rental company. Based on indexes of available and of borrowed cars, a hiring contract is
signed. The customer will have a car at his/her disposal and will return it to the service settling the ac-
count.
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structural attribute E:}—O
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Table 1: Graphical Data Symbols Used in the PDN Model
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Fig. 2: A Hierarchical Class



In the car rental service database, data about customers, contracts, cars, accounts, and trips performed
by customers are recorded. The D-schema for the CH service and its specification are reported in Fig.
3. The schema can be interpreted in the following way:

CUSTOMERSs are identified by their "ssn” (social security number) and have a "name", an "ad-
dress”, and a "state”. They "rented" some CARs (in the past) with which they "made" TRIPs,
and "nt" is the number of trips made with this service. A customer can be in different states: 'ask’:
asking, 'ready’: ready to use a car, and 'back’: returning a car. After the car has been returned, he
becomes a ‘former’ customer. Customers may have an agreement with the car rental service
(CWA for customer with agreement), and a "description” describing the agreement conditions;

a TRIP has a "s-date” and a "e-date” (start and end dates) and a "fuel” consumption. It is "made-
by" a customer and "tn" (trip number) identifies the n-th trip made by a given customer. A trip is
"related"” to a given CONTRACT;

a CAR is described by means of a "type", a "price” and a condition "cond", which can take one of
the values ('free’, reserved’, ‘used’). It is identified by a car number "c#" and has been "rented-
by" some customers;

a CONTRACT has an "amount”, is identified by a "cn#", is "for" a trip, and is composed of (i.e.
itis an aggregation of) a car ("cr") and a customer ("cs").

In the class CONTRACT the attribute "cn#" is calculated. This means that in the implementation part a
function cn# must be supplied; in our case, it contains (in its body) the standard function count which
gives the cardinality of the object domain. Since "cn#" is the identifier, in this case the function cn#
gives the cardinality of the class CONTRACT.

?descn'ption
CWA
ssn state c# type
nang '? S ? rented . rented- '? ? i
nt CUSTOMER — CAR
o——- 0% Yby (0%
address ?(l)a*cll)c ' cond
w T o e
s-date o—‘? e
) ' CONTRACT
e-date O— TRIP related ¥ for

$ fuel

"é cn# J> amount

class CAR identifier c#

member attributes c#, price: integer; type: string; cond: (free’, ‘reserved’, ‘used’);
rented-by (0,*): CUSTOMER inverse of rented;

class CUSTOMER identifier ssn

member attributes ssn, nt: integer; name, address: string; state: (‘ask’, 'ready’, ‘return’, 'former’);
rented (0,*): CAR inverse of rented-by; made (0,*); TRIP inverse of made-by;
subset CWA of CUSTOMER member attributes description: string;

class CONTRACT composed of (cr: CAR; cs: CUSTOMER) identifier cn#

member attributes cn# (calc), amount: integer ; for: TRIP inverse of related
class CONTRACT implementation function cn# : integer ; begin return count (cn#)+1 end

class TRIP identifier (made-by, tn)

member attributes tn, fuel: integer; s-date, e-date: date; related: CONTRACT inverse of for
Fig. 3: The Data Schema and the Specification for the CH Service
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Objects are manipulated by means of variables. A variable x on a class (or a hierarchical class) C takes
as value the OID of an object of C, and can be declared by a declaration statement: use xIC.
Manipulations on objects are expressed by means of methods of the class they belong to. Methods can
be invoked by sending a request, with the method name and, may be, some variables, to an object of
that class (in the object-oriented literature, a request is usually called a message). The method invo-
cation will be syntactically expressed as: )

«variable».«method-name» («input/output-variable-list»)

Methods of a class cannot be invoked in an arbitrary order. For instance, an object cannot be deleted if
it was not created first! Therefore, it is useful to group methods related to a given class C into the so-

called Object Behaviour (OB) net of that class. The OB net of C describes, for any object ce C, its
states, its methods, and the possible execution sequences of method invocations which can be applied
to the object. Thus, OB nets represent the conceptual tool to describe the life cycle of an object and
will be illustrated in the following.

Methods of a class can be built using pre-defined (or standard) procedures which may return an object
that will be bound to a variable of that class. Standard procedures allow to select and manipulate ob-
jects (Create, Update, Delete, Select, Search), to specify objects in a generalisation hierarchy
(Specialise, Generalise), and to add (remove) objects into (from) a composite object (Add, Re-
move). For instance, referring to the example of Fig. 3, one can write:

use VICUSTOMER; xICAR; y|ITRIP; zZICONTRACT

v.Create (ssn: 14, name: 'Smith’,...); ... «create the customer v whose ssn is 14....»
v.Specialise (CWA; description:'..."); ... «customer 14 is specialised as costumer with agreement»
x.Select (c#=101); ... «select the car whose number is 101»
y.Create (tn=2, made-by: v, ...); ... «create the second trip of the customer v»
z.Create (cs:v, caxx; for: y, ...); ... «create the contract on v and x for the trip y»

3.2 The Query and Data Manipulation Language

The PDN model allows users to express complex queries by means of a well-known mechanism
which has been extensively investigated in the context of the relational model, the view mechanism
[13]. In the relational model, a view is a named "virtual"” relation. In the PDN model, a view is a
named virtual class, which has the following structure:

view «view-name» («target-list») use «variable-declaration-list» where «predicate»

where:

* the target list has the following form: pylEy, pxlEk, ... and introduces a set of communication
variables pp, Pk --- on the classes Ey, E,, ... It specifies what must be retrieved as a set of tuples
<ep, € ...> where ep€ Ey, exe Ey, and so on;

 in the use clause, the variable declaration list has the form v, |Ep,, v lE,, ... which can be used to
introduce a set of local variables on the classes E,, E,,, ... that must be used to construct the
query result;

+ the «predicate» in the where clause is called a selective path because it is, in general, a conjunc-
tion of restriction predicates (which are used to select relevant objects) and a path predicate which
specifies a navigation path in the database and assumes the form:

Ph<rhk®Pk< --->Vm<ITmn>Vn ---

where ry is the name of a link which connects Ej, with Ey, and so on; a link can be a relationship
attribute or an arc of a hierarchy (the name can be omitted if there is just one link between the
classes);

 the path predicate is satisfied with the substitution {pp/ey, Px/€ks ---» Ym/€m»> Vn/€n} if, and only

if, the object epe Ey, is connected by the link 1y, to the object ey € Ey, and so on. A tuple <ey, €y,
..+ €m» €n> Which satisfies the selective path is called an occurrence of the path;




* view occurrences are obtained by discarding from the path occurrences all the variables that are
not specified as communication variables;
+ the set of occurrences of a view is called the view extension.
For instance, referring to Fig. 3, the query:
W "Retrieve trips made by the car with car number 27 in the year 1990"
can be expressed as:

view W (UTRIP) use cICAR; sICUSTOMER
where c.c#=27 and c<rented-by>s<made>t and t.s-date.year<1990<t.e-date.year

Manipulations on data are expressed by means of another well-known mechanism in database tech-
nology, the transaction mechanism [13], which is called routine in the PDN model. A routine de-
scribes a state transition, i.e. it both specifies a change in the database state and the event structure of
the real-world in which the system is embedded (and to which it is sensitive).

An event is described by means of a message which is activated at a given moment in time, may have
some variables, and can be declared as:

message «message-name» («variable-list»)

where the message variables can be used to exchange data between the routine and the external world
or the rest of the system.

Changes in the database state are represented as input and output views which describe changing data.
The change in the event structure is represented by means of input and output messages.

A routine has the following general form (in which a place can be a message or a view):

routine «routine-name» [accept «input-place-list»; return «output-place-list»]
use «local-variable-declaration-list» ; «local-view-list»
guard «predicate»
exec «routine-block» end

where:

» a place is specified by a term of the form P(py, ..., py) where P is the place name and p;, ..., p,
is a list of variables corresponding to the formal variables in the place declaration (variables refer
to values if P is a message, to database objects if P is a view);

* an input message describes an event that must be active for the routine execution, while an output
message describes an event that becomes active after the routine execution;

« input views (in the accept clause) describe the data that will be updated by the routine, while
output views (in the return clause) describe the data that have been updated. A variable which
appears in the input and output list means that the same object which is received in input is also
given back (some of its properties can be changed by the routine);

» with the use clause it 1s possible to introduce local variables (as in the view definition) and local
schemata which describe database objects that will not be changed;

+ the «predicate» in the guard clause can be used to specify conditions on the input and local data
by means of path and restriction predicates;

» the «routine-block» consists of a sequence of operators which manipulate database objects; con-
trol structures (including sequence, conditional, and iterative structures) can be used to specify the
program flow.

