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Innovations generation in the presence of unknown inputs: application to
robust failure detection

Ramine Nikoukhah
INRIA, Rocquencourt

The first step in innovations-based failure detection is the construction of an innova-
tions generator, i.e., a filter which, in the absence of failures, from the inputs and the
outputs of the system, generates a zero-mean white process with known covariance
called innovations. Decision on whether a failure has occurred is then made by mon-
itoring and applying statistical tests to this innovations process. In this paper, we
present a method for constructing innovations in the case where the model contains
unknown inputs and disturbances. Our solution is complete in the sense that it covers
all “singular” cases.

Génération de I'innovation en présence des entrées inconnues et son
application a la détection de pannes

Dans le cadre du probleme de détection de pannes pour les systeémes linéaires, on
considere la construction d’un générateur d’innovation, c’est a dire un filtre qui, en
absence de panne, génere un signal centré, blanc avec une covariance connue a partir
d’une connaissance partielle des entrées et des sorties du systéme. La solution qu’on
propose est complete dans le sens ou elle couvre tous les cas singuliers.
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1 Introduction

In recent years, a large variety of methods have been proposed for solving the failure detection
problem (see e.g. [1, 2, 3, 7, 9]). The problem of failure detection consists in detecting failures
in a physical system by monitoring its inputs and outputs. If no failure has occurred, the inputs
and outputs of the system follow a “normal behavior”, and thus the problem of failure detection
is one of testing this normality.

Theoretically, we could imagine constructing the set of inputs and outputs that constitute
normal behaviors in which case, detecting failures reduces to testing whether or not the inputs
and outputs of the system under consideration belong to this set. Construction of such a set of
time trajectories however is not desirable (or even possible). Instead, the membership test is done
by constructing a filter which has zero output if fed with inputs and outputs of the physical system
that belong to the set of normal inputs and outputs and a non-zero output otherwise, i.e., when a
failure has occurred. The output of this filter is usually referred to as residual and the filter, the
residual generator.

In practice, the situation is somewhat more complicated. First of all, the residual generator is
constructed from a deterministic model describing normal behavior of the physical system which is
almost never exact; the model is usually a linearized version of a non-linear model (which itself is
approximate) or is obtained by some identification algorithm. Furthermore, inputs and outputs of
the physical system have to be measured which means that they are subject to measurement noises
and furthermore, the physical systems can be affected by unmeasured disturbances. Because of
all these unmodeled uncertainties, we cannot expect the residual to be exactly equal to zero even
if no failure has occurred. The simplest way to get around this problem is to replace the test of
nullness on the residual by some type of treshold test, i.e., we decide a failure has occurred if some
function of the residual is larger than some specified treshold. This way, instead of associating lack
of failure to normal behavior, we associate it with sufficient closeness to some normal behavior.

The problem with this simple approach is that the decision does not take into account any
information that may be available concerning various noises, disturbances and model uncertainties.
But often, statistical information can be obtained on the noises and disturbances and even on
model uncertainties. To take into account this additional information, one can use a stochastic
dynamical model to describe normal behavior of the physical system. This type of model can
also be obtained from statistical input-output data when physical information is not available.
The residual in this case becomes a stochastic process which, in the absence of failures, has some
known statistical properties.

For linear models, the innovations process (associated with the Kalman filter) has been used as
residual. Nice properties of the innovations process are that it is zero-mean (decoupled from the
input) and it is white with known covariance (independent of the input). Once the innovations
are generated, the decision problem on whether a failure has occurred reduces to a hypothesis
testing problem on the whiteness of the residual (innovations) [6].

The drawback with the stochastic approach is its lack of robustness. Often physical systems
are subject to unmeasured inputs and disturbances or have unkown parameters which cannot,



in any reasonable way, be modeled as random processes or variables with known statistics. In
such cases, we would like the decision on whether a failure has occurred to be insensitive to these
unknowns. This means that the decision should not be based on any residual which is “corrupted”
by these unknowns (the residual should be decoupled from the unknowns). Residual generation
for deterministic models which contain unknown inputs have been extensively studied (see for
example [3, 5]).

In this paper, we assume that the normal behavior of the physical system can be modeled
by a dynamical system in which we allow both stochastic processes and unknown processes and
consider the problem of residual generation for such systems. In particular, we suppose that the
behavior of the system can be described by the linear, time-invariant stochastic model

z(t) Az(t) + Biu(t) + B2v(t) + Baw(t) + B4f() (1.1)
y(t) = Cz(t) + Diu(t) + Dav(t) + Daw(t) + Daf(t) (1.2)
where u and y represent respectively known inputs and outputs, w, a zero-mean unit covariance

white noise process, v, unknown inputs and disturbances, and f possible failures (with f set to
zero, (1.1)-(1.2) describes the normal (no failure) behavior of the system).

The vector process v contains both unknown inputs and unknown disturbances. In particular,

B [ Ba B v (t)
(52)wo= (2 22) ()

where v; represents unknown inputs, i.e., subset of inputs to which we do not have access for
failure detection, and v,, the unknown disturbances (nuisances) which may even include effects of
other types failures which we do not intend to detect (we may be interested in detecting a special
class of failures only: failure isolation). As far as we are concerned, there is no point distinguishing
v; from v,. What matters is that no a priori assumption is made concerning either of them which
means that v can take any value at any time. So any projection of v added to any signal destroys
the information in the signal (because the result is completely arbitrary) and thus it is clear that
the residual that we generate should be completely decoupled from ».

We do not make the assumption that A is stable. The model could very well be meaningful
even if A is unstable provided System (1.1)-(1.2) is placed inside a stabilizing feedback loop
(guaranteeing that the mean and covariance of z remains bounded for a bounded v). We do
assume however that (A, [ B, By ]) is stabilizable; this condition is necessary for the existence

of such a stabilizing feedback loop. We do not require detectability of (C, A) since y is not
necessarily the output used for the feedback.

