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Déduction Automatique avec des Opérateurs Associatifs et Commutatifs
Automated Deduction with Associative Commutative Operators

Nous proposons un nouveau svsteme d'inférence pour la déduction automa-
tique avec le prédicat d'égalité et des opérateurs associatifs et commutatifs.
Ce systeme est une extension de la stratégie de paramodulation ordonnée.
L associativité et la commutativité ne figurent pas commnie les autres axiomes.
Elles sont gérées par l'algorithme d’AC-unification et les regles d’inférence.
Nous prouvons la complétude réfutationnelle de ce systeme par des techniques
d’arbres sémantiques. Nous montrons également que notre systeme est com-
patible avec des regles de simplification.

We propose a new inference svstem for automated deduction with equality
and associative commutative operators. This system is an extension of the or-
dered paramodulation strategv. However, rather than using associativity and
commutativity as the other axioms, theyv are handled by the AC-unification
algorithm and the inference rules. Moreover, we prove the refutational com-
pleteness of this system without needing the functional reflexive axioms or
AC-axioms. Such a result is obtained by semantic tree techniques. We also
show that the inference system is compatible with simplification rules.

déduction automatique. théories associatives et commutatives, paramodula-
tion, résolution, réécriture

automated deduction, associative and commutative theories, paramodulation,
resolution. term rewriting
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Abstract

\We propose a new infereiice svstem for automated deduction with equality and associative
commutative operators. This system is an extension of the ordered paramodulation strategy.
However. rather than using associativity and conunutativity as the other axioms, they are
handled by the AC-unification algorithm. Moreover. we prove the refutational completeness
of this system without needing the functional reflexive axioms or AC-axioms. Such a result is
obtained by semantic tree techniques. We also show that the inference system is compatible
with simplification rules.

Keywords : automated deduction, associative and commutative theories, paramodulation,
resolution. term rewriting.

1 Introduction

Automated deduction with equality and associative commutative (AC) operators (i.e. binary
operators f satisfving the axioms : f(f(w.y).z) = flz, f(y.2)) and f(z.y) = f(y,2) ) has
heen considered as a difficult problem. The reason is that the presence of AC-axioms increases
dramatically the number of possible deductions. For instance, there are 1680 ways to write the
following term f(ty, f(t,. fts. f(ty.45)))) . where fis an AC-operator and t;, t3, {3, by, {5 are
different constants.

The approach we propose for dealing with AC-axioms is to work in the AC-congruernce
classes, to employ associative commutative identity checking, pattern matching and unification,
and to work only at useful positions (for AC-operators}, notion introduced by Lai [Lai89] and ap-
plied to completion modulo AC by Domenjoud {Dom91]. This idea of building axioms within the
anification procedures has been first initiated by Plotkin [Plo72]. In the context of automated
deduction. it has been investigated too by Lankford [Lan79a], Stickel [Sti84], Anantharaman
and al. [AHM®9]. Petermann [Pet91]. However these works essentially refer to practical ex-
perimentations, and do not account for completeness results of the inference systems that they
study. In the following, we focus on giving a complete set of inference rules for first order logic
with equality and built-in AC-unification. The recent development of efficient AC-unification
algorithmms [Sti81, BHKT8R8] strongly argues in favour of the effectiveness of our method.

Our inference svstem includes resolution and paramodulation to deal with equality. Para-
modulation performs substitution directly by replacing one argument of an equality atom by

*A preliminary version of this paper was presented in the International Workshop FAIR’91 [RV91]



the other one, when the former occurs in some clause ; it has been introduced by [RW69]. Some
important, refinements have been proposed by introducing a simplification ordering on terms
and forbidding the replacement of a term by a bigger one. These aspects are fully developed
in [Pet83, HR91]. Here, we also confine the term replacement step of our paramodulation rules
by a simplification ordering. However, for the sake of completeness we also require this ordering
to be total on the set of AC-congruence classes and to he AC-compatible,

The refutational completeness of our set of rules is derived hy the transfinite semantic tree
method of [Rus89]. Semantic trees represent the set of Herbrand interpretations for formulas
in clausal forin. When a tree associated to a formula is empty then we can be sure that the
empty clause can be derived, and therefore the initial formula is unsatisfiable. We have been
aware recently that a similar result has been derived independently by Paul [Pau92). His proof.
unlike ours, involves some reasoning with AC-congruence classes, aud relies on an unpublished
work of Lankford ( Canonical inference, 1975). Also. Paul has not proved the compatibility of
his system with simplification rules. More recently, Wertz [Wer92] has developed two methods
for theorem proving modulo a set of equations L. These methods. unlike ours. create explicitly
extended clauses from an initial set of clauses. We do not know vet how these methods compare
with ours.

Associative commutative theories have been thoroughly studied in the context of term rewri-
ting systems. We will not review here the Knuth-Bendix method [KB70]. Let us just mention
that it has been extended to incorporate associativity and commurtativity by [LB77. PS81, JK86].

The layout of this paper is as follows : Section 2 presents an overview of our approach
on two examples. Section 3 summarizes the basic material which is relevant to this work.
In particular we give some details on the construction of orderings which are AC-compatible
and total on the Herbrand Universe. These orderings are fundamental to build transfinite E-
semantic trees (Section 4), and to define the refutationally complete inference system described
in Section 5. The proof of refutational completeness is developed in Section 6. Moreover, we
introduce reduction rules, like subsumption and simplification. and we prove that they maintain
the refutational completeness in Section 7. Section 8 gives some information on DATAC, system
that is an implementation of our inference rules. The software is written in CAML Light and

runs on SUN, HP and IBM PC Workstations.

2 Introducing examples

In this section, we first show a simple example to introduce associative and commutative theories
and to explain the main ideas of our method. Then. we can see that non-trivial consequences
can be hidden by the AC-axioms.

2.1 A simple example

Here is a simple example to show the problems due to the presence of the AC-axioms and to
yresent our approach for solving them. We consider the following svstem of equations § :
| Pl & g 3

a+b=d (1]
c+b=c¢ (2)
gle +d) = hia) (3)
ol +a) = h(D) (4)

ro



ay

assuming that + is an AC-operator, a, b, ¢, d and ¢ are constants, and ¢ and / are unary
operators. Now, let us prove the following theorem @ h(a) = h(b) .

The first step is to add to § the inequation  h(a) # h(b) (Th) and let us try to find a
contradiction,

With the classical paramodulation method, we just add the AC(+) axioms to S and perform
inferences in the empty theory, i.e. with syntactic unification.