For instance, the state transition:

Find: "Find a car of a given type for a given customer and sign the related hire contract”
can be described in the following way:

message INC (ssn: integer, type: string, dt: date) message CNT (number: integer)
view CASK (cICUSTOMER) where c.state="ask’ view CRDY (clICUSTOMER) where c.state=ready’
view FREC (viICAR) where v.cond='free' view RSVC (vICAR) where v.cond="reserved
view TRCN (UITRIP, sSICONTRACT) where s<for>t
routine Find [accept INC(sn, tp, dt),CASK(c),FREC(v) return CNT{(cnt), CRDY(c), RSVC(v), TRCN(s, t)]
guard c.ssn=sn and v.type=tp
exec s.Create (cs:c, cr:v); L.Create (in: c.nt+1, s-date: dt, made-by: c, related: s); s.Update (for: t);
c.Update (state:'ready’, nt: nt+1, made: made+t); v.Update (cond:'reserved’); cnt:= s.cn# end Find
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where messages INC and CNT represent a customer asking for a car of a given type and the contract
number, respectively. Views CASK and CRDY represent customers willing to hire a car and ready to
use it, FREC and RSVC are free and reserved cars, and TRCN contains new contracts and the related
trips.

3.3 The process description

In the PDN model, the control policy of a part of the object system (or a process) is specified by
means of a process net, i.e. a set of routines and causal relationships between them. A process net
consists of the following constituents:

1)

2)
3)

4)

a directed net (P, T ; F) that expresses the control structure of the system. P is a set of places, T
is a set of routines on the database, and F is a set of arcs which connect each routine T to its input
and output places, i.e.:

PNT=0,PUT»#0,FcCPR®TUTQ®P3

The set of places is composed of two disjoint subsets: P=V U M, where V is a set of views on
the database, and M is a set of messages;

a database schema which specifies system objects;

a marking of the process net, which consists of the collection of the extensions of its views and
the condition (active or inactive) of its messages. An input substitution for a routine is a substitu-
tion on its input and local views, i.e. an assignment of objects to view variables;

a transition rule which specifies the system evolution, i.e. how the system reacts to a given
marking. For the PDN model, the transition rule describes the enabling and the execution of each
routine T of a process net.

A marking enables T if all the input messages of T are active, all the output messages of T are in-
active, and there exists an input substitution on the variables of the input and local schemata
which satisfies the guard predicate.

If the routine T is enabled it can be execured, i.e. statements of the exec clause are performed on
the objects extracted with the input substitution. The execution must be such that input objects are
removed from the input views, output objects are added to the output views, input messages be-
come inactive (they no longer hold) and output messages become active (they begin to hold).

For instance, the process net which models the dynamics of the CH service is illustrated in Fig. 4
(messages are represented by triangles, views by circles, and routines by bars).
The process net of the CH service can be interpreted in the following way:

a Test has to be done on an incoming person (asking for a car of type 'tp' at a given date 'dt') to
check if that person is a former customers; if this is true, data are retrieved (routine Rtrc) from the
database, otherwise data describing the new customer must be supplied (message CSD) and in-
serted (routine Insc) in the database;

a car of the required type must be selected from the set of free cars, the contract and the related
trip must be signed and inserted into the database (routine Find),

the customer uses the car and then returns the car to the service (routine Usec) ;

at the end of the trip, the car related to the contract 'cnn’ (given by the message END) is con-
trolled, the customer settles the account for the trip, and the contract and the trip are updated
(routine Stcn).

3 ® represents the Cartesian product of two sets.
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Fig. 4: The Process Net for the CH Service

The message ASK represents a generic person asking for a car, the message TST contains the data
after the person data have been tested, the message CSD has to contain further data concerning a
person which must be inserted into the database, and the message END represents the end of the trip
and the storage of trip data into the database. Views CRTN and CFRM represent customers returning
a car and former customers, and USDC contains data about cars used.
Figure 5 shows the specification of the process net in the PDN model.

message ASK (ssn: integer; type: string; dt: date) message TST (ssn: integer; result, type: string; dt: date)
message INC (ssn: integer; type: string; dt date) message CNT (number: integer)

message CSD (name, address: string) message END (cnn, fuel, bill: integer; dt: date)
view CASK (cICUSTOMER) where c.state="ask’ view CRDY (clCUSTOMER) where c.state="ready’
view CRTN (cICUSTOMER) where c.state="back’ view CFRM (cICUSTOMER) where c.state='former’
view FREC (vICAR) where v.cond='free' view RSVC (vICAR) where v.cond="reserved’

view USDC (vICAR) where v.cond="used' view TRCN (tITRIP, sICONTRACT) where s<for>t

routine Test [accept ASK(sn, tp, dt) return TST(sn, res, tp, dt)] use cICUSTOMER
exec c.Select (ssn=sn); if c=nil then res:='new' else res:='old’ end Test

routine Insc [accept TST(sn, res, tp, dt),CSD(cname, caddress) return INC(sn, tp), CASK(c)] guard res="new’
exec c.Create (ssn:sn, name:cname, address:caddress, nt:0, state:'ask') end Insc

routine Rtrc [accept TST(sn, res, tp, dt), CFRM(c) return INC(sn, tp, dt), CASK(c)] guard c.ssn=sn and res="old'
exec c.Update (state:'ask’) end Rirc

routine Find [accept INC(sn, tp, dt), CASK(c), FREC(v) return CNT(cnt), CRDY(c), RSVC(v), TRCN(s, t)]
guard c.ssn=sn and v.type=tp
exec s.Create (cs:c, cr:v); L.Create (tn:c.nt+1, s-date:dt, made-by:c, related:s); s.Update (for:t);
c.Update (state:'ready’, nt:nt+1, made:made+t); v.Update (cond:'reserved’); cnt:= s.cn# end Find

routine Usec [accept CRDY(c), RSVC(v) return CRTN(c), USDC(v)] use xICONTRACT guard c<cs>x<cr>v
exec c.Update (state:'return’); v.Update (cond:'used’) end Usec

routine Stcn [accept END(cnn, fl, bl, dt), CRTN(c), USDC(v), TRCN(s, t)
return CFRM(c), FREC(v), TRCN(s, t)]
guard s.cn#=cnn and s<for>t and c<cs>s<cr>v
exec c.Update(state:'former’); v.Update(cond:'free'); s.Update(amount:bl, e-date:dt); .. Update(fuel:f1) end Stcn

Fig. 5: The Specification of the Process Net for the CH Service
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3.4 The object behaviour description

A basic feature of the M*-OBJECT methodology is the distinction between system capabilities, i.e.

what the system can do (behavioural features) and the control strategy which includes the logic of

system evolution, i.e. what has to be done (dynamic features). The suggested policy consists in de-

scribing the overall behaviour of an application (what has to be done) by means of one or several pro-

cess nets, and the intrinsic behaviour of the objects described in the database schema (what the system

can do) by means of Object Behaviour (OB) nets.

By intrinsic behaviour, we mean a set of operations and request protocols representing a program

component common to different applications of the information system. Usually, this is related to the

objects of a particular class which describes the component, and to the life cycle of the component

brought into focus in the Organisation Analysis phase.

OB nets belong to a particular class of nets in which the following interpretation has been adopted:

1) an object behaviour net of a class C consists of a directed net (S, M ; F) that expresses the intrin-

sic behaviour of its objects. S is a set of views which represent different states of objects ¢ of C,
M is the set of methods which transform an object state into another object state, and F is a set of
arcs which connects each method to its input and output places. A path in the object behaviour net
determines a possible sequence in which methods of C can be executed (an object behaviour net is
then equivalent to a finite state automaton);

2) amethod M is callable, i.e. it can be invoked, for an object ce C if, and only if, c belongs to its
input view; when the method is executed the object changes its state (i.e. it "flows"” to the output
view);

3) unlike PDNs (where a routine can be executed when it is enabled) a method in an object be-
haviour net must be invoked by a routine T of a related process net to be executed. T can invoke
M for an object c of C only if M is callable for c.

A method specification has the following general form:

method «method-name» («input/output-variable-list»)
accept «input-view» return «output-view»
use «local-variable-declaration-list» var «type-variable-declaration-list»
exec «method-block» end
where:
« variables in the input/output variable list refer to values or objects exchanged with the envi-
ronment;
 input and output views describe input and output states of the objects;
 the use and var clauses have the same meaning illustrated for the routine definition;
» the «method-block» contains a sequence of operations which describes the state modification.
In the CH service organisation, objects with a relevant life cycle are customers and cars (contracts and
trips are simply created and stored into the database). The intrinsic behaviour of these objects can be
expressed by means of the following set of methods:

Customers Cars

Ins-cs : «insert a customen» cr-fr : «reserve a free car»
cs-ar : «customer becomes ready» cr-ru : «use areserved car»
cs-tb  :  «customer returns the car» cr-uf : «acar becomes free»
cs-bf : «customer gets the "former” state»

cs-fa : «a known customer asks for a car»

OB nets for the two classes CUSTOMER and CAR are shown in Fig. 6. Object states are represented
by means of the same views introduced for the process net of Fig. 4 (but this is not a general rule!).
Using the methods defined in the OB nets, the process net for the CH service assumes the simpler
(and more intuitive) form of Fig. 7.
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As can be noted comparing Fig. 6 and Fig. 4, the object behaviour nets of Fig. 6 are integrated into
the net which expresses the global behaviour of the whole system. This fact outlines a methodological
principle that will be illustrated in the following sections.