Our objective is to construct a filter, called an innovations filter, which from the observed
quantities u and y generates an output decoupled from v, zero-mean and white (in the absence
of failure). From here on we shall refer to this residual as innovations. We have chosen this
terminology because, in the absence of the unknown process v, this residual coincides with the
usual innovations.

The outline of the paper is as follows. In Section 2, we define and characterize the notion of
innovations filter and in Section 3, we give a complete solution for its construction. The application
of innovations filter to failure detection is examined in Section 4.



We limit our development to the continuous-timne case but all the results presented in this
paper can trivially be extended to the discrete-time case.

2 Innovations filter

Definition 2.1 A finite-dimensional linear time-invariant system V is called an innovations filter
for System (1.1)-(1.2) if it is stable with the least number of outputs such that, in the absence of
failure,

1- its output
v(t)=V 2.1
2 ( y(t) ) @1)
is zero-mean, white and decoupled from v and v,

2- if V' is any finite-dimensional linear time-invariant system such that

wo=v (49 (22

is decoupled from u and v, then there ezists a linear system L such that

V' = LV. (2.3)

Condition 2- guarantees that the innovations filter does not destroy any useful information con-
tained in u and y; it kills off only parts that are corrupted by the unknown vector v, i.e., parts
that contain no information at all.

Even though generically System (1.1)-(1.2) does have innovations filters, there are simple
examples of systems that do not have innovations filters. We shall completely characterize this
class of systems later in this paper.

Example Consider the following very simple system in the absence of failures which contains
no known inputs # and no unknown inputs and disturbances v,

z(t) = -—z(t)+ w(t) (2.4)
y(t) = —=z(t) + w(?). (2.5)

It is straightforward to verify that there is no V satisfying 1- in Definition 2.1 but V'’ defined by
v 8 -y 2.6

satisfies 2-. This implies that (2.4)-(2.5) does not have an innovations filter. This does not
mean, of course, that we cannot detect failures by observing y, but simply that the steady-state
innovations-based failure detection considered in this paper cannot be used in this case.



An immediate consequence of Definition 2.1 is that, representing innovations filters by their
transfer functions as we shall do from here on, if V;(s) and V2(s) are two innovations filters for
System (1.1)-(1.2), there exists an invertible rational matrix £(s) such that

Vi(s) = Q(s)Va(s). (2.7)
So that, even though the innovations filter is not unique, all innovations filters (for the same

system) have the same row-image.

Lemma 2.1 V(s) is an innovations filter for System (1.1)-(1.2) if and only if V(s) is a full row
rank, stable rational matriz such that

I 0
Row-Im V(s) = Left-Ker ( C(sI— A)1By + Dy C(sI— A)1B; + D ) , (2.8)
0
H(s) = V(s) ( C(SI _ A)—IB3 + D3 ) (29)
is stable and
U= H(s)H™(s) (2.10)

is constant where H™(s) 4 HT(-s).

Proof In the transfer domain (in the absence of failures, f = 0), the output y can be expressed
as follows

y=(C(sI = A)"'By + Dy)u+ (C(sI — A)"'Bz + D3)v + (C(sl — A)"'B3 + D3)w  (2.11)

which implies that

v = V(s)(Z)

1 0 U
V(s) < C(sI— A)"'B; + Dy C(sI — A)Y"'By + D, ) ( v ) +H(s)w.  (2.12)

Suppose that V(s) satisfies conditions of the lemma. Then clearly v is zero-mean, white, with
covariance ¥. Thus V(s) fulfills the first condition in Definition 2.1. To show that it also satisfies
the second condition, note that V’(s) must satisfy

/ ! 0 _ .
Vi) ( C(sI — A-'By + Dy C(sI— A)'By+ D, ) =0 (2.13)
which implies that |
Row-Im V'(s) C Left-Ker ! 0 (2.14)
) ‘ C(SI - A)_l B, + Dy C(SI - A)—132 + D, ’ ’



But rows of V(s) form a basis for

I 0
Left-Ker ( C(sl = A)"'By + Dy C(sl — A)~'By + D, )
which implies that there exists L(s) such that

V'(s) = L(s)V(s). (2.15)
Now suppose that V(s) is an innovations filter, then from (2.12) we can see that

I 0
Row-Im V(s) C Left-Ker ( C(sI = A)'By + Dy C(sI — A)'By + Dy ) , (2.16)

H(s) is stable and H(s)H™(s) is constant. So all that remains to be shown is that the inclusion
in (2.16) is an equality. For that, note that we can always choose a V’(s) in the second part of
Definition 2.1 such that

"oy ) I 0
rank V'(s) = rank Left-Ker ( C(sI - A)'By + Dy C(sI— A)~'By + Dy ) . (2.17)
But, (2.3) implies that
rank V(s) > rank V'(s) (2.18)
which thanks to (2.16) implies (2.8) and the lemma is proved. |

3 Innovations filter construction

Theorem 3.1 V(s) is an innovations filter for System (1.1)-(1.2) if and only if

L -B; 0
V(s) = W(s) ( Dy I ) (3.1)
where W(s) is a stable full row rank rational matriz such that
Row-Im W (s) = Left-Ker —sl+A B (3.2)
C D,
and
¥ =H(s)H™(s) (3.3)
is constant where
H(s) = W(s) ( S ) (3.4)
3



Proof Let W(s) be a full row rank stable rational matrix satisfying (3.2)-(3.4), and let V(s)
be obtained from (3.1). We need to show that V(s) is stable, has full row rank and satisfies
(2.8)-(2.10). Clearly V(s) is stable since W(s) is stable. Let

W(s) = ( Wi(s) Was) ) (3.5)
then thanks to (3.2) we have that
Wi(s) = Wa(s)C(sI — A)™! (3.6)
which since W (s) has full row rank implies that Wy(s) has full row rank as well. But
V(s)= ( ~Wi(s)B1 - Wa(s)D1 Wa(s) ) (3.7)

which implies that V(s) has full row rank.