(r+yltz=a+(y+2) (A)
r+y=y+u ‘ (C}

The refutation of the new system is performed as follows :

para (2, A) ce+z=c+(b+z2) (5)
para (C,5) e+z=c+(z+b) (6)
para (1,6) c+ae=c+d (7)
para (7, 4) glc~d) = h(b) (8)
para (4, 8) h(a) = h(b) (9)
resol (9, Th) O (10)

where para (1, j) means a paramodulation from the clause (i) into the clause (j), and resol (1. )
means a resolution between the clauses (i) and (3).

We notice that a third of the steps needed for the refutation of the system uses the AC-
axioms. However, when dropping these axioms we must replace them by other mechanisms.
For instance, using unification modulo AC allows to suppress the step using commutativity.
However modifying the unification algorithm is not sufficient. The last problem is to avoid the
creation of extended equations, which results from a paramodulation in the axiom of associati-
vity. Extended equations (or clauses) dramatically increase the number of possible deductions.
Therefore, instead of introducing a special control (as the protection of extended rules in AC-
completion procedures [PS81, JK86]), we rather build these extended equations on the fly. that
is. when they are immediately followed by a paramodulation step. Hence. we have designed an
inference rule, named extended paramodulation, which, given two clauses (f(A.B)=C)V P
and (f(D,E)= F)Vv(Q .gencrates an instance of the clause (f(C,G) = f(F, H))VvPVQ when-
ever fis an AC-operator and f(f(A, B),G) and f(f(D, E), H) are unifiable modulo AC. This
rule may bhe viewed as a generalization of the superposition rule of the Buchberger algorithm
for computing Grobner bases. Relations between Grobner bases technique and term rewriting
techniques have been studied in [Biin91].

Now the refutation of the previous system is carried out as follows :

cxt-para (2. 1) at+e=d+c (3)
para (5.3) gla+¢e) = h(a) (6)
para (4.6) h(b) = h{a) (7)
resol (7, Th) C (8)

Hence we have reached our goal @ all the deduction steps involving AC-axioms have now
disappeared. 'This very last refutation is the one that can be obtained when applving our
inference rules to be introduced in Section 5.



2.2 A non-trivial example

Example 2.1 has introduced mechanisms for simulating AC reasoning. Here, we apply these
mechanisms to a svstem which is more difficult to solve. Let 5 be the set of clauses :

r+a=b (1)
P(b + ¢) (2)
- P(b) (3)

where a. b and ¢ are constants. + is an AC-operator, and P is a predicate symbol.
We assert that S is incoherent in AC-theories and we prove it as follows :

crt-para (1. 1) r+b=b+y (4)
para(l.4) T+b=0b (5)
para (3. 2) P(b) (6)
resol (6. 3) 0 (7)

Let us detail the extended paramodulation step :
r+a = b
| extension of (1)
r+a+y = b+y
| reduction by (1)
z+b = bty (4)

More generally, the notion of extended equation (or clause) is essential in AC-theories, in
order to reveal some consequences that follow from the AC-axioms.

3 Terms and orderings

3.1 Notations and preliminary notions

Let F be a finite set of functions with arities, and let X be a countably infinite set of variables.
The algebra of terms composed from F and X is denoted by T'(F, X'). We use T(F') for the set
of ground terms (the Herbrand universe).
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Let P be a finite set of predicate symbols including the equality predicate “=". The set
of atoms A(P,F,X)is {p(t1,....ln) | p € Pand t; € T(F,X)}. We denote the set of ground
ators (the Herbrand base) by A( P, F). An equality atom is an atom whose predicate symbol is
~=". Throughout this paper, we assume that “=" is commnutative in the sense that we do not
distinguish hetween the atoms (s = ¢) and (¢t = s). However, usually, we write (s = ), instead
of (1 = s), when s is greater than ¢ for some ordering on terms. A [iteral is either an atom (A)
or the negation of an atom (—A), and a clause is a multiset of literals. In general we use the
term object to indicate a term, an atom, a literal, or a clause, and the term ground object to
indicate a ground term, a ground atom, a ground literal, or a ground clause. For a clause (',
Atoms(C) represents the multiset of its atoms.

We assume that the operators from a given subset I74¢ of I are associative and commutative,
which means that for [ € Fac the following axioms are implicit in the theory to be considered :

J(f(z,y). 2) S, fly,2))
[z, y) fly.x)

AC(S) {
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The congruence on T(F.X). generated by the associative commutative equations satishied
by the svmbols in F4c. is written = 4¢ and is called AC-equality. We write AC for the union of
all AC(f) for f € Fac.

Let V/(¢) denote the set of variables appearing in an object 1.\ substitution is a mapping
o from X to T(F.X) such that o(r) # ¢ for only finitely many variables. We use Dom(a)
to denote the set {x | a(r) # r}. We further assume that for every &+ € Dom(a). V(a(e))N
Dom(o) = ). The substitution o is applied to an object t if all variables & in { are replaced by
a{x). The result is denoted by to. A substitution @ is an AC-unifier of two objects s and ¢ if
sa =4¢ to . The set of most general AC-unificrs (AC-mgus) of two terms ¢ and ¢ is defined
by : for every AC-unifier 8 of s and ¢. there exists an AC-mgu p such that € is AC-equal to the
composition of a and p (written op) : it means that : for each term u. w8 =4¢ (uo)p. In the
empty theorv, a mgu is unique upon renaming of variables.

To express subterms and substitutions more effectively. we use positions. Envision a term

represented as a tree : a position (or occurrence) in a term indicates a node in the tree. Positions
are usually represented as sequences of integers. Let p be a position, we use t), for the subterm
of t at p. More precisely. {|, =t where ¢ is the empty position, and g{ty,....1.), , = 4, . We
also use s = s[p — t] (or s[t],) to denote that s is a term whose subterin at position pis t. For
convenience, we express it by s = s[t] if the particular position is not important. A subterm
of t is proper if it is distinct from {. The function fop(t) returns the functional operator at the
top of the term (. if ¢ is not a variable : otherwise. top(2) is undefined.
We define Occeomax(t, f) as follows : if f € Fyc then it is the set of occurrences o in t such
that. top(t),) = fand. il o= o'.i . f is different to top(?), ) if f & Fac , it is the set of all
occurrences of the operator f in t. This corresponds to the notion of useful positions defined by
Lai [Lai89] and Domenjoud [Dom9l].

We denote by C (resp. Nj and resp. U) the relation of inclusion (resp. intersection and resp.
union) of multisets. and by C4¢. Ny and Uy the analogous relations where AC-equality
replaces svntactic equality for comparing objects.

We recursively define fop AC _subtcrms(t. f). where t is a term and f an AC-operator,
by © if ¢ is a variable or top(1) # [ . then top_AC _subterms(t, f) is equal to {t} ; else,
top_AC subterms(t, f) is the multiset top_AC subterms(t),, f) Uirac top-AC subterms(i,, f),
since an AC-operator has exactly two arguments. For instance, top_AC _subterms( f(a, f(f(a,
:1:),(/(1}))),f) = {!1.(1,,.'17,{/(1))}.