4. The Static Modelling Task

In this task, all kinds of formatted requirements are considered. Formatted requirements refer to
structured descriptions such as:

» Forms exchanged between components of the object organisation and the external world (e.g.
customer order forms, delivery sheets, etc.);

» Formatted screen layouts to acquire data and to show program results on a computer terminal;
» Record formats from data files (e.g. payroll file, bill of materials files, etc.);

» Questionnaires used to collect information;

+ Data Division from COBOL programs or other similar languages;

» Data schemata defined with data description languages of pre-existing databases.

In this paper, forms and Data Division from COBOL programs will be considered, but the related
methodological steps can be easily extended to the other cases.

ins-cs
cs-fa RSVC cr-ru yspcC
CASK CFRM
1
:El C ] T
cs-ar CRDY CRTN cs-bf cr-fr cr-uf
cs-rb FREC
CUSTOMER CAR
class CUSTOMER ... methods ins-cs (...); cs-ar(...); cs-rb; ¢s-bf(...); cs-fa

class CUSTOMER implementation view CASK(c)...; view CRTN(c)...; view CFRM(c)...; view CRDY(c)...

method ins-cs (c-ssn: integer; c-name, c-address: string) return CASK(c)

exec c.Create (ssn: c-ssn, name: c-name, address: c-address, nt: 0, state:'ask’) end
method cs-ar(t: TRIP; SICONTRACT) accepts CASK(c) return CRDY(c)

exec s.Create (cs: ¢, cr: v); t.Create (in: c.nt+1, s-date: dt, made-by: c, related: s);

s.Update (for: t); c.Update (state:'ready’, nt: nt+1, made: made+t) end

method cs-rb accepts CRDY(c) return CRTN(c) exec c.Update (state:'back’) end
method cs-bf(fl, bl:integer, dt:date; t:TRIP; sICONTRACT) accepts CRTN(c) return CFRM(c)

exec c.Update (state:'former’); s.Update (amount: bl, e-date: dt); t.Update (fuel: f1) end
method cs-fa accepts CFRM(c) return CASK(c) exec c.Update (state:'ask’) end

class CAR ... methods cr-fr; cr-ru; cr-uf

class CAR implementation view RSVC(v)... ; view USDC(v)... ; view FREC(v)...
method cr-fr accepts FREC(v) return RSVC(v) exec v.Update (cond:'rescrved’) end
method cr-ru accepts RSVC(v) return USDC(v) exec v.Update (cond:'used’) end
method cr-uf accepts USDC(v) return FREC(v) exec v.Update (cond:'free’) end

Fig. 6: The Object Behaviour Nets for the CH Service
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routine Test [accept ASK(sn, tp, dt) return TST(sn, res, tp, dt)] use cICUSTOMER
exec c.Select (ssn=sn); if c=nil then res:='new' else res:='old' end Test

routine Insc [accept TST(sn, res, tp, dt), CSD(cname, caddress) return INC(sn, tp, dt), CASK(c)]
guard res='new’ exec c.ins-cs (sn, cname, caddress) end Insc

routine Rtrc [accept TST(sn, res, tp, dt), CFRM(c) return INC(sn, tp, dt), CASK(c)] guard c.ssn=sn and res="old’
exec c.cs-fa end Rtrc

routine Find [accept INC(sn, tp, dt), CASK(c), FREC(v) return CNT(cnt), CRDY(c), RSVC(v), TRCN(, t)]
guard c.ssn=sn and v.type=tp exec c.cs-ar (s,t); v.cr-fr; cnt:= s.cn# end Find

routine Usec [accept CRDY(c), RSVC(v) return CRTN(c), USDC(v)] use xICONTRACT guard c<cs>x<cr>v
exec c.cs-rb; v.cr-ru end Usec

routine Stcn [accept END(cnn, fl, bl, dt), CRTN(c), USDC(v), TRCN(s, t)
return CFRM(c), FREC(v), TRCN(s, t)]
guard s.cn#=cnn and s<for>t and c<cs>s<cr>v exec ¢.cs-bf(fl, bl, dt, s, t); v.cr-uf end Stcn

Fig. 7: Revised Specification of the Process Net for the CH Service
4.1 Form Analysis

Forms are formatted documents that are used within the organisation to manage communications (as
input to, as output from, and between functions). Since data are well-structured in forms, the design
process is easy and well-defined compared to the design process for non formatted requirements.

A complete methodology to transform form descriptions into D-schemata has been illustrated in [14].
We only summarise here the basic steps of this methodology for the sake of completeness.

The form model assumes that any form can be divided into areas. An area is a portion of the form
which contains information pertaining to the same argument or describing the same concept. Areas
may be further structured into subareas to any level of subdivision, and are composed of parts which
usually belong to one of the four following types:

1. Certificative parts, which contain information elements (such as signatures, dates, marks, and so
on) that certify the correctness of the form and are usually not relevant to the data design process;

2. Extensional parts, which consist of fields that must be filled in by users when the form is com-
pleted,

3. Intensional parts, which refer to names describing (in implicit or explicit way) the meaning of
values to be put in the extensional parts;

4. Descriptive parts, which specify instructions or rules to be followed when filling in the exten-
sional parts.

Problems with forms come from the great variety of different layouts they can present. Furthermore,
semantic information concerning the structure and the meaning of a form can be explicitly expressed
or can be contained in undocumented, implicit conventions used in the enterprise.

Usually extensional and intensional parts are mixed and interconnected in a form. A classification of
information that appears in extensional/intensional parts of a form depends upon the type of linguistic
representation used:

a) Parametric text: It is a text written in natural language with fields that have to be filled with values
extracted from suitable domains (e.g.: We certify that ...... ,bormmin ...... on...[ ../ ..... ). Once
such fields have been completed, the text appears as a set of coherent sentences in natural lan-
guage. Frequently, in such cases, the intensional information (name, city, date_of_birth,...) is
not explicitly present and must be elucidated during the design process;

b) Table: It is a bi-dimensional structure in which values of a given property (e.g. a temperature) are
represented in terms of two indexes (e.g. month: [1..12] and day: [1..31]) which identify each
position in the table. N-dimensional tables with n>2 can be expressed by means of sequences of
bi-dimensional tables;

¢) List: It is a sequence of all the possible values that a property can hold. The user selects one (or
some) of them when the form is filled in.

Descriptive parts concern rules and/or constraints on the way forms must be filled in with data. They
can be interconnected with extensional/intensional parts or they can be mentioned apart (e.g. foot-
notes). Sometimes, rules are not indicated at all since they are based on "obvious" conventions (e.g.:
Do not fill the field: "Number_of_pregnancies”, if the person is a male), and must be pointed out.
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Usually, rules are translated into constraints which can be expressed in the form D-schema or must be
enforced within application programs.

Starting from the forms collected in the Requirements Collection step of the Organisation Analysis
phase, a set of D-schemata (one for each form) is produced. The Form Analysis task consists of two
steps: (a) requirements analysis, in which a form is segmented into meaningful parts and relevant
concepts are extracted, (b) form design, in which concepts are modelled and the form D-schema is
constructed. The overall architecture of this task is given by Fig. 8.

During the Requirements Analysis step, forms are analysed to determine form areas and to classify
different parts according to the four types introduced previously. Areas may be further broken down
into subareas. For each area (or subarea), a name must be provided to express, in the most explicit
way, the meaning of the argument or concept it describes.

In Fig. 9, areas and subareas of a Process Plan form (see Fig. 11 of [5]) are enclosed within dashed
lines. Data in the first row of the form (version, date,...) are considered as certificative information.

foreach organisation unit:
foreach form:
Requirements Analysis
1. distinguish parts (certificative, descriptive, extensional/intensional)
2. select areas and subareas, and give them a name
3. extract elementary concepts (and their properties) and add them to the data glossary
Form Design
4. repeat
4.1 select a concept in the glossary
4.2 classify the concept
4.3 insert the concept in the form D-schema
4.4 update the glossary
until all the concepts have been proccssed
5. restructure the form D-schema

Fig. 8: Form Analysis Steps

Version n#:...... Designer name.:..................... Date:...... /...... /......
{ Partid  : FICBLOC Drawing# ~ :125  9—
| Part-name : blade Process-plan# : 27 jarea 1 : Part
,:::::::_"_"__:_:._:_.:_:_:_:_:_:_:.:-:_:.:_:_:{{_:_:_:_::::::::_‘::_—::_'::::::::::::: ____________ \\
‘ :
E sequence# | op-code |Operation name { Machine code NC program code E
[}
! 1 121 | tum diameter {1440-lathe FICBLOC_L1 i
' 2 214 | drill hole WS50-machining centre | FICBLOC_M1 !
| 3 127 | measuring 8202-B&S FICBLOC_CMMt | !
\ S R )

R

area 2 : Process Plan

Fig. 9: The Analysis of a Process Plan Form
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Then, relevant concepts must be extracted from the object form and inserted into the data glossary.
Each entry in the glossary describes a concept which consists of a code, a concept name, a brief de-
scription, a domain description, possible instances, synonyms and the abstraction hierarchies in which
the concept is involved. Description, synonyms, and hierarchies are used for a better understanding of
the meaning of the concept (see Fig. 10).