Row-Im W(s) =
Left-Ker ( —sI+4 B ) C
D,
Left-K -sI+A B, (81 - A)_lBl (SI - A)_le _
€ C D, 0 I -
By I 0
Left-Ker ( D )(C(sl A)'By+ D, C(sI - A)"'By + Dy ) (3.8)

which implies that

Row-Im V(s)

Row-Im W (s) ( :gll (I) )

I 0
< Lefker ( C(sI— Ay 'By + Dy C(sI - A)™' By + D, ) - (39)

But
-sI+A B,
-Im W = Left-K
Row-Im W(s) eft-Ker ( C D, )
= Left-Ker I 0 (3.10)
—C(sI - A)—1 C(sI - A)_le + Dy
and thus
dim Left-K ! 0 -
o LE-RE \ ¢(s1 - A)'By+ Dy C(sI—A)"'By+D; | T
dim Left-Ker I 0 =
m e —C(sI — A)~Y C(sI—A)"'By+D; |~
rank W(s) = rank V(s) (3.11)



the last equality being due to (3.7). From (3.9) and (3.11) we easily obtain (2.8).

0
H(s)= v(s)(C(sl—A)‘lB;,-{-D:; ) =
-B, 0 0
W(‘“)< —Di I ) ( C(sI — A)™'Bs + Ds ) -

W(S)( _SIC+ A g‘; ) ( (e = ";)-IBB ) = W(S)( gz ) (3.12)

which clearly shows that H(s) is stable and (2.10) is satisfied.

Now let V(s) be an innovations filter, i.e., let V(s) be stable, full row rank and satisfy (2.8)-
(2.10). What we need to show is that there exists a stable full row rank W(s) satisfying (3.1)-(3.4).
For that, let

W(s) = V(s) ( C(sIEA)‘l ‘}) (3.13)

From (2.8) we obtain

0
V(s) ( C(sI- A" [ By B, ] ) = —V(s)< 151 122 ) (3.14)

which thanks to stability of V'(s) implies that

0
Vi) ( C(sI- Ay [ By B, | )

is stable. From stability of V(s) and stabilizability of (A, [ By, B; ]) which follows from stabi-
lizability of (A, [ B, By ]), thanks to Lemma 3.1, we can show that

0
Vi) ( C(sI - A)~ )

and thus W(s) is stable.

Now let
V(s)= ( Va(s) Vals) ). (3.15)

From (2.8), we know that

I

V(s) ( Clsl — A)1By + D, ) = Vi(s) + Va(s)(C(sT = A)'By + Dy) = 0 (3.16)

which, since V'(s) has full row rank, implies that V(s) has full row rank which, in turn, since

W(s) = ( Va(s)C(sT — A)" Va(s) ) (3.17)

9



implies that W(s) has full row rank.

Finally,
W(s) ( -310+ g gi ) =V(s) ( g C(sI - A)O-lB2 + D, ) =0, (3.18)
W(s)( gi ) = V(s) ( : Clsl - A)O-133+ . ) = H(s) (3.19)
and
W(s)( :gll ? ) = V(s) ( g C(sI - A)O“B3+D3 ) ( :g; (1) )
= V(s ( sl - A‘;_IBI by ? ) = V(s) (3.20)

(the last equality follows (3.16)). Thus W (s) satisfies (3.1)-(3.4) and the theorem is proved. =

Lemma 3.1 Let U(s) be a stable rational matriz and (F,G) a stabilizable pair. Then, stability of
U(s)(sl - F)™'G

implies stability of
U(s)(sI — F)~1.

Proof There exists a coordinate transformation matrix T such that

TG = <g;) | (3.21)
TFT™! = (13‘ g) (3.22)

where all eigenvalues of Fy have negative real parts and that of F, positive or zero real parts.
Then, thanks to the assumption that (F,G) is stabilizable, we know that (F3,G2) is controllable.
Let

Ur(s) | _
( Un(s) ) =U(s)T (3.23)
so that
U(s)(sI — F)'G = Uy(s)(s] = F1) Gy + Ua(s)(s] — )G (3.24)

Since Uy(s) and (sI — F})™! are stable, stability of
U(s)(sI - F)7'G

implies stability of
UQ(S)(SI - Fz)_ng.

10



Noting that . '
s'Ua(s)(sI = Fp) T Gz = Ua(s)(s] = F)7' FY’ Gy, j =0, 1,... (3.25)

we can see that .
Ug(s)(sl - Fz)_l FQJGQ, ] = 0, 1,

is stable. Thus
UQ(S)(SI ot FQ)_I ( G2 F2G2 F:2712—1G2 )

is stable where n, denotes the size of F3. But
(G2 RG: .. B™'G,)

has full row rank (thanks to controllability of (F2,G2)) and thus has a right inverse which implies
that :
Uy(s)(sI — F,)™!

is stable. So,
U(s)(sI — F)™' = Uy(s)(sI — F1)™! + Ua(s)(sI — F3)™! (3:26)

is stable. m

In the rest of Section 3, we present a methodology for constructing W(s) in Theorem 3.1;
construction of the innovations filter V(s) is then done using (3.1). First, we consider the special
case where the system contains no unknown inputs and disturbances (equivalently, B, = 0 and
D, = 0), and give an explicit solution under a mild regularity condition. Then, we consider the
case of systems with unknown inputs and disturbances and present a method for reducing them
to the case of systems with no unknown inputs and disturbances. Finally, we lift the regularity
condition and give a complete solution to the problem.

3.1 System with no unknown inputs and disturbances

In this section, we consider the construction of the innovations filter in case there is no unknown
inputs or disturbances v (i.e. when By = 0 and Dy = 0). Thanks to Theorem 3.1, the construction
of the innovations filter comes down to the problem of finding W (s), a stable full row rank rational
matrix such that

Row-Im W(s) = Left-Ker ( (3.27)

-sI+ A
C

and

¥ = H(s)H™(s) (3.28)

1s constant where
H(s)= W(s)( gz ) (3.29)

We call such a W(s) a prefilter for system (A, B3, C, D3).