Given four terms /1. I, wy and w, such that wy =4¢ wy . wy = wn[ly] and w2 = wolly] ,
we say that [y and [y are at AC-dependent positions if there is no term w, AC-equal to wy, such
that © w = w[ly],, = w(l2],, . and p; and p, are independant positions, i.e. p; # ¢.p; and
P2 #q.p1. for a position ¢. Such a term w will be written w(li],, [l2],,-

3.2 Compatible orderings for associative-commutative theories

Orderings are used to define restricted versions of resolution and paramodulation. Firstly,
resolution and paramodulation need only 1o be performed on the maximal literals. Secondly,
when using an equality in a clause 10 paramodulate, only the largest of two terms in an equality
needs to be considered for paramodulation. Our set of inference rules, to be introduced in the
next section. can bhe proved refutationally complete if it is defined with respect 10 a complete
simplification ordering.

Let us recall the definition of these orderings :



Definition 1 A transitive irreflezive relation > on the set of terms is a complete simplification
ordering (CSO, for short) if
1. > is total on the set of ground terms

2. > is well-founded

3. (monotonicity) s > implies w(s] > wt]
4. (subterm) for any proper subterm s of t, we have s <t
5. (stability) for any substitution o, s >t implies so > lo

Now, since we want to perform inferences on literals representing AC-congruence classes,
these inferences should be somewhat independent of the chosen congruence class representatives.
That is why we also require our ordering to have the AC-compatibilily property :

Definition 2 An ordering > on T(F) s AC-compatible if whenever we have s >t and
s ZFac t, we also have s > t' | for any ground terms s’ and t’ respectively AC-equal to s and t.

The design of AC-compatible orderings for proving termination of rewrite systems modulo
AC has been considered as a hard task. In fact, to our knowledge, veryv few constructions are
available in the literature. Perhaps the best known among them is the associative path ordering
scheme [BP85], which extends the recursive path ordering (see also [Der82]). However, this
ordering puts serious limitations on the precedence of AC-symbols. In fact two AC-symbols
cannot be compared in the precedence unless they are related by a distributivity law. This
explains why it secems difficult to extend the associative peth ordering to get a total ordering
when there are several AC-symbols.

Up to now only one AC-compatible complete simplification ordering for a signature which
contains any number of AC-symbols has been found. It is described in [NR91] and is based on
the method of polynomial interpretations [Lan79b, CLS7]. This ordering could be used for our
purpose. In particular, inference rules built on it are refutationally complete.

In the case of one single AC-operator, many more constructions of total AC-compatible orderings
are available.

Given an AC-compatible CSO on terms. we define :

Definition 3 Let > be an AC-compatible CSO on terms. We define another AC-compatible
ordering > by : s > t iff s > t and s#,c 1.

Then, we extend the ordering > to atoms by the following definition. that preserves the
property of AC-compatibility on atoms.

Definition 4 Let >p be a total precedence on predicates. =" being the smallest predicate. Let
> be an AC-compatible CSO on terms. The ordering > 4 is defined on the set of atoms by :

P(sio....8,) >4 Qtr.... ) if

- either P >p Q.

-or P =Q . P is not the equality predicate. and
. ocither (sy..... gy) >l (tp.. .. t) .

v is the lexicographic extension of > .

where >
cor Plsioo s =ac Q... t) oand (81 .osy) ST (L () .

where ST s the lericographic extension of > .



-or P =Q . P s the equality predicate, and, assuming that sy > sy and ty > 1y,
Loedher s 1,
corosy =gl L and sy -ty
Cor sy Sac by sy =ac ey, and {syos2) > {0 L),

where > s the multiset extension of > .

It is easy to check that this ordering on atowms is a CSO. As for >, we define another ordering
on atoms hy :

Definition 5 Lct >4 be a complete simplification ordering on atoms as defined above. The
ordcring =4 is defined by : A >4 B if A >4 B and AZac B .

We shall compare literals by forgetting signs and comparing atoms. For simplicity. the
ordering on literals will be denoted > 4 too.

4 Transfinite semantic trees

The problem of proving the completeness of theorem proving strategies involving equality has
been prominent in automated theorem proving since its first conception. A notorious instance
is the question of whether the inference system consisting of resolution and paramodulation is
complete without the functionally reflexive axioms and without paramodulating into variables.
In Brand [Bra75] an indirect proof of uselessness of functional reflexive axioms was described (as
a corollary of the completeness of the modification method). A direct proof by semantic trees
was given in [Pet83]. However, Peterson’s proof requires the use of a simplification ordering
which is also order isomorphic to w on ground atoms. Hsiang and Rusinowitch [HR91] have
developed a new method based on transfinite semantic trees for relaxing this condition and
permitting a larger class of orderings.

This method has also been applied to Knuth-Bendix completion procedure [HR87] and to
conditional completion [KR&7].

This is the method that we shall use here for proving the refutational completeness of the
inference rules which will be introduced in the next section. This section introduces some main
notions on E-interpretations and transfinite semantic trees ; for more details. see [HR91]. Let
us just mention that some other techniques have been proposed by Pais and Peterson [PP91]
and Bachmair and Ganzinger [BG90]. The first one is based on forcing and. as ours. it uses
transfinite induction to build the Herbrand model for a set of clauses. The second one is based
on the use of canonical rewrite systems to represent equality interpretations.

The Herbrand base A(P, I') can be ordered as an increasing sequence {A;},cn by >4 (A
being its ordinal). Given an atom .., we write W, the initial segment {1, | i < a}. The
successor of the ordinal « is denoted by « + 1.

Given the ordinal «, a partial E-interpretation on W, is a mapping [ (sometimes written
[,) from W, to {T. F} satisfying :

— af (s=s)e W, ,then [(s=s)=T
— i (s =1). Bls]. B[t]e W, and I(s =) =T .then I(B[s]) = (B[]

An E-interpretation is a partial E-interpretation defined on 1y, the entire Herbrand base.
We extend B-interpretations to the set of ground clauses in the usual way as follows @ let I be a



(partial) E-interpretation on W,. A an element in W,,and C =1L, Vv...v [, aground clause
whose atoms are all in W,,. Then, I(-~A) = =I(A) and (Y= {L\)V...VI(L,).

Given an E-interpretation I and a clause C, I E-satisfies C' (or C is valid in I) if for every
ground instance C’ of C, I(C’) = T . Otherwise, we say that I falsifies C. C is E-satisfiable if
(" is valid in some E-interpretation. Otherwise it is E-unsatisfiable.