Concepts are related to names which appear in the intensional and descriptive parts, and to names of
areas and subareas. Usually, it is useful to cluster the concepts related to the same area. The specifica-
tion of concepts depends on the type of linguistic representation (parametric text, table, or list). For
parametric text, the names of fields (identifying the elementary concepts) appear implicitly or explicitly
within the text. For tables, users have to provide values "indexed" by means of (limited) value sets.
The meaning of values and indexing sets usually suggest the elementary concepts that are dealt with.
For lists, the name of the related property identifies the concept.

Care must be taken when filling in the glossary. The designer has to solve data synonym, homonym,
and duplication problems. Different glossaries must be cross-referenced to verify that concepts refer-
enced in one glossary are presented in the other with the same name [15]. These checks make the
methodology quite safe from requirements given by different users.

In the Form Design step, each elementary concept must be classified as a class, a structural or rela-
tionship attribute, or as a hierarchy, and inserted into the D-schema, using the glossary as a source of
information and cross-reference.

The classification process, which assigns a type to each concept, is complex and difficult to formalise.
A concept can be classified as a class if it has properties and it is related to other classes (e.g. it can be
considered as a subclass or a component of another class). It can be classified as an attribute if it has
no properties, it is natural to find another concept for which the concept is a property, and it is easy to
give sample values of it (with their corresponding domains) from the available examples.

The first concepts to be taken into account (step 4.1) must be the most relevant concepts referenced in
the glossary. Usually, we start from the concepts related to areas and subareas of the form (in most
cases, they correspond to classes), and then concepts of the same area are inserted in the D-schema.
At this point, the resulting classes must be connected introducing relationship attributes which can be
derived from the logical links existing in the real-world. The D-schema is completed by adding cardi-
nalities of the attributes and selecting suitable identifiers for the classes. For instance, Fig. 10 shows
the glossary and the resulting D-schema for the form of Fig. 9.

The D-schema of Fig. 10 can be interpreted in the following way:

» PARTSs (identified by "part_id") are worked according to their PROCESS-PLAN;

« a PROCESS-PLAN (identified by the number "pp#") consists of a set of PROCESS-STEPs re-
lated to the given PROCESS-PLAN by means of the relationship attribute "sp";

» a PROCESS-STEP corresponds to a row in the Process Plan form and it is described by means
of a progressive sequence number "s#" (which specifies the order in which operations must be
applied) and the OPERATION to which it is related;

» an OPERATION is identified by means of a code "oc" and can be related to several process steps.
The aim of last analysis step (restructuring) is to increase the clarity and the expressiveness of the D-
schema by means of data modifications. Since clarity and expressiveness are difficult to quantify, this
step is highly informal. Usually, a global analysis of the whole D-schema may suggest some restruc-
turing. For instance, if two classes have many properties in common (while representing different
concepts), they can be merged into a unique hierarchy. The introduction of new abstractions is justi-
fied when they add further clarity and simplicity to the D-schema. It is discouraged when "unnatural”
classes would result from this operation.

4.2 Record Format Analysis

Record formats describe the structure of data used in applications written in COBOL (similar descrip-
tions apply for other procedural programming languages such as C, FORTRAN or PL/1).

Record formats are declared in the DATA DIVISION part of the COBOL programs. Records are col-
lected into files and have a hierarchical structure, i.e. they consist of groups of fields, which in turn
can be composed of subfields, and so on. A field is described giving its level in the hierarchy and its
type or PICture (a code X or 9 specifies an alphanumerical or a numerical field respectively). A clause
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OCCURS n TIMES (with a given integer n) specifies repetitive fields, which can be nested to repre-
sent tables.

Starting from the record formats collected in the Requirements Collection step of the Organisation
Analysis phase, a set of D-schemata (one for each record format) is produced. The Record Format
Analysis task consists of two steps: (a) requirements analysis, in which record fields are classified and
their meaning is recognised, and (b) record format design, in which records and fields are modelled
and the record D-schema is constructed. The overall architecture of this task is displayed in Fig. 11.

code | name description domain | instance syn |area
D1 PART Part to be worked 1
D2 part_id part identifier Cc(10) FICBLOC 1
D3 _name part name C(20) blade 1
D4 dr# drowing number int(3) 125 1
D5 PROCESS PLAN | process plan 2
D6 pp# process plan number | int(3) 27 1
D7 PROCESS STEP | step of a process plan 2
D8 s# sequnce number int(2) 1,2,3,... 2
D9 mch_cd machine code C(10) 1440-1athe 2
D10 | NC_cd NC program code C(10) FICBLOC_L1 2
D11 | OPERATION Operation 3
D12 | oc operation code int(2) 121,214,... 3
D13 | op_nm operation name C(0) measuring 3
'o’.." pp# ---------- M S#
"l ? Plas ' ? " ? oC

: PROCESS O PROCESS N

PLAN ps ¥ sp| STEP o Vs (1PERATION

: (1, n)

] of (1, 1) Emch_cd op_nm

‘part_id NC_cd

? has (0, 1)
Hodr#
PART 1, p-name

Fig. 10: The Design of the Process Plan Form

foreach organisation unit:

foreach file described by a record format:

Requirements Analysis
1. classify fields
2. recognise the meaning of each field

Record Format Design
3. model records and fields and insert them into the D-schema
4. specify classes by introducing relationship attributes and hierarchies
5. restructure the D-schema

Fig. 11: Record Format Analysis Steps
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During the Requirements Analysis step, fields must be classified and the meaning of each field must
be recognised. Eventually, users can be interviewed or the program which uses the data can be in-
spected. A field can be classified (according to the type of information it contains) as:
a) Data field: It contains a value, extracted from a suitable domain, which describes a property of the
real-world entities represented in the file;
b) Pointer field: It contains a value which can be used to access another record (of the same or an-
other file);

c) Discriminating field: It contains a value used to indicate if the subsequent field(s) can take a value.
Sometimes, according to different values, some fields can be enabled or not, or their interpreta-
tion change. Discriminating fields can be used to express intricate programming rules that are dif-
ficult to understand. In this case, users interviews may help to elucidate the right meaning.

In the Record Format Design steps, a class is used to represent the record format of each file, and
simple, repetitive, or compound data fields are translated into simple, multi-valued, or aggregate
structural attributes, respectively. Fields which can be used to identify the records (keys) must be
recognised and translated into class identifiers. Pointers are used in COBOL to represent relationships
between records of different files or of the same file. Thus, they can be translated as relationship
attributes. Also aggregation hierarchies can be used in this case (component objects and compound
objects are described in different files). Discriminatig fields usually refer to generalisation hierarchies.
The D-schema is completed by adding the cardinalities of the attributes. Since there is a semantic gap
between COBOL descriptions and the rich set of abstractions that can be used in the M*-OBJECT data
model, completion of the D-schema usually requires additional interviews of users on the correct
meaning of all the concepts described in the D-schema. The last step (restructuring) aims at increasing
the clarity and the expressiveness of the D-schema by means of data modifications.

For instance, the COBOL specification of the data structures of the application program which man-
ages the data for the CH service is illustrated in Fig. 12 while Fig. 13 shows the D-schema for the bill
of materials (BOM) record format (see Fig. 12 of [5]).

DATA DIVISION. comments
WORKING_STORAGE SECTION.
01 CAR.
02 C# PIC 9(4). key
02 TYPE PIC X(20).
02 PRICE PIC 9(8).
02 COND PIC X. possible values: 'F',R','U’
01 CUSTOMER.
02 SSN PIC 9(10). key
02 CAR-USED PIC 9(4) OCCURS 10 TIMES. pointers to CAR
02 NT PIC 9(3).
02 NAME PIC X(10).
02 ADDRESS PIC X(20).
02 STATE PIC X(2). possible values: 'AS',RD'/RT,'FR’
02 TYPE PIC X(2). Discriminatig field (possible values: 'A',/N')
02 DESCRIPTION PIC X(20). agreement description (enabled if TYPE='A")
01 CONTRACT.
02 CN# PIC 9(8). key
02 CS PIC 9(10). pointer to CUSTOMER
02 CR PIC 9(4). pointer to CAR
02 FOR PIC 9(2). pointer to TRIP
02 AMOUNT PIC 9(8).
01 TRIP.
02 TN PIC 9(2). key
02 MADE-BY PIC 9(10). key - pointer to CUSTOMER
02 S-DATE PIC X(8).
02 E-DATE PIC X(8).
02 FUEL PIC 9(3).