11



Definition 3.1 We say that (A, B3, C, D3) is regular if

—jwl+A B
c D3

) has full row rank Yw € IR U {o0}. (3.30)

Lemma 3.2 ([4]) Suppose (C, A) is detectable and (A, B3, C, D3) is regular. Then, the Riccati
equation

(A= SR™'C)P+ P(A-SR™'C)T - PCTR™'CP+Q-SR'ST =0 (3.31)

(SQT f{):(gz)(BsT DT ). (3.32)

has a stabilizing solution P (P is a stabilizing solution if A+ KC is stable where

where

K = —(PCT + $)R™! (3.33)

denotes the Kalman gain matriz).

The stabilizing solution of (3.31) can easily be constructed from the Hamiltonian matrix:

(3.34)

Mo A-SRIC -Q+ SR ST
“\ =CTR1C¢ -AT +CTR-1S8T }-

In particular, if we the rows of ( XY ) form a basis for the stable left eigenspace of H, then
the stabilizing solution P of (3.31) is given by

P=X"1Y. (3.35)

Theorem 3.2 Suppose (C, A) is detectable and (A, B3,C, D3) is regular. Then a prefilter W(s)
for (A, B3, C, D3) 1is

W(s)=C(sI-A-KkC) (1 K)+(0 I) (3.36)

where P and K are respectively the stabilizing solution of the Riccati equation (3.31) and its
associated Kalman gain matriz (3.33).

Proof By construction, W(s) in (3.36) is full row rank and stable. Moreover, it satisfies

W(s)( ‘SIC“LA > (cs1-a-kC)y (1 K)+(0 1)) ( ““’C+A >
= C(sI-A-KC)yY(-sI+ A+ KC)+C =0 (3.37)

12



which implies that (3.27) is satisfied because the dimension of the left null-space of C

equals the number of rows of C, i.e., the number of rows of W(s). So all that we need to show is
that

—31+A)

U = W(s) < &0 ) W™ (s) (3.38)

is constant. Using (3.36) we get

¥ = (C(sI—A—I\’C)_l(I 1\")+(° 1))(5QT fz)

X (( 1{ ) (-sI - A-KC)TcT + ( ? ))

CsI-A-KC) ™ (Q+ KST+SKT + KRKT)(-sI - A—- KC) TCT
+(ST+ REKT)(=s1 - A- KC)™TCT + C(sI - A- KC)""(S+ KR)+ R (3.39)
which using (3.31) and (3.33) yields
¥ = C(sI-A-KC) N Q+ KST+SK™ + KRKT + AP+ PA+ KCP + PCTKT)
x(—sI —A-KC)TCT+R=C(sI-A- KC)™!
x((A— SR™'C)P+ P(A- SR71C)T — PCTR™'CP 4+ Q - SR™I1ST) T
x(~sl = A= KC)TCT+R=R (3.40)
which completes the proof. n

Thus, an innovations filter for a detectable system in the absence of unknown inputs and
disturbances is

V(s)=C(sl —A~KC)' ( -KD1-B; K )+ ( -Dy 1). (3.41)

In this case, the output of the innovations filter, i.e., the innovations, coincides with the standard
innovations process generated by the Kalman filter.

When the pair (C', A) is not detectable, we have to discard the unstable non-observable part
of the system before constructing its prefilter. The following is a standard result in linear system
theory.

Lemma 3.3 Suppose (C, A) is not detectable. Then there exists an invertible matriz

[ T Th,
T = ( o T ) (3.42)
such that
o AL 402)
TAT™! = ( o a2
crt = (0 c®)
B,
TB; = (Bj(z)) (3.43)

13



where (C'2), A(22)) 45 observable (and thus detectable).
Moreover, if (A, B3, C, D3) is regular, so is (A(”), B;3), c®), D3).

Lemma 3.4 Suppose (C, A) is not detectable and let T, A®?), B3 and C® be as defined in
Lemma 3.4. Then W(s) is a prefilter for (A, B3, C, D3) if and only if

W(s) = Wa(s) ( Tg‘ ng ; ) (3.44)

where Wy(s) is a prefilter for (A(T‘"), B;®) @), D3).

The proof is straightforward and is omitted.

3.2 System with unknown inputs and disturbances

In the general case, construction of W(s) in Theorem 3.1 can be reduced to the construction of a
prefilter thanks to the following result:

Theorem 3.3 W(s) in Theorem 3.1 ezists if and only if it can be expressed as

W(s) = Wy(s)I' (3.45)

B ¢ 0
Dz ) ( 0 [) (3.46)

for some respectively full row and full column rank matrices T and ®.

where W,(s) is a prefilter for (A,, B3 ,,C,, D3,) where

—sI + A,- Bg',- =T —sl + A 32
C'r D3,r - C D2

Moreover, if

—jwl+ A B; Bj
C D, D3

) has full row rank Yw € IR U {co} (3.47)
then (A, B3y, Cr, D3 ) is regular.

The construction of W(s) is thus reduced to that of W,(s), i.e., the problem with unknown inputs
and disturbances is transformed into a problem without unknown inputs and disturbances. We
will present a simple recursive algorithm for constructing (A., B3, Cr, D3,) and I'. Since the size
of A, is smaller than the size of A, the resulting innovations filter has a smaller order than the
original system, i.e., we obtain a reduced order innovations filter.

Before proving this result, we present the following lemma.

14



Lemma 3.5 Let {E, F} be an arbitrary pencil. Then there ezist matrices M and N, respectively

Jull row and full column rank, such that if we let

E' = MEN
F' = MFN

1- E' has full column rank,

2- if N and N’ denote respectively left null-spaces of sE — F and sE' — F', then

N=N'M.

The proof is constructive and is given as an algorithm which is a key result of this paper:

Reduction Algorithm Let

RN ]
~ ~ I

While E' not full column rank do

e Find ¥ = (X, X;) be an orthogonal matrix column compressing E’
(Ey 0)=E'(5) I))
where E] has full column rank and let

(F] F})=F'(Z1 ).