Given a set of clauses S, S is E-satisfiable if for everv instance S’ of §, there is an [E-
interpretation I such that I satisfies every clause in §’. Otherwise S is E-unsatisfiable.

In associative and commutative theories, a set of clauses 5 is A C-unsatisfiable if SUAC is
E-unsatisfiable, where AC is the set of associativity and commutativity axioms of the operators
of Fyc.

Let ¢ and w be two ground atoms and let / be an E-interpretation on W,. We say that w
is I-reducible to v by (s = 1), and we write it w —5=" v, if there is an atom (s = {) € W,
such that :

w=wls], s>t,w>a(s=t), {s=1t)=T and v = wt]

An atom which is not I-reducible is said I-irreducible. The following theorem states that to
test [-reducibility, it is sufficient to consider [-irreducible equalities.

Theorem 1 (Reduction Theorem) A ground atom w is I-reducible if and only if it is I-reducible
by an I-irreducible equality.

By the next theorem, it is possible to build inductively all the E-interpretations in a manner
which is similar to that in [Pet83].

Theorem 2 [Pet83] Let I: Wy — {T,F} be such that I is an E-interpretation on W,. Let
J be the restriction of I to W,. Then, I is an E-interpretation on Wy 4y off :

(1) A, is J-reducible to an atom B and I(A,) = I(B), or
(2) A, is J-irreducible, of the form (t=1t), and I(A,) =T , or
(3) A, is J-irreducible and not of the form (t =1) .

Let I and J be two E-interpretations defined as in the previous theorem. We say that [ is an
cxtension of J. The collection of all partial E-interpretations is called a transfinite E-semantic
tree. A node is an element of the tree.

Let T be a transfinite E-semantic tree. We call mazimal consistent E-semmantic tree of a set
of clauses 5, and we write MCT(S), the maximal subtree of T such that :

For every node I in MCT(S ), every clause C in S, and every clause C’, AC-equal to
a ground instance of C' and whose atoms are in the domain of I, I(C') =T .

A path is a sequence of nodes (Ii)iga such that « is an ordinal (< A) and the domain of every
I; i1s W;. A failure node is a node which falsifies a clause C. In particular, if .J is the last node
of a path of MCT(S) then every extension of .J is a failure node. A mazimal path in MCT(S)
is a path whose extensions are not in MCT(S) (hence these extensions are failure nodes).
The following lemma states that a failure node cannot be the limit of non failure nodes. It
proof is similar to the classical one (see [HR91]}).

Lemma 1 (Closure Lemma) Let S be a set of clauses. Then, every mazimal path of MCT(S)
has a last element (in MCT(S)).
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A consequence of this lemma is :

Corollary 1 Let § be a set of clauses : then. S is AC-unsatisfiable if and only if cvery marimal
path in MCT(S U AC ) extends to a failure node. where AC is the sct of all AC-axioms.

Adding AC to S is necessary in order to introduce failure nodes when an interpretation
falsifies an equation (v = ') where v =, «’. Such an interpretation may be consistent but not
AC-consistent and it should be discarded from the set of potential models of 5.

Let INF be a set of inference rules and 5 a set of clauses. Let LVF(S) denote the set of
clauses obtained by adding to 5 all clauses generated by applyving some rule of INF to 5. Let
INFO(S) =S . INF"H(S) = INF(INF"(S)) ,and INF~(S) =U,sp INF"(5) .

A set of inference rules INF is refutationally complete for the AC theories. or AC-complciec
for short. if. given any AC-unsatisfiable set of clauses S LVF*(.5) contains the empty clause.

Here is the theorem of completeness of inference rules for E-semantic trees in AC theories

Theorem 3 (Fundamental Theorem) .1 set of inference rules INF is AC-complete if and only
if MCT(INF*(S)UAC) contains only the emnpty interpretation whenever S s AC-unsatisfiable.

We can remark that if MCT(INF*(S)U AC) is empty (contains only the empty interpreta-
tion). i.e. INF*(S) contains the empty clause, then MCT(INF*(5)) is empty too.

5 Inference rules and lifting lemmas

The inference rules. that we shall define in this section, are compatible with the strategy of
ordered clauses presented in Pets3. Rus89]. This strategy permits application of the paramo-
dulation inference rule under a refined form : a term cannot be replaced by a more complex
one, along a paramodulation step : in particular, we never paramodulate into a variable. After
the definitions of inferences rules. we shall prove their respective lifting lemmas.

From now on, we assume that we are given an AC-compatible CSO on terms > and its
extension to atoms > 4. as in definition 4. In the following inference rules, orderings refer to
definitions 3 and 5. For inzrance. the notation s < ¢ means that either s <1 ,0r s =40 1.
And s £t means that either < > ¢ or s and ¢t are incomparable ; on ground objects, by
totality, s At is equivalent 1o s>t .

5.1 Inference rules

Let us define our inference rules. Note that they require AC-unification, and that f is an
AC-operator in the examples which illustrate them.

Definition 6 (AC-factoring)

v Lyv...vL,vD , c AC mgus{Ly,....L,
(AC-fact) I if { 7 mgusiLy }

(L Vv D)o YA € Atoms(D), Lyo £,4 Ao

Comments : this ordered AC-factoring rule is applied if o is a most general AC-unifier of the n
literals Ly,.... L., , and if there does not exist an atom A of D such that Ao s greater than or

cqual to the atom corresponding to Lo, for the ordering > 4.



Example :
P(fla,y)) vV P(f(b,x)) vV Qz.y)
P(fla,b))Vv Qla,b)

where o ={y—b,x — a}

Definition 7 (AC-reflection)

~(s=1)VD ’ { g € AC .mgus{s,t}
- 77 y

(AC-refl] Do YA € Atoms( D). (s =t)o £4 Ac

Comments : this ordered AC-reflection rule s applied if o is « most general AC-unifier of s and
L, and if there docs not exist an atom A of D such that Ao is greater than or equal to (s = 1)o.
for the ordering = 4.

Example :

S(fla.y)= fltb.2) v (fle.y)=rc)

(f((l-,b):c) where o ={y — b,z — a}

Definition 8 (AC-resolution)
o € AC _mgus{L;. L,}

if YA e dtoms(Dy)., Lio £y Ac
YA€ Moms(Dy). Lyo £y Ao

Comments : this ordered AC-resolution rule is applied if o is « most general AC-unifier of L,
and Ly, and if Lio. respectively Lo, is not less than or equal to an atom of Dya, rvesp. Dyo.