Fig. 12: COBOL Specification of the Data Schema for the CH Service
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DATA DIVISION. |
WORKING_STORAGE SECTION. COMPRISES :_g tovel
01 ITEM. ‘ qty
02 PARTNO PIC 9(6).
02 DESC PIC X(20). item subitem
02 LEAD_TIME PIC 9(3).
01 COMPRISES.
02 LEVEL PIC 9(2). ] 1 -~
02 ITEM PIC X(10). (O part_no
02 SUBITEM  PIC X(10). ITEM O lead_time
02 QTY PIC 9(2). #—O desc

Fig. 13: The BOM Record Format and the Related Data Schema
5. The Dynamic Modelling Task

The aim of the Dynamic Modelling task is to analyse the unformatted description of the functional and
operational characteristics concerning those parts of the enterprise which have to be automated. They
result from interviews and written descriptions. Such types of requirements are expressed by means
of natural language sentences. Usually the focus is placed on the functional description of processes
and activities, i.e. they are used to finely describe, along with the organisation nets and life cycle nets,
the functions to be automated. Users have been encouraged to describe how organisation processes of
the object functions are executed and how data are captured, produced, or processed by the activities
which constitute the processes.
As noted in [15], natural language descriptions must be restricted according to suitable conventions.
The restriction process (or filtering process) aims at:

+ simplifying sentences;

« improving understanding and removing semantic ambiguities of the texts.
These requisites can be acquired, for instance, by:

- reducing repetitions, redundancies, and use of synonyms;

- resolving homonyms by introducing suitable substitutes;

- substituting pronouns with the corresponding nouns and separate complex sentences;

- making explicit elements being implicit;
applying restrictions to articles, quantifiers, plurals and so on.

A filtered sentence can be classified, according to the type of information it contains, as:

» data sentence: It describes data to be used by an activity of the organisation. It should be of the
form: <subject><verb><specification>, where the <verb> part usually refers to structural verbs
such as: is a, concerns, has, consists of, contains, includes, is made by, and so on;

 constraint sentence: It expresses a restriction that apply on data, and the <verb> part usually refers
to normative verbs such as: must, cannot, has to, and so on;

* activity sentence: It describes an activity of the organisation. It should be of the form:
<verb><specification>, where the <verb> part expressing the activity must be in the imperative
mode and usually refers to verbs such as: prepare, send, issue, evaluate, generate, and so on;

» event sentence: It describes the condition(s) that triggers an activity. If possible, its structure must
be of a form similar to a control structure of a programming language, like:

execute <activity> before/after <activity> ...

when <condition> do <activity> ...

if <condition> then <activity> else <activity> ...
Sentences must then be analysed to check whether completeness and consistency rules are satisfied.
The basic rules are the following:
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» each datum which is used by an activity sentence must be either described by a data sentence or
analysed in the static modelling task (i.e. it belongs to a form or a record format of the same or-
ganisation unit);

» each activity which is referred to by an event sentence must be described by an activity sentence;

« each activity must be co-ordinated, at least by one event sentence, to other activities or to temporal
conditions (each month, every 10 minutes, at the end of the year,...).

The third step concerns Data Design and Activity Specification. First of all, for each data item referred
to in the activity description, a type must be selected (class, attribute, or hierarchy) and then the item is
inserted into the activity D-schema. Classes must be logically connected by means of relationship at-
tributes or aggregation arcs, and the activity D-schema must be completed with attribute cardinalities,
identifiers, and so on.

The activity is then specified in terms of input and output data, and the manipulations on the database
which express the state evolution. More specifically, the activity descriptor specifies:

 input and output requisites (i.e. data and conditions that are necessary to allow the activity to be
carried out and data that will be produced);

« what are the life cycles involved in the activity (usually, they refer to "typical” objects which
change their state when it is activated);
how data are transformed.

The overall architecture of the Dynamic Modelling task is given by Fig. 14.

Filtering
1. group sentences related to the same organisation process and filter them

foreach process:

Requirements Analysis

2. analyse and classify sentences (data, constraint, activity, event)

3. verify sentences

Data Design and Activity Specification

4. foreach activity of the object process:

4.1 assign a type to each datum involved
4.2 construct the D-schema
4.3 analyse input and output requisites, and collect relevant life cycles
4.2 construct the activity specification

Fig. 14: Dynamic Modelling Steps

In Fig. 15, the sentences filtered from the description of the Execute process (see Fig. 12 of [5]) have
been classified and verified (types 'dt’, 'cn’, 'ac’, 'ev' stand for data, constraint, activity, event, re-
spectively).

As it can be noticed, the requirements have been integrated with new sentences and old sentences have
been splitted and modified to specify in a complete and consistent way the process description. In fact,
the Requirements Analysis step is usually an iterative process which "refines" user descriptions until
no more interpretation problems exist. It must also be noticed that, at this point, the procedural as-
pects, i.e. how operations are performed, must be known.

code sentence type
D1 | A fabrication lot is a batch of similar parts to be produced at
D2 | Each occurrence of a part of the same lot is a workpiece made of some material dt
Al | Manufacture (Work) a part according to a process plan x
D3 | A process plan is a predefined sequence of machining operations dt
A2 | Mount a part on the appropriate pallet a
D4 | Parts are processed on a given machine with a given tool at
A3 | Prepare (Prep) a part for the next operation x
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A4 | Dismount (Dism) a part from a pallet x
AS | Send back a part for the next operation x
V1 ] if the part is mounted then Work ev
V2 | if the process plan is completed then Dism else Send ev
V3 | when an operation is terminated then Prep ev

Fig. 15: Filtered Sentences for the Execute Process

In our example, the D-schema and the activity specification corresponding to the sentence A1 (Work)
are shown in Fig. 16.

Work : sentence Al
input : apart (mounted on a pallet)
the machine and the tool to execute the current operation on that part are available
output : part, machine, and tool are in the working state
life cycles : part, machine, tool
operations : update the status of part, machine and tool, and connect the given part to the
machine and to the tool actually in use
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Fig. 16: D-schema and Activity Specification for the Work Activity

In addition to explanations for Fig. 10, the D-schema can be interpreted in the following way:

PARTSs must be processed on a MACHINE with a proper TOOL. Each part is described by
means of a "stat"(us) (‘ready’, 'mounted’, 'working', 'worked', 'completed’) and a part number
np#n; :

to control the manufacturing process, two attributes of PART are used: (1) "nop” which contains
the total number of operations to be executed, and (2) "curr” which contains the sequence number
of the next step in the process plan to be performed;

OPERATIONS are described by means of a code "oc" and a "name". Attributes "om" and "re-
quires" relate each operation to the MACHINESs and the TOOL which can be used to perform it;
MACHINEs are described by means of an identification number "m#" and a "cond"(ition)
(‘available', 'working'). The attributes "mp" and "mt" specify, respectively, the part which is ac-
tually worked by a given machine and the tool which is used to work that part;

TOOLs are described by means of a tool number "t#" and a "cond"(ition) (‘available', 'work-
ing"). A tool can be "used-by" several machines for different OPERATIONS.
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6. The Local Design Task

In the Local Design task, a local schema is built for each organisation unit of all environments to be
automated. Starting from the D-schemata constructed in the Static and Dynamic Modelling tasks, a lo-
cal D-schema is generated. First of all, form and record format schemata are aggregated to produce a
draft D-schema. We start in this way because data appearing in forms and record formats are usually
highly structured. Their conceptual analysis is then easier, and the draft D-schema produced is more
reliable with respect to the D-schemata produced by the analysis of dynamics requirements (described
in a nonformatted way). The aggregation process is then iterated for all the D-schemata of the activities
related to the organisation unit being considered.

D-schemata aggregation (or integration) is a critical step because different schemata may be produced
by different designers and the same piece of reality can be perceived in different ways [6]. An ag-
gregation step between the draft D-schema and a D-schema to be aggregated is carried out by identify-
ing common concepts, but conflicts may arise because the two D-schemata may have different
"views" of the concepts they describe. Such conflicts may involve the name of the concepts
(homonyms and synonyms problems) and their type (concepts having the same name but having
different representation structures or different properties in the two D-schemata).

For instance, if the D-schemata of Fig. 10, Fig. 13, and Fig. 16 are compared, the following pairs of
synonyms can be considered: "name"” in Fig. 16 and "op_nm" in Fig. 10, "PART" in Fig. 16 and
"ITEM" in Fig. 13, "p#" in Fig. 16 and "part_no" in Fig. 13 or "part_id" in Fig. 10, while "name"
specifies the name of an OPERATION in Fig. 16 and the name of a PART in Fig. 10 (homonyms).
The methodology suggests for every case a set of possible solutions that must be evaluated with
users, and usually this implies that the D-schemata must be updated to unify the representations (see,
for instance, [6] for a detailed discussion of these problems).