¢ Find highest rank full row rank matrix L satisfying

LFZI =0.
o Let
E' = LE;
F' = LF
M = LM
N = NI

15
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(3.60)
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end do.

Clearly the algorithm ends in a finite number of steps because at each step the number of columns
of E' is reduced at least by one. Note that, at each step, the new pencil {E’, F'} is constructed
from the previous {E’, F'} by premultiplication by L, postmultiplication by invertible matrix X
and removal of zero columns. Thus, to justify the algorithm, all we need to show is that by
premultiplying (sE’ — F') by L, we do not change the dimension of its left null-space. But this
follows from the fact that L is the highest rank matrix satisfying (3.57) which implies that the
the row space of L includes the left null-space of (sE' — F').

Proof of Theorem 3.3 Let

E = (—01 8), (3.62)
Fo= (g gz), (3.63)
apply Lemma 3.5 to construct E’, F', M and N, find an invertible matrix T such that
TE' = ( —01 ) (3.64)
and let
r = TM (3.65)
® = N (3.66)
( fC‘: ) = _TF (= -TF®) (3.67)
( gz ) =T ( gz ) (3.68)
Then clearly
( —31(;: A gi: ) _ r( —sIC+A gz gz ) ( <§ ? ) (3.69)
and
Left-Ker ( ‘SIC+A gi ) = [Left-Ker ( sl CJ: A )} r. (3.70)

If W,(s) is a prefilter for (A,, B3+, Cr, D3 ), i.e., W,(s) is stable, has full row rank and satisfies

(3.71)

Row-Im W, (s) = Left-Ker < —SIC+ 4 )

and
¥, = H,(s)H.~(s) (3.72)
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is constant where
Ho(s) = W,.(s)< Bas ) (3.73)
D3,T
Then,
W(s) = W,(s)l (3.74)

satisfies conditions in Theorem 3.1: clearly W(s) is stable and has full row rank (because I' has
full row rank),

Row-Im W(s) = Row-Im (W, (s)I')
= (Row-Im W, (s))I'

= [Left-Ker ( _SIC+ Ar )] r

_ -sI+A B; )
= Left-Ker ( c D, ) (3.75)
and
_ B3 _ B;
H(s) = W(s) ( Ds ) = W, ( )F( Dy )
BSr
= Wr(S)( ’ ) = H,.(s) (3.76)
D3,r
which implies that
¥ =H(s)H™(s) = H.(s)H,”(s) = ¥, (3.77)
is constant.
Now suppose that W(s) satisfies conditions of Theorem 3.1, and let
W,(s) = W(s)I! (3.78)

where T'! is any right inverse of T (i.e., [Tt = I). Then, clearly W,(s) is stable. Also, since

Row-Im W(s) = [Left-Ker ( —SIC:*_ Ar )] r - (3.79)
which implies that
kerI' C ker W(s) (3.80)
we have that
W,(s)I = W(s)I''T = W(s) (3.81)

which in turn implies that W, (s) has full row rank. In addition,

Row-Im W, (s) Row-Im (W(s)I'")

(Row-Im W(s))I'
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_ —-sI4+ A B, t
= [Left-Ker ( C D, )] r

_ [Left-Ker ( ‘SIC,* A )} rrt

= Left-Ker ( —sl+ 4, ) (3.82)

and

Ho(s) = w,(s)( gz': ) - W(s)rfr( gz ) = W(s) ( gz ) = H(s) (3.83)

)

which implies that
¥, = H.(s)H,"(s)= H(s)H™(s) = ¥ (3.84)

is constant and thus W,(s) is a prefilter for (A,, B3, C;, D3,). This completes the proof of the
first part of the theorem.

To show the second part, simply note that from the reduction algorithm, we know that there
exists an invertible matrix A (which is just a product of ¥’s in the reduction algorithm) such that

(—31+A, olBs,) (-31+A B, Bg)(A 0)
T l=r . (3.85)
Ds 0 I

C, 0| D3, C D,
But I has full row rank which means that if (3.47) holds, the left hand side of (3.85) has full row
rank for s = jw, Vw € R U {00}, i.e., (A,, B3y, Cy, D3.) is regular. This completes the proof. &

Thanks to Theorem 3.3 and Lemma 3.4 we can reduce the problem of construction of W(s)
to the problem of construction of a prefilter for a detectable system. If this system happens to be
regular, we have an explicit solution given in Theorem 3.2. In the next section, we consider the
case where this system is not regular.

3.3 Prefilter construction in the irregular case

In the previous sections, we have shown that the construction of an innovations filter can be
reduced to the construction of a prefilter W(s) for a detectable system (A4, B,C, D) to which an
explicit solution was given when (A, B,C, D) was regular, in which case, the covariance of the
innovations ¥ was positive definite (= R). In the irregular case, the covariance of the innovations
process (if it exists), ¥, may or may not be positive definite. In fact, we can distinguish three
cases: the first case is the purely deterministic case, i.e., ¥ = 0. This happens when B = 0 and
D = 0. The second case is when B # 0 and/or D # 0 but

-sI+A B
C D

does not have full (generic) rank. In this case, the innovations process (if it exists) can be broken
up into two signals, one purely deterministic (i.e. zero) and the other purely stochastic (positive
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definite covariance). The last case is when

-sI+A B
C D

has full row rank but may loose rank for s = jw for some w’s in IR U {o0}. In this case, if W(s)
exists, ¥ is positive definite, i.e., the innovations process is purely stochastic just as in the regular
case. This can be seen by noting that

W(s) ( "SIC’LA g ) =(0 H)) (3.86)

from which and the full row rankedness of the two matrices on the left hand side of it we can
deduce that H(s) has full row rank which clearly implies that ¥ = H(s)H~(s) is positive definite.

3.3.1 Purely deterministic case

When B = 0 and D = 0, the prefilter W(s) is any full row rank stable matrix satisfying

Row-Im W (s) = Left-Ker ( —SIC-*_ A ) . (3.87)

It is straightforward to verify that such a W(s) can be constructed as follows:

Lemma 3.6 A prefilter W(s) for (A,0,C,0) is given by
W(s)=C(sI-A-KCy (I K )+(0 1) (3.88)

where K is any matriz such that A+ KC is stable (such a K ezists because (C, A) is detectable).