Liv D, LoV Dy
(D1V Dy)o

(AC-resol)

Example :

P(fla.y))V Qy) SP(flb.x))v@Qlr])
Q(b)V Q(a)

where o ={y —b.x — a}

Definition 9 (AC-paramodulation)

( :)VD] LVD-Z

(AC-para) (Il — v D1 v D)o
a € AC_mgus{L), .s} where p € Occemaz(L. lop(sa))
" V4 € Atoms(Dq). (s =t)o £4 Ao
i

VA€ Atoms(D,). LO’ 24 Ao

sa Ata
Comuments : this ordcred AC-paramodulation rule applies if there 1s @ non variable occurrence p
of the literal L and a most general AC-unifier @ of Ly, and s. Moveover, La. resp. (s =t)a. is
not less than or cqual to an atom of Daa. resp. Dya. Another condition is that to 1s not greater
than or cqual to so. The position p has to be a marimal occurrence in L of the top operator of
sa,if it s AC.

Lxample :

(Jlao) =WV (gly) = d) P(fO.0)) v Q)
Ple)yV (gthy = d) v Qa)

where o= {y —b.ao — a}

10



Definition 10 (AC-contextual paramodulation)

(S:[)VD] Lv D,
(L[f(t,y:)],,v 1)1 vV 1)2)0'

(AC-cont-para)

o € AC mgus{L , f(s.x)}
where [ is the AC-operator at the top of so,
T 1s 0 new i;ariable, p € Occmaz(L. f)
VA € Atoms(Dy), (s =t)o £4 Ao
VA € Atoms(Dq), Lo 24 Ao
so A to
Vw € top-AC _subterms(L,, f),
top-AC _sublerms(so, f) Cac top-AC _subterms(wo, f)

Comuments : this ordered AC-contextual paramodulation rule applies if there s a position p of
the literal L and a most general AC-unifier o of Ly, and f(s.x), where f is the AC-operator at
the top of sa ; p has to be a mazimal occurrence of f in L (also p is not a variable position).
Moreover, Lo, resp. (s = t)o, is not less than or equal to an atom of Deo. resp. Dyo. Another
condition is that to is not greater than or equal to so. The last condition implies that the term
sa was not introduced by the substitution in a subterm of L.

Extending the term s and applying AC-unification allows us to detect when some cquality
replacement is possible, whichever representatives (modulo AC) have been chosen for the clauses.

Example :

(fla,b) =) v(glb)=d)  P(f(b f(y.4)))V Q(y)
P(f(e,d))V (9(b) = d) vV Q(a)

Definition 11 (AC-extended paramodulation)

where o ={y — a, v — d}

(SZt)VDl (ZZT)VDQ
((f(t,z) = f(r,y))V D1V Do)o

o € AC.mgus{f(s,2), [(1,v)}
where top(so) = top(lo) = f € Fac

(AC-ext-para)

z and y are new variables
VA € Atoms(Dy), (s =t)o £4 Ao
VA € Atoms(Dy), (I =r)o A4 Ao
soc Ata and lo £ ro
top_AC _subterms(so, f) N y¢ top-AC _subterms(lo. f)y # @
top AC _subterms(axa. f) N 4o top_AC _subterms(yo. f) = 0

Comments : this ordered AC-cxtended paramodulation rule can be seen as a contextual paramo-
dulation from (s = )V Dy into (f(Ly)= f(r,y))V D,y . at the top of f(l.y). with o as a most
general AC-unifier. Morcover, ra is not greater than or cqual to lo. :

The last two conditions force the overlap between so and la to be a non-trivial one. For in-
stance, the first one means that so and lo must share a mazimal subterm. Sufficiency of these
two restrictions is shown in the construction of the quasi-rightinost path in the proof of lemma 10
(Section 6.2). ’

1n



Example :

(fla.by =)V (g(b) =d) (fla,d) =€)V (I(d) = 1)
(fle.d) = fle b))V (g(b) = d) Vv (M(d) =)

where o = {a — d,y — b}

We emphasize the role of conditions on fop_AC_subterms by two examples. They show that,
when these conditions are not satisfied, the generated clause is redundant. In other words, this
clause is not necessary for deriving a contradiction from an AC-unsatisfiable set of clauses.

1. If sa and la have no common top_AC_subterms :

(fla.b)=1¢) (fld.e)=g)
(fle. f(d.€)) = f(g. f(a.b)))

top_AC _subterms(sao, f) = {a,b}
Here. top_AC _subterms(lo, f) = {d, e}
{a.b}Nigc{d.e} =0

where o= {a — f(d.¢),y — f(a,b)}

We can see intuitively that the deduced clause (f(c, f(d,e)) = f(g, f(a,b))) rewrites into a
tautology. by applying two AC-paramodulation steps from (f(a,b) = ¢) and (f(d,e) = g).
Morcover. each inference step using (f(c, f(d,e)) = f(g, f(a,b))) can be replaced by infe-
rence step(s) using (f(a,b) = ¢) and/or (f(d,e) = g) instead.

2. If vo and yo have common top_A(C_subterms :

(fla. f(b.g)) =) (f(flg,d).a) = e)
(fle, f(g.d)) = f(e, f(b,9)))

top-AC _subterms(zo, f) = {g,d}
Here. top-AC _subterms(yo, f) = {b.g}
{g.d}Niac{b,g} = {g}

We can apply another AC-extended paramodulation step between the same initial clauses,
but with the substitution ™ = {x — d,y — b}, to get the clause ( f(c.d) = f(e,b)).

Then, using this clause (f(c¢,d) = f(e,b)), we can see intuitively that the first clause
(fle. flg.d)) = f(e, f(b,g))) rewrites into a tautology by an AC-contextual paramodulation
step.

Morcover, each inference step using the first deduction (f(c, f(g,d)) = f(e, f(b.g))) can be
replaced by inference step(s) with the second one (f(c,d) = f(e,b)).

where o = {z — f(g,d),y — f(b,9)}

Now that inference rules are defined, we have to prove their liftings lemmas, since the proof
of completeness will be done in the ground case.

5.2 Lifting lemmas

The purpose of lifting lemmas is to lift inferences from the ground level to the forst-order level,
i.e. to show that inferences made with ground clauses can be done with the corresponding general
clauses. However, lifting paramodulation rules is often difficult. Let us illustrate this problem
by an example : let P(2.2,¢) be a clause C and (¢ = a) an equation, with ¢ > a ; considering
the instance P(c,c,c)of Plx,z,c¢), the paramodulation from (¢ = «) into the third argument of



P(c,c,c) produces P(c,c.a) : an analogous paramodulation into (" generates (. a.a). which
admits P(c.c.a) as an instance. However, if we paramodulate in the first argument of P(e.c.e),
we obtain P(a.c,¢). Since the paramodulation rule is never applied into a variable. there is no
inference between C' and (¢ = «a) that can produce a clause which has P{a.c.¢) as an instance.