When all conflicts have been solved, all the concepts which are common to the two D-schemata have
the same name and type, and can be merged. Classes with some attributes different in the two D-
schemata are merged by taking the union of their attributes. The aggregated D-schema which includes
all the concepts described in the component D-schemata is then obtained by superimposing common
concepts.

Restructuring may be applied to increase the clarity and the expressiveness of the D-schema by means
of data modifications.

For instance, the D-schema of the Flexible Manufacturing Cell (FMC) organisation unit is illustrated
in Fig. 17, for which the following observations hold:

* PARTSs must be mounted on a PALLET to be processed by a MACHINE. A pallet is described by
means of a "cond"(ition) (‘available’, 'working') and a pallet number "f#". Parts can be mounted
on different pallets (specified by the attribute "pf™), and a pallet can be used for different parts
(specified by the attribute "fp"). The pallet which is actually in use for a given part is specified by
the attribute "px" of PART;

* PARTSs can be made of (and can be components of) other PARTSs: the aggregation class
COMPRISES describes this situation;

* amachine can be a HANDLING-MACHINE or a MACHINE-TOOL.

Due to graphical reasons, the D-schema reports only the identifiers and the attributes which are
relevant for the control description. The complete specification is given by Fig. 18.
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Fig. 17: The D-schema of the FMC Organisation Unit

class PALLET identifier f#
member attributes f#: integer; cond: (‘available', 'working'); fp(1,n): PART inverse of pf;
fx(0,1): PART inverse of px
class PART identifier p#; part-id
member attributes p#, curr, nop, lead-time: integer; stat: (‘'ready’, ‘mounted’, 'working’, 'worked', ‘completed’);
p-name,part-id: string; has(0,1): PROCESS-PLAN inverse of of; pf(1,n): PALLET inverse of fp;
px(0,1): PALLET inverse of fx; pm(0,1): MACHINE inverse of mp
class COMPRISES composed of (item: PART, sub-item: PART) member attributes level, qty: integer
class PROCESS-PLAN identifier (of,pp#)
member attributes pp#: integer; ps(1,n): PROCESS-STEP inverse of sp; of (1,1): PART inverse of has
class PROCESS-STEP identifier (sp,s#)
member attributes s#: integer, NC-cd, mch-cd: string; so;: OPERATION inverse of os;
sp: PROCESS-PLAN inverse of ps
class OPERATION identifier oc
member attributes oc: integer; o-name: string; requires: TOOL inverse of for;
om(1,n): MACHINE inverse of mo; os(1,n): PROCESS-STEP inverse of so
class MACHINE identifier m#
member attributes o#: integer; cond: (‘available’, 'working'); mo(1,n): OPERATION inverse of om;
uses(1,n): TOOL inverse of used-by; mp(0,1): PART inverse of pm; mt(0,1): TOOL inverse of tm
subset HANDLING-MACHINE of MACHINE member attributes...
subset MACHINE-TOOL of MACHINE member attributes...
class TOOL identifier t#
member attributes t#: integer; cond: (‘available', 'working'); used-by(1,n): MACHINE inverse of uses;
tm(0,1): MACHINE inverse of mt; for(1,n): OPERATION inverse of requires

Fig. 18: The Specification of the FMC D-schema

At this point, the D-schema must be completed taking into account the life cycles of the objects re-
ferred to by the activities of the organisation unit. Life cycles describe the intrinsic behaviour of sys-
tem components, i.¢. the possible execution sequences of basic activities (activities which manage a

single component and change the component state). Such activities are usually good candidates to be-

come methods of the classes which describe the system components. The component state must be
expressed by an attribute of the class and the component evolution must be represented by an object
behaviour net which describes class methods. Pre- and post-states are in turn expresscd by means of

views on the D-schema.

23



Figure 19 shows the object behaviour nets for MACHINE, PALLET, PART, and TOOL objects
which are relevant for the process Execute of Fig. 15.

pc P& pp Pwd

FW I MW ™
faw lmaw l Itaw 1
fwa mwa 1 twa l
FA PR pm PM MA TA
PALLET PART MACHINE TOOL

Fig. 19: PALLET, PART, MACHINE, and TOOL Object Behaviour Nets

class PALLET ... methods faw(p/PART); fwa

class PALLET implementation
view FA(fIPALLET) where f.cond="available’; view FW(fIPALLET) where f.cond='working';
method faw(pIPART) accepts FA(f) return FW(f) exec f.Update (cond:'working', fx:p) end
method fwa accepts FW(f) return FA(f) exec f.Update (cond:'available’, fx:nil) end

class PART ... methods prm(fIPALLET); pmw(mIMACHINE); pwd; pdm; pdc
class PART implementation
view PR(pIPART) where p.stat="ready"; view PM(pIPART) where p.stat="mounted’;

view PW(pIPART) where p.stat='working'; view PD(p[PART) where p.stat='worked’;

view PC(pIPART) where p.stat="completed’;

method prm(fIPALLET) accepts PR(p) return PM(p) exec p.Update (stat:'mounted’, px:f, curr:1) end
method pmw(miIMACHINE) accepts PM(p) return PW(p) exec p.Update (stat:'working’, pm:m) end
method pwd accepts PW(p) return PD(p) exec p.Update (stat:'worked’, pm:nil, curr:curr+1) end
method pdm accepts PD(p) return PM(p) exec p.Update (stat:'mounted’) end

method pdc accepts PD(p) return PC(p) exec p.Update (stat:'completed’, px:nil) end

class MACHINE ... methods maw(p[PART;tITOOL); mwa

class MACHINE implementation
view MA(mIMACHINE) where m.cond="available’; view MW(mIMACHINE) where m.cond="working',
method maw(plPART;IITOOL) accepts MA(m) return MW (m) exec m.Update(cond:'working',mp:p,mt:t) end
method mwa accepts MW(m) return MA(m) exec m.Update (cond:'available’, mp:nil, uses:nil) end

class TOOL ... methods taw(mIMACHINE); twa

class TOOL implementation
view TA(UITOOL) where tcond="available’; view TW(ITOOL) where t.cond='working';
method taw(mIMACHINE) accepts TA(t) return TW(t) exec tUpdate (cond:'working', tm:m) end
method twa accepts TW(t) return TA(t) exec t.Update (cond:'available', used-by:nil) end

Fig. 19: PALLET, PART, MACHINE, and TOOL Object Behaviour Nets (continued)

The next step of this task is the construction, for every process of the object organisation unit, of the
process net which describes the behaviour of that process in compliance with the conceptual model.
All the process and behaviour nets constitute the F-schema of a given organisation unit.

To construct a process net, the activities which are components of the process must be modelled as
conceptual routines. Input and output requisites of an activity must be expressed by means of views
on the D-schema, taking into account the views which describe the state of the objects that are manipu-
lated by the activity. Finally, the operations described by the activity specification must be expressed
by calling suitable methods on that objects.
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The composition of the routines can be carried out taking into account event sentences of the process
(to discover causal relationships between the routines) and their input and output places. Correspond-
ing places (i.e. messages expressing the same system state and views describing the same objects in
the same state) must be recognised. The process net is then obtained by superimposing corresponding
input and output places of related routines. As in the Organisation Analysis phase, the methodology
suggests an outside-in strategy which starts from the process interface (consisting of "external”
places, i.e. messages and views exchanged with the external world or other processes), inserts the
routines in the schema which are enabled by the external places, then the routines enabled by them,
and so on.
For instance, starting from the description of the Execute process reported in Fig. 15, the following
routines can be recognised:

« Mount: A part (with a given part number 'np’ specified in the message In and ready to be worked)

is mounted on a pallet (which must be 'available');

»  Work: A part is processed via the execution of a sequence of specific process steps, each referring
to one operation to be performed by a machine with a proper tool. The actual operation to be exe-
cuted is specified by the number stored in the attribute "curr” of PART;

» Prep: At the end of each operation, the part must be prepared for the next operation; the routine
returns the machine and the tool used in the previous operation, and selects the next process step
by incrementing the attribute "curr";

« if all the operations on the part have been completed (the current value of "curr” is greater than the
total number of operations to be executed, stored in the attribute "nop" of PART) the part is dis-
mounted and is stored into an output buffer (routine Dism); otherwise, the routine Send sends the
part back into the cell for further processing.

In Fig. 20 the process net which models the Execute process (i.e. the activities of the Flexible Manu-
facturing Cell) is illustrated. Buffers containing parts at different stages of manufacturing (parts
'ready’ to be worked, 'mounted’ on pallets, 'worked', and 'completed’) are represented by means of
the views PR, PM, PD, and PC, respectively, views FA, FW and MA represent 'available’ and
'working' pallets and 'available' machines, respectively (all these views have been defined in Fig.
19). The view PMT(p,m,t) specifies a part p which is actually worked on a machine m with a tool t.
The message Out gives the number of a part whose manufacturing process has been completed.

The last step of this task is the validation of the process nets. Its aim is to validate the developing pro-
ject before the implementation begins so that modifications can be made to solve inconsistencies and
ambiguities. Since in the M*-OBJECT approach this step uses a simulation tool, this tool is described
in Section 9 of the paper.