The output of the innovations filter in this case is identically zero (in the absence of failures)
and it corresponds to what is usually referred to as a parity check, analytical redundancy check,
etc...

3.3.2 Semi-deterministic semi-stochastic case

In this case, the innovations process can be broken up into two processes. One purely stochastic
(with invertible covariance) and the other purely deterministic (= 0).

Theorem 3.4 Let Wy(s) be a stable full row rank matriz and, B. and D, constant matrices such
that

(3.89)

. -sI+A B
Row-Im W, (s) = Left-Ker ( QC'+ D )
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and

1%@)(32):1. (3.90)
Then if Wy(s) ts a stable full row rank matriz such that
Row-Im W(s) = Left-Ker ( _SIC+ 4 gc ) (3.91)
and
¥, = HQ(S)H2~($) (3.92)
s constant where
Hy(s) = Wa(s) ( g ) ) (3.93)
then,
_ [ Wi(s)
W(s) = ( Wa(s) ) | (3.94)

is a prefilter for (A, B,C, D) .

Moreover, if no Wy(s) satisfying the above conditions ezists (Wy(s), B, and D, always ezist),
(A, B,C, D) has no prefilter.

Proof For the first part, what we have to show is that W(s) is stable, has full row rank,

Row-Im W(s) = Left-Ker ( _SIC+ A ) , (3.95)
and
¥ = H(s)H™(s) (3.96)
is constant where
H@:W@(g). (3.97)

Clearly W(s) is stable. To show that it has full row rank, since Wj(s) and W;(s) each have full
row rank, all we need to show is that if

J](S)Wl(s) + JQ(S)WQ(S) =0 (398)

then Jy(s) = J2(s) = 0. By post multiplying (3.98) by
-sI+A B
C D

Ja(s)Wa(s) ( kA s ) =0

we get

(3.99)
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which thanks to (3.91) implies that

-sI+A B B .
Ja(s)Wa(s) ( * c+ b D ) = 0. (3.100)
But
-sI+A B B°
C D Dc
has full row rank because if
-sI+A B B ,
P(S)( ¢ D D ) =0 (3.101)
then thanks to (3.89), there exists g(s) such that
p(s) = q(s)Wi(s) (3.102)
which implies that
BC
q(s) = q(s)Wa(s) ( D ) =0 (3.103)
which implies that p(s) = 0.
Thus
Jo(s)W;(s) = 0. (3.104)

So from full rankedness of W(s) we get that Jy(s) = 0 and from that of Wi(s) and (3.98) that
Ji(s) = 0. Thus W(s) has full row rank.

Also,
W(s)( ‘SIC+A > = ( %E‘:; > ( _3]C+ 4 ) =0 (3.105)

which mean that

Row-Im W(s) C Left-Ker ( —SIC+ 4 ) . (3.106)
Clearly,
rank Wi(s)=n+m—d (3.107)
where n and m denote respectively the size of A and the number of rows of C', and
_ -sI+A B .
d = rank ( C D ) (3.108)

and

_ -sI+A B,
rank W3(s) = n+ m —rank ( C Dc)

n+m-— (n-}-rank ( gc )) (3.109)
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But,

rank <_81+A B BC) = n+m

C D D,
rank ( gz ) +d

B.\ _
rank ( D. ) =n+4+m-—-d
from which we deduce that

rank W(s) = rank ( Wi(s) )

So,

W2(3)

= m

= rank Left-Ker ( c

—31+A)

which thanks to (3.106) implies (3.95). Finally, it is easy to see that

H(s) = ( Hzo(s) )

0 0
(o 0)

is constant. This completes the proof of the first part of the theorem.

which shows that

To show the second part, suppose that W,(s) does not exist but W(s) does, i.e.,

Row-Im W(s) = Left-Ker ( _SIC+ A )

and
U =H(s)H™(s)

is constant where

H(s):W(s)( g)

Let

be an invertible matrix such that

(3.110)

(3.111)

(3.112)

(3.113)

(3.114)

(3.115)

(3.116)

(3.117)

(3.118)

(3.119)



where ¥, > 0. If we now let

Wa(s) = ToW(s) (1 - ( gi ) w,(s)) (3.120)

it is straightforward to verify that this Ws(s) satisfies all the conditions of the theorem which is
a contradiction. Thus W(s) exists. [ |

Construction of Wi(s), B, and D, is done as follows. By applying Theorem 3.3 and if necessary,
Lemma 3.4, we can construct Wj(s) as

W](S): W,-,IF] (3121)

where I'; is a full row rank constant matrix and W, ;, a prefilter to a detectable, purely determin-
istic system (A, 1,0,C,1,0). Using the result of the previous section, we obtain

Wi(s) = (CralsI = Ary — KnCo)™ (1 Ky )+ (0 1)) (3.122)

where K, is any matrix such that A, ; + K,C,  is stable. Finally, matrices B, and D, must satisfy

I K B. 0 .
(0 Il)r‘(Dc>=(1) (3.123)
Bc _](
( D, ) = I‘l"( 11 ) (3.124)

The problem of construction of W5(s) as formulated in Theorem 3.4, thanks to Theorem 3.3
and if necessary, Lemma 3.4, reduces to the problem of constructing a prefilter W, , for a detectable
system (A, 3, B;2,C;2, D, 2).

which means that we can let

where [y is any right inverse of I'y.

Lemma 3.7 System (A, 3, Br2,Cr2, D, 3) is purely stochastic.