However, if we consider only substitutions which replace variables of (... ¢) by irreducible
terms, an instance of ’(x.x.c) in which we could paramodulate will be P(a.a.e). Now. every
paramodulation from (¢ = @) into P(a.a.¢) is an instance of a paramodulation from (¢ = «)
into (". Hence the following definition :

Definition 12 Let | be a (partial) E-interpretation and o and 8 two ground substitutions. We
say that o is I-reducible to 8. and we write ¢ —; 0 . if 0 is identical to 8 except for a variable .
and o{x) — 0(2) . If @ cannot be [-reduced to any substitution. we say that o is [-irreducible.

Theorem 4 (Irreducible Substitution Theorem) Let [ be a (partial) E-intcrpretation. and let
Co be a clause whose atoms are all in the domain of I. Then, there exists a ground I-irreducible

substitution 8 such that I(Ca)= 1{CH) .

The proof of this theorem is detailed in [HR91]. and it is based on the noetherianity of the
relation —.

This theorem indicates that we only have to consider J-irreducible substitutions. It allows to
lift paramodulation from ground clauses to clauses in general, by considering, in ground clauses,
only those positions that already existed in the corresponding general clause.

First, we will use the following property. derived from the stability of orderings > and > 4.

Proposition 1 Lect A and B be two objects (terms or atoms). If Ao > Ba for a substitution
o, then AZXB .

Lemma 2 (AC-factoring Lifting Lemma) Let C be a clause and D a ground instance of C,
with: D=DPv...vP.v D, whae Pl =4¢ ... =4¢ Pr . Let D' be the AC-factor of D :
vV Dy . Then, from C, we can deduce an AC-factor C' such that D' is an instance of C'.

Proof :  Let us suppose there is a ground substitution o. where (o =p , with C =
Lyv..vLivC . Lioc=y ... =a¢ Lyo and Lyo = Py . Then, there is an AC-mgu

rof {Ly,.... Ly} and a substitution p such that 7p =0 .
By definition of the AC-factoring rule, YA € Atoms(Cyo), P\ =4 A, and as the ordering
> 4 Is stable by instantiation (proposition 1). we have : VA € Atoms(Cy), L7 £4 AT .
Hence, we can apply an AC-factoring step in C', to infer : C' = L7 v C\7 . But.
C'p = LitpvCitp = LiovCio = PV D, = D' . Therefore, D' is an instance of
¢’. o

Lemma 3 (AC-reflection Lifting Lemma) Let C' be « clause and D a ground instance of C', with
D =-(s=1t)v Dy, where s =4¢ 1. Let D' be the clause Dy, resulting of an AC-reflection
step in D ; then, we can deduce a clause C' by AC-reflection in C, such that D' is an instance

of C".

Proof : Assume there is a ground substitution o, Cao =40 D, with C = -l =r)v (),
lo =4¢ ro, lo=s and ro=t. Then; there is an AC-mgu 7 of { and v, and a substitution p
such that rp=o0 .



By definition of the AC-reflection rule, VA € Atoms(Cyo). (s =1) >4 A, and by proposi-
tion I we have : YA € Atoms(Cy), ({ =r)7 £4 AT .

Hence, we can apply an AC-reflection step in ', using the AC-mgu 7, to infer : C' = Cy7 .
Morcover, il we apply the substitution p to the clause C', we obtain : C'p = Cy7p = Cho =
Dy=D'. O

Lemma 4 (AC-resolution Lifting Lemma) Let O and Cy be two clawses with no common vari-
able, and Dy = PV Dy and Dy = =P v D) two ground instances of Cy and Cy, with
P=ac P Let D= DV Dy be a AC-resolvent of Dy and Dy : then, from 'y and C'y, we
can deduce a clouse O by AC-resolution, such that D is an instance of (.

Proof : Suppose that (o = D, and Cy0 = Dy . Moreover. suppose that C = L v (|
and Cy = -L,vCl , with Lo =4¢ Lyo . [hoa =P and L,o = P'. Then, there is an

AC-mgu t of Ly and Ly, and a substitution p such that : 7p = 0.

By definition of the AC-resolution rule,

VA € Atoms(C{a), P >4 A (since L,o =4c P)
1

Il
=
o

~
N

VA € Atoms(Cha). P >4 A {(since Lyo
and by proposition 1 :
VA € Atoms(Cl). Lyt £4 A7
VA € Atoms(Cy). Ly £4 AT

Hence, we can apply an AC-resolution step between C'y and C,, to infer : €' = CiT Vv ()7 .
As in previous proof, D is an instance of " since Cp=D . O

Lemma 5 (AC-paramodulation Lifting Lemma) Let ) = (s =)V (] and Cy be two clauses
without any common variable, and let p bc « non-variable position in Cy. Let D be an A(-
paramodulant from Cyo into Cyo at p, where 0 is a ground substitution ; then. there is a clause
C'. resulting of an AC-paramodulation from Cy into C;. such that D is an instance of C'.

Proof : Let Cy=(s=t)v (] and C, =LV () be two clauses. o a ground substitution
and p a non-variable position in the literal L. such that :

Lo, =ac so and p€ Occomax(L. top(sc))

VA € Atoms(Clo). (s=t)a >4 A

Vi€ Atoms(Cho). Lo =4 A

so > to

Let D be the AC-paraniodulant La[p — ta]v Cio Vv Cha . Since p is a nou-variable position
in L. L(r|P = (L))o =a¢c so . Thus. L|,, and s are AC-unifiable : let 7 be an AC-mgu of these
I3
terms. and p a substitution verifving : Tp = o.

By proposition [.
Ve Atoms(Cl). (s =1)7 L4 AT

Ve Moms(CH). Lt 44 A7
sT AT
So. all conditions required tor an AC-paramodulation step from Cy into (" at occurrence o.
with 7 as AC-mgu. are satisfied. and the inferred clanse ' = Lr{p — (7] v C17 v C)r  admits

1) as instatce. since ('p= 1D . 0O



Lemma 6 (AC-contextual paramodulation Lifting Lemma) Let C'y and Cy be two clauses with-
out any common variable, and let p be a non-variable position in C'y. Let D be an AC-conteztual
paramodulant from (1o into Coo at p, where o is a ground substitution ; then, there is an
AC-contextual paramodulant C' from Cy into Cq, such that D is an instance of C'.

Proof : Let €y =(s=1)VC] and Cy = LV} be two clauses, and o a ground substitution.
As we can applv an AC-contextual paramodulation step from Cyo into Cyo, there is a ground
substitution 0" and a non-variable occurrence p of the literal L, verifying : Lo, =ac flsa,xa’).
where [ is the AC-operator at the top of so, z is a new variable, p € Occ_max(L. f) ., and
Dom(a’y = {a} . As Dom(c)N Dom(c’) = @ , let us define v as the union of these two
substitutions (v = ao’). Hence, Ly, =ac f(s,z)v .