7. The Environment Design and Integration Tasks

The Environment Design task integrates the descriptions of all the organisation units of the environ-
ments to be analysed. As usual, both static descriptions (local D-schemata) and dynamic descriptions
(local F-schemata) are integrated to produce the conceptual representation (environment schema) at the
environment level. A further integration step leads to the conceptual schema.

The integration of local D-schemata and of environment D-schemata requires more care than the intra-
unit aggregation carried out in the Local Design task because users belonging to different units and
environments may have different perceptions of the same concepts, giving rise to different representa-
tions. Moreover, local and environment D-schemata can be independently developed by different de-
signers at different times. As a consequence, D-schemata integration at the organisation unit and en-
vironment levels are critical tasks [6].

After the conceptual D-schema has been produced, local and environment D-schemata must be restruc-
tured to make them coherent with the representation of data chosen in the conceptual D-schema.

The co-ordination of process nets analyses the communications (both data and messages) between or-
ganisation units and environments, and between them and the external world. Since, at this level, the
internal structure of processes (as nets of places and routines) is irrelevant, during the analysis each
process is represented as a macro-process with the external places of the process as its input and out-
put places. For instance, Fig. 22 illustrates the macro-process corresponding to the Execute process
for the FMC unit.
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message In(np: integer) message Out(np: integer)
view PR... ; view PM... ; view PD... ; view PC...; view FA...; view FW...; view MA..;
view PMT(pIPART, mIMACHINE, ¢TOOL)

where p.stat="working' and m.cond='working' and t.cond='working' and p<pm>m<mt>t
routine Mount [accept In(num), PR(p), FA(f) return PM(p), FW(f))

guard p.p#=num and p<pf>f exec p.prm (f); f.faw (p) end Mount
routine Work [accept PM(p), MA(m), TA(t) return PMT(p,m,t)]

use xIPROCESS-PLAN, ylPROCESS-STEP, zIOPERATION

guard p<has>x<ps>y<so>z<om>m and m<requires>t and p.curr=y.s#

exec p.pmw (m); m.maw (p.,t); t.taw (m) end Work
routine Prep [accept PMT(p,m,t) return PD(p), MA(m), TA(t)] exec m.mwa; p.pwd; t.twa end Prep
routine Send [accept PD(p) return PM(p)] guard p.curr<p.nop exec p.pdm end Send

routine Dism [accept PD(p), FW(f) return PC(p), FA(f), Out(num)] guard p.curr>p.nop and p<px>f
exec num:=p.p#; p.pdc; f.fwa end Dism

Fig. 20: The Process Net for the Flexible Manufacturing Cell
The overall architecture of the Local Design task is given by Fig. 21.

foreach organisation unit:
Build the Local D-schema (Data schema)
1. aggregate form and record format D-schemata to obtain a draft D-schema

2. foreach activity: aggregate the activity D-schema to the draft D-schema to obtain the new
draft D-schema

3. construct the object behaviour nets of relevant objects

4. complete the local D-schema with methods specification

Design the Local F-schema (Functional schema)

5. foreach process of the object organisation unit:
5.1 model each activity of the process and identify the external places
5.2 construct the process net
5.3 validate the process net

Fig. 21: Local Design Steps
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Fig. 22: The Execute Macro-process

By composing the macro-processes of an environment the organisation functions of that environment
will be expressed as functional nets, i.e. nets of places and macro-processes. These nets constitutes
the F-schema of the object environment. A further composition step, starting from the nets of all envi-
ronments to be analysed, generates the conceptual F-schema of the object enterprise.

The composition of macro-processes can be carried out as described in the Local Design task for rou-
tines composition. It must be noted that functional nets are no more Petri nets because they do not
specify in which way (for instance, which order) messages and views are manipulated. Therefore,
these nets cannot be executed and can be considered as a data flow description of the environment
functions. Moreover, they can be related to the original organisation nets constructed in the
Organisation Analysis phase, the basic difference consists in the complete specification of the
"interfaces” between the environment functions in terms of messages and data defined on the
conceptual D-schema.

The overall architecture of the Environment Design and Integration tasks is given by Fig. 23.

Build the Environment D-schemata
foreach environment to be automated:
1. choose a local D-schema as the draft D-schema
2. repeat:
2.1 integrate a local D-schema into the draft D-schema to obtain the new draft D-schema
2.2 restructure the draft D-schema
until all local D-schemata have been processed
3. restructure the environment D-schema
Build the Conceptual D-schema
4. integrate the environment D-schemata into the conceptual D-schema
5. restructure the conceptual D-schema
Build Environment and Conceptual F-schemata
foreach environment to be automated:
6. foreach process of the object environment, introduce a macro-process
7. construct the functional nets of the object environment
8. construct the functional nets of the enterprise

Fig. 23: View and Environment Integration Steps
8. The Implementation Design Phase
The Implementation Design phase translates the conceptual description of the object enterprise (the

conceptual schema) into the specific data model supported by the DBMS in use. It is composed of two
major tasks: Logical Design and Physical Design.
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The aim of the Logical Design task is to translate the conceptual schema into a schema in which data
structures are expressed according to the logical data model of the DBMS chosen for the implementa-
tion.

The aim of the Physical Design task is to provide database designers with a framework of design
decisions that would lead to a "reasonable”, i.e. more or less optimised, physical design. Criteria are
given for choosing an "efficient” logical and physical representation among several possible
alternatives that can be derived from the same conceptual schema. No metrics exist to quantify these
design properties which are prone to subjectivity.

The conceptual schema, as the input to the Implementation Design phase, is an executable
specification of static, dynamic, and behavioural enterprise features. More specifically, the conceptual
schema comprises:

» the conceptual D-schema (data schema), which describes all the data relevant for the object
enterprise;

+ aset of environment D-schemata, in which are represented the data of the different enterprise en-
vironments of the CIM system. Usually, an environment D-schema is a consistent and commonly
accepted view of data for a significant part of the enterprise;

» aset of process and functional nets for each environment.

D-schemata refer to the structure of data and to the integrity constraints data must satisfy and will be
translated in terms of the target data model.

In the ANSI/X3/SPARC proposal of an architecture for DBMS [16], a DBMS is organised according
to three levels of data description, external, conceptual, and internal. At the external level, a database
is perceived as a collection of user views, each defined by an external schema. The conceptual level
provides a high-level representation of the whole database. To avoid any ambiguities, in the following
this level will be referred to as the logical level, and the data representation will be called the logical
schema of the database. At the internal level, a machine-dependent description of the database, defined
by an internal (or physical) schema, is provided. In this paper (and in several practical cases) both at
the external and logical level the same model of data, e.g. the relational model, and the same data
definition and manipulation language, e.g. the SQL database language [13], are used.

Typically, in the Logical Design task the conceptual D-schema is translated into the logical schema of
the whole database and the environment D-schemata are translated into external schemata.

In the actual version of the M*-OBJECT methodology, the relational model [13] has been adopted as
the target model. External and logical schemata are then expressed as relational schemata, and sugges-
tions to convert process specifications into SQL "skeleton" programs on the logical schemata
(obtained in the Logical Design task) are introduced. Skeleton programs deal with the manipulation of
the relational database only, then they have to be integrated with other procedures dealing, for in-
stance, with human-computer integration, security, and so on. The Physical Design task constructs a
physical schema, which specifies allocation parameters and access paths, i.e. a set of clustered and
secondary indexes on the physical relations.

Since the translation from an object-oriented model to the relational model is now a well-understood
problem [see, e.g. [17]), this phase will not be discussed in this paper. Details on the implementation
design are given in the original report of the M* methodology [18].

9. The Design Tool

This section briefly describes an experimental graphic-oriented tool for specification and validation of
information system design, called M*Designer, which supports the Conceptual Design phase.
M#*Designer is a graphical tool based on the WIMP paradigm (Windows, Icons, Menus, Pointing de-
vices) to govern user interaction with larger systems on workstations. The user shows "what to do"
by manipulating visual representation of objects. This approach has several advantages: users can
permanently see the data they are working on, they can check results of their actions, and they can
easily perform manipulations to modify the graphical representation by activating functions using
menus, labelled buttons, and dialog boxes.

The M*Designer environment consists of the following components (which are integrated by means
of a central repository):
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SCHEMA EDITOR - It is a visual data specification interface which allows the designer to build a
conceptual schema from scratch. The editor provides two modes of operation which correspond
to different windows.

The PICTURE MODE allows to build schemata by picking up graphical icons from a palette (which
contains symbols corresponding to object-oriented data constructs) and putting them into the
workspace provided by the picture window. Since the editor is syntax directed, incorrect
schemata (from a syntactic point of view) cannot be produced (for instance, it is not possible to
connect two relationship symbols by an arc).

The TEXT MODE allows to specify schema objects by entering textual definitions through object
templates (different object templates correspond to different object-oriented constructs).
Obviously, the two modes are equivalent and the editor keeps them synchronised.