Proof Since (A,z2, Br2,Cr 2, D, 2) is obtained from the reduction of Problem (3.91)-(3.93), there
exist a full row rank matrix I'; and an invertible matrix A such that

—el+ Ay OBz _ o [ ~sI+4 B.|B\[A 0 .
( Cra 0|D,,2>‘r"'( c D, D>(0 1)‘ (3.125)

-sI+A B° B
C D¢ D

—sI + Ar,‘l Br,2
Cr,'Z Dr,'2
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which means that (A, 2, B2, Cr2, D;2) is purely stochastic. |

If in addition (A2, By2,Cr2, D;2) is regular, we can use Theorem 3.2 to construct W, ;
construction of prefilters for purely stochastic systems in the irregular case is the subject of the
next section.

3.3.3 Purely stochastic case

In this section, we consider the problem of prefilter construction in the irregular purely stochastic

case, i.e., when
—sI+A B
C D

has full row rank but looses rank for s = jwp for some wp in IR U {o0}. In this case, we say that
(A, B,C, D) has a zero at jwg.

It turns out that existence of finite and infinite zeros yield completely different situations and
thus each case must be analyzed separately. We consider the case of infinite wyq first.

System with infinite zeros (A, B,C, D) has an infinite zero means that D does not have full
row rank. Let us consider an example of such a system.

Example Consider the problem of constructing an innovations filter for the following system

Bt) = —2(t) + u(t) + w(t) (3.126)
y(t) = =(t). (3.127)
It is not difficult to see that
v(t) = —u(t) + 9(t) + y(t) = w(?) (3.128)
is an innovation which means that
Vis)=( -1 s+1) (3.129)

is an innovations filter. This result suggests that unlike in the regular case, the prefilter and
the innovations filter are not proper when (A4, B,C, D) has an infinite zero as confirmed by the
following result.

Lemma 3.8 Suppose (A, B,C, D) has an infinite zero. Then, every prefilter for (A, B,C, D) (if
any ezists) is improper.
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Proof Let
W(s)=( Wi(s) w"(s) ) (3.130)

denote a prefilter for (A4, B,C, D). Then,

(Wi(s) ws)) ( ““IC“LA g ) = (0 H(s)) (3.131)
which implies that

W(s)(sI - A) = W"(s)C
W'(s)B + W"(s)D H(s) (3.132)

and thus
W"(s) [C(sI — A)'B + D] = H(s). (3.133)

If we assume that W’(s) is proper then by taking limit as s goes to infinity in (3.133) we obtain
W"(00)D = H(o0). (3.134)

Since W”(s) is square and D does not have full row rank, H(oo) does not have full row rank which
implies that the covariance of the innovations process

W = H(s)H™(s) = H(co)H™(c0) (3.135)

is not positive definite. But this is a contradiction and thus, W”(s) and consequently W(s) is not
proper. ]

Thus, if we do not accept improper innovations filters, if in the construction of our innovations
filter we encounter infinite zeros we say that no innovations filter exists. But if we do accept
improper systems we should go ahead and construct them using the method given below.

-sI+A B
C D
have full row rank but loose rank at s = oo, i.e., (A, B,C, D) has an infinite zero. Then, there
ezists an invertible polynomial matriz I1(s) with no unstable zero such that

Lemma 3.9 Let

C'(sl — A)"'B + D' = 1I(s)(C(s] — A)"'B + D) (3.136)
where (A, B,C', D') has no infinite zero, i.e., D' has full row rank.
Proof If we admitted that II(s) had finite zeros at zero, then C’, D' and II(s) would be obtained
directly from Silverman’s structure algorithm [8], but we require that all the finite zeros of II(s)
lze stable. For that, consider the system (A — al, B,C, D) for some a > 0 and find C’, D' and
II(s) such that

C'(s1 = A+al) !B+ D' =1(s)(C(s] — A+ al)"'B + D) (3.137)
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where (A + al, B,C’, D') has no infinite zero. The existence of C’, D’ and fI(s), having zeros at
zero, is shown in [8]. It is now easy to see that C’, D’ and

(s) = (s + @) (3.138)
satisfy (3.136), (A, B,C’, D') has no infinite zero and II(s) has all of its finite zeros at —a. [ |

Construction of the polynomial matrix II(s) and constant matrices C' and D’ can be done
very effectively using a slight variant of Silverman’s structure algorithm.

Structure Algorithm Pick an a > 0 and let

¢’ = C (3.139)
D' =D (3.140)
®(s) = I (3.141)

While D’ not full row rank do

e Find L = ( Ly ) be an orthogonal matrix row compressing D’:

L,
D' L ,
( 0‘ ) = ( L; ) D (3.142)

where D’y has full row rank, and let

c L\ .,
( C,; ) = ( L; )C. (3.143)

o Let
r Cll
Cc' = (C’g(a1+A)) (3.144)
Dl
D = (0,21B> (3.145)
Il o
®(s) = 0 L (). (3.146)
Cy | (s+a)l,
end do.

The structure algorithm gives us C’, D’ and the polynomial matrix ®(s) which satisfies

( ISR ) = 9(s) ( kA ) : (3.147)

[1(s) is nothing but the (2, 2)-block of &(s).
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Theorem 3.5 Let C’, D' and ®(s) be obtained from the structure algorithm. Then, W(s) is a
prefilter for (A, B,C, D) if and only if

W(s) = W'(s)®(s) (3.148)

where W(s) is a prefilter for (A, B,C’, D).

The result follows the fact that ®(s) has a stable inverse. The proof is straightforward and is
omitted.

System with finite zeros

Theorem 3.6 Let (A, B,C, D) be detectable, purely stochastic and have finite zeros on the imag-
inary azis. Then (A, B,C, D) has no prefilter.