Moreover. by definition of the AC-contextual paramodulation :

VA € Atoms(Civ), (s=1tv =4 A
VA € Atoms(Cyv), Lv >4 A

sv > tv

The condition on top-AC _subterms of Lo is trivial since this last literal is ground.

Let D be the inferred clause : Lvlp — f(t,z)v]Vv Civ VvV Civ . Since p is a non-variable
occurrence in L, Ly, = (L )v =ac f(s,z)v . Thus, L), and f(s,z) are AC-unifiable ; let 7 be
an AC-mgu of these terms, and p a substitution verifying : Tp = v.

By proposition 1,

VA € Atoms(C}), (s = t)7 £4 AT
VA € Atoms(C}), LT £4 AT
st A tr

Now, we have to prove the property :
Yw € l.op_AC_subterms(Llp,f) , top AC_subterms(st, f) € a¢ top-AC _subtermes(wr. f)

If such a term w existed, it would be a variable, and the term associated to w by 7 (and also o)
contains st and Is also reducible. So, it contradicts the condition of irreducibility of . Hence.
there is no such term w.

We can check that st is not a variable in the following way : if st =z € X .as f(z.27) =4
(L)) , it implies that there is a term w of top_AC _sublerms(Ly, f). such that wr is either =
or f(z,w") for a term w', and also it contradicts previous property on top_AC _subterms.

Therefore. an AC-contextual paramodulation step is possible from C into 'y at p. with
as AC-mgu. and it produces the clause C = Lr{p — f(t,2)r]Vv C[{r Vv Ci7 . which admits D as
instance with substitution p. O

Lemma 7 (AC-extended paramodulation Lifting Lemuma) Let C'y and (") be tiwco clauses without
any common variablc. Let D be the result of an AC-extended paramodulation between Cio and
Cyo, where a is a ground substitution : then, there is a clause C. resulting from an AC-cxtended
paramodulation between C'7 and Cy, such that D is an instance of C.

Proof : Let (', =(s=8)V(C], Co=(l=7r)VC, and let a be a ground substitution.
Since we can apply an AC-extended paramodulation between Cyo and Cyo. there is a ground
substitution o', verifving :  f(so,2z0’) =4¢ flo.ye') , where f is the AC-operator at the top



of sa and lo. r and y are new variables, and Dom(a’) = {a,y} . As Dom(a)0 Dom(a') = 0,
let us define v as the union of the substitutions o and a'. Then. [(s,2)v =40 f(Ly)v .

By definition of an AC-extended paramodulation, we have :

VA€ Mtoms(Cw). (s =t =4 A

VA e dloms(Cor), (L= =4 A

& o>ty

lv > rv

top AC _subterms(sv. fY N go top-AC _subterms(lv, f) # O (1)
top_AC _subterms(xv. f) Niae top_AC subterms(yv, f) = O (2)

Let D be the AC-extended paramodulant (f(t,2) = f(r,y))wv Cirv Clr between ('yo and
Cao. Since the terms f(s.x) and f(l.y) are AC-unifiable, there is a most general AC-unifier T
of them and a substitution p such that: Tp=v .

By proposition 1.

VA € Atoms(Cy), (s =t)T A4 AT
VA € Atoms(Cs), (I =7r)r 4 AT
sT A tr
It Lrr

Let us prove by refutation that top_AC _subterms(zr, f) M 4¢ top . AC _subterms(yr, f) = 0.
We assume that there are two elements a and b, respectively of top_AC _subterms(xt. f) and
top_AC _subterms(yr. f), such that « =4¢ b. So, ap =.ac¢ bp , and by definition of top_AC _sub-
terms. top_AC _subterms(ap, f) =.ac top-AC_subterms(bp, f). Hence, top AC _subterms-
(erp. f) Mae top-AC _subterms(yrp, f) # 0. But,as tp = v, there is a contradiction with
property (2). So. top.AC _subterms(zT, f) NMiac top-AC _subterms(yr, f) = 0.

By definition of r, we have : f(sr,x7)=4c f(IT,y7) . So,

top_AC _subterms(st, f) Ui top-AC _subterms(xr, f)
=ac top AC _subterms(lt, f) Ui sc top_AC _subterms(yr, f)

We have proved that top AC _subterms(zT, f) and top-AC _subterms(yt, f) have no common
elements. Hence.

top_AC _subterms(xr, f) Cac top-AC _subterms(lr, f)
top_AC subterms(yT, f) CTac top_AC _subterms(sr, f)

Assume that top_AC subterms(at, f) Cac top-AC _subterms(lr, f); all subterms of lT, which
are not in a7, have also to bhe in st. So, top_AC _subterms(st, f) and top AC _subterms(IT, f)
have common elements.

The last case is top AC _sublerms(azt. f) =ac  top AC _subterms(I, f) it means that
7 =1¢ x7 and s7 =4¢ y7 . and therefore : v =40 ITp =a¢ 27p =4¢ @ and s = 4¢
STP =ac YyTp =ac yv . Property (2) implies that top_AC _subterms(sv, f) Oy ¢ Lop AC _sub-
terms(lv. f) =0 ., which is in contradiction with (1). So this case is impossible.

We can easily check that neither st not It are variables, otherwise, assuming that s7 is a
variable =z, as s7 and [T have common top_AC _subterms, z is in Lop AC _sublcrms(lr, [) : then,
it implies that y7 is included in xr ; hut, we have proved that xr and yt have no common
top-AC_subterms. This yields a contradiction. Therelore, lop(sT) = top(lT) = [.
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All the conditions are now verified for an AC-extended paramodulation hetween C; and (7,
and we can deduce the following clause : C = (f(t.x)= f(rogNrVv 17 v Chir .
Moreover. Cp = (f(t.o)= flr.yDrpVv Cirpv Cir
= (ftt.ey=flroy)wvCuwvCuy = D

6 Refutational completeness of AC paramodulation

In this section, we shall prove the refutational completeness of the inference rules introduced in
the previous section. The main differences between this proof and the proofin the empty theory
are the construction of the rightmost maximal path in the semantic tree. and the numerous
additional subcases introduced by the associative commutative axioms when considering failure
nodes. We need to show that these additional failure nodes can be handled by our set of inference
rules.

Let INF be the set of inference rules {AC-factoring. AC-reflection, AC-resolution, AC-
paramodulation, AC-contexrtual paramodulation. AC-extended paramodulation}. In the following
proofs, we only consider inferences on ground instances of clauses of INF*(S). For the gen-
eral case. lifting lemmas described in Section 5.2 can be applied. even for AC-paramodulation
and AC-contextual paramodulation rules. since. by the Irreducible Substitution Theorem (theo-
rem 4), it is always possible to label a failure node A" by a clause whose variables are instantiated
by K-irreducible terms : hence, paramodulation can be restricted to non-variable positions. This
argument is standard and will not be discussed further.