The editor provides a simple backup facility with UNDO and REDO commands; UNDO acts on the
latest operations, while REDO reinstates operations reversed with UNDO. LOAD/SAVE commands
allows to backup/restore a complete schema.

SCHEMA EVOLUTION - It is a module which is invoked during schema design to change the
class definitions and/or the structure of hierarchies. Types of changes which have been imple-
mented include creation, deletion, renaming of classes, attribute and relationships, and alteration
of hierarchies. Graphic icons of classes and relationships can be repositioned in the picture win-
dow to improve visual readability.
NET EDITOR - It is a visual editor for the specification of process nets which is equivalent to the
schema editor (it provides the designer with the same functionalities). The two editors are syn-
chronised in the sense that objects which appear in the textual description of views and routines of
a net must be defined in the associated data schema.
SIMULATOR - This component is an executing environment (based on production rules) in
which the system database is stored into a working memory as a set of facts. A conceptual inter-
preter translates process routines into rules of the form:

if «condition» then «action»

in which the «condition» part consists of the conjunction of the predicates which appear in the in-
put view specifications and the guard clause of the routine, the «action» part contains the transla-
tion of routine actions into update operators on facts.

Rules are then scanned by an inference engine which selects all the rules that are satisfied
(enabled) by the set of facts; this step is based on the RETE algorithm for pattern matching [19],
modified to take full advantage of the particular form of process nets (in which the set of rules that
can be activated after a rule has been applied is given by the net structure). One of the enabled
rules is (randomly) selected and applied, and its consequences (described in the «action» section)
update the existing set of facts.

ANIMATOR - The simplest way to validate the system specification is to follow its behaviour by
watching the system state as time evolves. The animator is a module which supports all the inter-
actions with users and monitors the execution of simulation steps by calling the simulator. Users
can then follow in an interactive way routine's "firing" and receive all the data concerning the
evolution of both the database state and the event structure.

INITIALISER - It is a visual module which is activated by the animator when the validation ses-
sion begins. Object frames allows users to input into the system database the set of objects and
active messages which will be used as initial conditions in the system simulation. All input data
are checked against class specifications to verify that they satisfy all the integrity constraints ex-
pressed in the schema.

The system has been implemented in C** using a UNIX environment. It runs on SUN workstations.

10. Conclusions

M*-OBJECT is a step-by-step methodology applied to manufacturing information systems analysis
and design. It has mainly been developed for the needs of CIM consultants and industrial engineers. It
has been tested on several real-world case studies. From these case studies, some advantages and

disadvantages of M*-OBJECT have been noticed from a practical point of view.
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The advantages of M*-OBJECT include:

* it is a pragmatic, step by step methodology which is complete, i.e. it covers all database design
phases from general requirements specification and analysis to detailed physical database schema
specification;

« itis based on good modelling tools (both at the organisation and conceptual levels);

it deals with static, dynamic and behavioural properties of data, providing tools to validate the
conceptual data schema obtained;

« itinvolves an efficient and detailed system analysis and modelling phase useful to detect anoma-
lies in the operations of the functions of the enterprise and to prepare the automation phase;

it really helps communication between administrative and engineering personnel of the company
in terms of systems modelling and information modelling and processing.

Some disadvantages of M*-OBJECT are:
it is a complex methodology involving different modelling techniques;

e itis prone to human subjectivity in several steps of both the organisation analysis and the concep-
tual design phase;

» it must be interfaced with integrated tools dealing with complete CIM system design;

+ more general simulation tools are needed. In fact, since the time concept has not yet been intro-
duced, the PDN model admits only a "qualitative” simulation, which shows the evolution of
database states and process net markings.

Obviously, the complexity of the method is related to one of its qualities: completeness. Information
modelling and database design in production environments is not a trivial task, therefore models and
tools to support this activity must have some degree of complexity. From the drawbacks mentioned, it
is obvious that M*-OBJECT must be used by experienced people. This remark undertakes the imple-
mentation of an expert advisor system to be used as a tutorial advisor for teaching the principles of the
methodology and as an expert analyst for demonstrating the treatment of some experimental case
studies.

Concerning the introduction of the time concept in the PDN model, the extended model which is under
investigation will allow a description of the dynamic behaviour that takes into account not only the
state evolution but also the duration of the actions performed by the system. In this way, several
quantitative time-dependent parameters, such as throughput, can be modelled [20].

11. References

(1} Vail P.S. Computer-Integrated Manufacturing, PWS-Kent Publishing Company, 1988.

(2] Dileva A., Vernadat F., Bizier D. "Information System Analysis and Conceptual Database De-
sign in Production Environments with M*" Computers in Industry 9: 183-217, 1987.

[3] Dileva A., Vernadat F., Bizier D. "Enterprise Analysis and Database Design with M*: A Case
Study" Computers in Industry 11: 31-52, 1988.

(4] Rumbaugh J. et al. Object-Oriented Modelling and Design, Prentice-Hall, Englewood Cliffs,
NJ, 1991.

[5] Dileva A, Giolito P., Vernadat F. "The M*-OBJECT Methodology for Information System
Design in CIM Environments: The Organisation Analysis Phase” Res. Rep. INRIA and
Dipartimento di Informatica, Universita di Torino, 1993.

[6] Batini C., Ceri S., Navathe S.B. Conceptual Database Design: An Entity-Relationship Ap-
proach, Benjamin Cummings, 1992.

[7] Albano A. et al. "An Overview of Sidereus, a Graphical Database Schema Editor for Galileo" In
Schmidt J.W. et al. (eds.) Advances in Database Technology - EDBT ‘88, Springer-Verlag,
Berlin, 1988.

[8] Kuntz M., Melchert R. "Pasta-3's Graphical Query Language: Direct Manipulation, Cooperative
Queries, Full Expressive Power" Proc. of 15th Int'l Conf. on Very Large Data Bases, Ams-
terdam, 1989.

[9] Larson J. "A Visual Approach to Browsing in a Database Environment" IEEE Computer 19,
1986.

30



[10]
11
[12)
[13]
[14]
[15]
[16]
[17]

[18]

[19]
[20]

Reiner D. et al. "A Database Designer's Workbench"” In Spaccapietra S. (ed.)Entity-Relation-
ship Approach, North-Holland, Amsterdam, 1987.

Auddino A. et al. "SUPER: A Comprehensive Approach to DBMS Visual User Interfaces"” /FIP
2nd Conf. on Visual Database Systems, Budapest, Hungary, 1991.

Reisig W. "Petri Nets in Software Engineering” In Braucr W. et al. (Eds.) Petri Nets, LNCS
255, 63-96, Springer-Verlag, Berlin, 1987.

Date C.J. An Introduction to Database Systems, Vol. 1, 4th ed., Addison-Wesley, Reading,
MA, 1986.

Batini C., Demo B., DiLeva A. "A Methodology for Conceptual Design of Office Data Bases"
Information Systems 9(3/4): 251-263, 1984,

DeAntonellis V., Demo B. "Requirements Collection and Analysis" In Ceri S. (Ed.) Methodol-
ogy and Tools for Database Design, North-Holland, Amsterdam, 1983.

ANSI/X3/SPARC Study Group on Data Base Management Systems "Interim Report" ACM
SIGMOD Bulletin 7(2), 1975.

Markowitz V.M., Shoshani A. "Representing Extended Entity-Relationship Structures in Rela-
tional Databases: A Modular Approach” ACM TODS 17(3), 1992.

Dileva A., Vemadat F., Bizier D. "M*: A Methodology for Information System Analysis and
Database Design of Production Systems" Res. Rep. NRCC 26204, ERB-1000, National Re-
search Council of Canada, Ottawa, K1A ORS8, Canada, 1987 (98 pp.).

Forgy C.L. "A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem™ Ar-
tificial Intelligence 19(1), 1982.

Balbo G. et al. (Eds.) Proc. Int. Workshop on Timed Petri Nets, Torino, Italy, 1985.

31



A

Unité de Recherche INRIA Lorraine
Technopdle de Nancy-Brabois - Campus Scientifique
615, rue du Jardin Botanique - B.P. 101 - 54602 VILLERS LES NANCY Cedex (France)
Antennc de Metz
Technopble de Metz 2000 - Cescom - 4, rue Marconi - 57070 METZ (France)
Unité d¢ Recherche INRIA Rennes IRISA, Campus Universitaire de Beaulicu 35042 RENNES Cedex (France)
Unité de Recherche INRIA Rhone-Alpes 46, avenue Félix Viallet - 38031 GRENOBLE Cedex (France)

Unité de Recherche INRIA Rocquencourt Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 1.LE CHESNAY Cedex (France)
Unité de Recherche INRIA Sophia Antipolis 2004, route des Lucioles - B.P. 93 - 06902 SOPHIA ANTIPOLIS Cedex (France)

EDITEUR
INRIA - Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 LE CHESNAY Cedex (France)

ISSN 0249 - 6399

g