Proof Suppose a prefilter W(s) exists and let

(Wi(s) Wals) ) = W(s) ( i ) (3.149)

where K is such that A + K C is stable. Then

(Wi(s) Wals) ) < (1) " ) ( elrAy ) = (0 H)) (3.150)

which implies that
Wi(s)(sl — A— KC) = Wy(s)C (3.151)

and thus W;(s) is invertible (Wy(s) is square and full row rank) which means that we can rewrite
(3.151)

C = Wy 1 (s)Wi(s)(s] — A - KC). (3.152)
Now let sp denote a zero of (A, B,C, D) on the imaginary axis. Then
-sol+ A+ KC B+KD\ (1 K —-sol + A B (3.153)
C D “\o 1 C D 0
does not have full row rank which means that there exist a and b such that
T T —S()[ + A + 1\"6' B + 1\,D _ .
(o 7)) ( ¢ D =0 (3.154)

which implies that

fl
=)

al(—sol + A+ KC)+b7C
aT(B+ KD)+bTD

(3.155)
(3.156)

|
=
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which thanks to (3.152) and invertibility of —so/ + A + K'C implies that

bT Wy~ (s0)Wi(s0) = a” (3.157)
if W5(sp) is invertible. Thus, thanks to (3.156) we get
bT Wy~ (s0)(Wi(s0)(B + K D) + Wy(so)D) = 0. (3.158)
But b # 0 (otherwise
aT(—sol + A+ KC)=0 (3.159)
which contradicts invertibility of —so/ + A + KC) and so
H(s0) = Wi(so)(B + KD) + Wy(so)D (3.160)

does not have full row rank. If Wy(sp) is not invertible, thanks to (3.151) and invertibility of
—sol + A+ KC, we can see that
( Wi(so) Walso) )

does not have full row rank which again implies that H(sg) does not have full row rank.

But if H(sp) does not have full row rank, the covariance of the innovations process
¥ = H(s)H™(s) = H(s9)H™(s0) (3.161)

is not positive definite which is a contradiction. Thus, W(s) does not exist. ]

3.4 Summary of the innovations filter construction method

The procedure for the construction of an innovations filter for System (1.1)-(1.2) can be summer-
ized as follows:

a- First consider the problem of constructing W(s) in Theorem 3.1.

1- If B, or D, are not zero, use Theorem 3.3 to construct I' and system & such that
W(s) = W/(s)I' where W'(s) is a prefilter for S, if notlet I' = I and S = (A4, B3, C, D3).
2- If S is not detectable, use Lemma 3.4 to construct IV and §’ such that W'(s) = W"(s)I”
where W' (s) is a prefilter for &', if not let I = [ and &' = §S.
3- If S is regular, construct W”(s) using Theorem 3.2 and let W(s) = W”(s)['T. If not
i- If &' is purely deterministic, use Lemma 3.6 to construct W”(s) and let W(s) =
W"(s)I'T.
ii- If §’ is semi-deterministic semi-stochastic, break up the problem of construction of
W'(s) into two problems. In particular, consider constructing W"(s) as

W’(s) = ( %18 ) . (3.162)

For construction of W{’(s) and W3/(s) go to 1-. Their constructions never get back
to this point because they lead to a purely deterministic and a purely stochastic sys-

tem. Once you have W}'(s) and W}'(s) construct W”(s) and let W(s) = W"(s)['T.
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ili- If 8’ is purely stochastic and contains finite imaginary axis zeros, no innovations
filter exists.

iv- If 8’ is purely stochastic and contains infinite zeros, construct S” and the polyno-
mial matrix ®(s) using Theorem 3.5 such that W”(s) = W"'(s)®(s) where W"(s)
is a prefilter for §” where §” has no zeros at infinity. Then construct W*/(s) using
Theorem 3.2 and let W(s) = W"(s)®(s)I'T.

b- Let
V(s) = W(s)< :g; ; ) (3.163)

Note that innovations filter V(s) exists only if during its construction step iii- (and iv- if we
do not accept improper filters) is never reached, i.e., we never encounter the problem of prefilter
construction for a system with finite zeros on the imaginary axis (and infinite zeros if we do not
accept improper filters).

Also note that if a minimal innovations filter is desired, Lemma 3.4 should systematically be
applied in step 2.

4 Failure sensitivity

Even if an innovations filter does exist, it is not necessarily useful in detecting failures. Let us
consider the following example:

£(t) = —z(t) + u(t) + w(t) (4.1)

1 1 1 1
(1) - (Deos (oo ()0

This system does have an innovations filter, but the output of this filter, since it has to be decoupled
from v, ignores y, which is the only way through which f can affect this output. In this case,
the output of the innovations filter is not only decoupled from v but also from f which makes it
useless in detecting the failure f.

Definition 4.1 An innovations filter for system (1.1)-(1.2) is called failure sensitive if its output
s not decoupled from f.

It is not difficult to see that V() is not failure sensitive if and only if
V(s) 0 =0 o 43)
C(sI — A)"'By + Dy ’
from which we get the following result.

Lemma 4.1 System (1.1)-(1.2) has a failure sensitive innovations filter if and only if every in-
novations filter for this system is failure sensitive.
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Thus failure sensitivity is a property of the system and does not depend on the choice of the
innovations filter.

Lemma 4.2 System (1.1)-(1.2) has failure sensitive innovations filters if and only if

W(s) ( D ) £0 (4.4)
where

W(s)=V(s) ( Clolo Ay T ) (4.5)

(which is just a W(s) in Theorem 3.1) and V(s) is any innovations filter.

Proof The output of the innovations filter is

”:V(s)(Z) “+V(3)(C(31-A)0—‘B4+D4)f

B
g+ W(s) ( D, ) f (4.6)
4
where p is the innovations in the absence of failures (it is zero-mean white with covariance ¥). B

If we let (A, By, Cy, Dy) be the computed realization of W(s), the output of the innovations
filter can be expressed as follows

Y1) = Cuz(t) + Duf(t) + u(d) (4.7)
2t) = Awz(t)+ Buf() (4.8)
where
B, = Bw( gi) (4.9)
_ B,
o o

and u(t) is zero mean white with covariance ¥. Using (4.9)-(4.10) and a-priori assumptions on
possible failures f(t), it is now possible to develop necessary statistical test to develop the second
step of the failure detection algorithm.

5 Conclusion

The results we have presented in this paper generalize and unify the innovations approach and the
robust deterministic approach to residual generation for failure detection. These two approaches
can be obtained as special cases in our problem formulation. We have given a complete state-
space solution to this problem and a solution method which is based solely on robust matrix
manipulations.
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