Theorem 5 (Completeness Theorem) If S is an AC-unsatisfiable set of clauses, then INF*(S§)
contains the emply clause.

The remaining of this section is devoted to the proof of this Completeness Theorem. We first
give a sketch of it :
Sketch of proof : Let us assume that INF*{5) does not contain the empty clause, then,
MCT(INF~(S)U AC) is non empty. We shall define (definition 15) by induction a sequence of
nodes in MCT(INF*(S5)U AC). called a quasi-rightmost path, and prove (proposition 3) that
all these nodes are AC-consistent {definition 13), i.e. compatible with AC-axioms. In order to
do this, we build the sequence so that it avoids what we call quasi-failure nodes (definition 141).
The last node Q. of the quasi-rightmost path is followed by failure and/or quasi-failure
nodes in MCT(INF*(S)U AC'). We shall show in proposition 4 that an inference step, using
clauses laheling these nodes, can be applied, and that the deduced clause is falsified by ). This
contradicts proposition 3. O

6.1 Quasi-failure nodes and quasi-rightmost path

To prove the Completeness Theorem, we reason by contradiction. We assume that S is an
AC-unsatisfiable set of clauses and that INF™(.5) does not contain the empty clause. Therefore
MCT(INF~*(S5)U AC) is not empty. Let us define the sets

GS = {C|3C"€INF(S), C =ac C('m . for some ground instance C'o of C' } |
AC {(u=u')|u,’ € T(F), u=ac . toplu) € Fac } and
ST = ¢S U AC
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GS is also the set of all clauses which are AC-equal to a ground instance of a clause of INF*(S5),
and AC is the set of all equalities which are AC-equal to a ground instance of an AC-axiom. By
definition of the inaximal consistent lo-semantic tree, MC'T(S8~) is equivalent to MCT (INF*(S)U
AC). Hence, MCT(S™) is non empty too.

In the following proofs, in general, an equality (u = v) will implicitly verify u > v .

We can always assume that there is a unique maximal literal in a ground clause, since the
factoring rule allows us to eliminate multiple occurrences of this literal. We do not elaborate on
this point, since it is quite similar to the standard case [HR91].

The method used for the empty theory is to huild a sequence of partial E-interpretations, by
transfinite induction, following the rightmost path of the maximal consistent E-semantic tree,
then to prove that it is empty and derive a contradiction with the non-emptiness hypothesis of
the tree. However, in the present case, the rightmost path may be an AC-inconsistent path and
should not be considered. We shall instead build the rightmost AC-cousistent path. First, let
us define what we mean by an AC-consistent node in MCT(S8™).

Definition 13 lLet K be « partial E-interpretation of MCT(S™). defined on W,. K is AC-
inconsistent, if :
3By, By e Wy, By =4¢c By and K(By)# K(B3)

Otherwise, K s said to be AC-consistent.

We shall also need to define an extension of the notion of failure node, quasi-failure node, in
order to detect an AC-inconsistency as soon as it occurs on a partial E-interpretation. Since an
AC-inconsistency may be well-hidden, the notion of quasi-failure node is rather tricky.

Definition 14 Let K be a node of MCT(S™), dcfined on VW, such that 4, is an atom (uy = v).
with uy > v and K admits two ertensions L and R. with L(A,) =T , R(A,) = F , and
R e MCT(S*) . Then, R is a quasi-failure node if there is a term up[l]. AC-equal to uy, which
is K -reducible by a K -irreducible atom (I = r) to up[r]. with 1 > r, and K(uz[r]=¢)=1T .
The label of the quasi-failure node is defined to be (uy[l] = wy) if wafl] > wy , and (uy = wy[l])
if ugl) < wuy .

This definition can be illustrated by the following figures.

(ua[r] = v) T[ (usfr] = v)
|
N
(g = v) . /\__R B (uy = 1) 1
Gl =)
i |
it wa[l] >y if wal] < uy

In the following. when there will be no ambiguity. at a Q,-irreducible atom A,, the right
extension of @, will be called right node of A,. For instance. in previous figures, R is the right
node of (uy = r).



We define now the quasit-rightmost path of MCT(S™) as the rightmost path of MCT(S™)
which does not contain a quasi-failure node. Then, we shall prove that this path defines an
AC-consistent partial E-interpretation.

Definition 15 The quasi-rightmost path of MCT(8*) is the partial F-interpretation Q.,, defined
on W, and is built as follows : Qg is the empty interpretation ; we assume that (); has been
defined Jor all i < « ; then, we extend the path to Q. , if possible, by :

- If o is @ limit ordinal, as in the classical case [HIR9!], we simply define Q. by U;c, @i
Then. by the Closure Lemma, Q. belongs to MCT(S™).

- If « is not a limit ordinal, then « has a predecessor a™. Several cases may occur :

(a) If Q.- has no successor in MCT(S8*), then we take ~ = a~
(b) If Q.- has ezxactly one successor J in MCT(S"), then Q, = J
(c) If Q.- has ezactly two successors L and R, at least one of them is in MCT(S™),
L(A,-)=T and R(A,-) = F, then
i. If R is a quasi-failure or a failure node, then
A. If L is a failure node, then v = a~
B. If L is not « failure node, then Q, = L
it. If R is neither a quasi-failure nor a failure node, then Q, = R

The next proposition shows that, if an atom A, is (J,-reducible by an equality (/ = r), with
[ > v, then there is an AC-equivalent atom Ag which is Q,-reducible by an equality (¢ = d)
whose right node is a failure node labeled by a clause of GS. This proposition will simplify the
proofs of the following propositions.

Proposition 2 Let Q. be the restriction of the quasi-rightmost path Q. to W,. If there is a
Qao-trreducible atom (I = r) such that | = r and A, —b:ar Aq[r] , then there are two aloms

Ag and (g = d), such that Ag =ac Ao, 9> d ., (g =d) is Qq-irreducible. A3 —}i{ As(d] .
Qo(Agld]) = Qu(Ax(r]) , and the right node of (g9 = d) is a failure node labeled by a clause of
GS.

Proof : Suppose that the proposition is true for all atoms less than but not AC-equal to A,.
Since (I = r) is Q4-Irreducible, it admits two extensions. Let | be the clause falsified by the
E-interpretation J at the right node of (I =7r), J({ =7) = F.

- It J is a failure node, then J cannot falsify a clause of AC, since | > r implies that | Z4¢0 r .
Thus, in this case, we can take (I = 7) for (g = d) and A, for 43.

- It J is a quasi-failure node, C; is an atom (I = U'[a]) or ({'[«] = 1) : (I'l[a] = r) is reducible by
an irreducible equality (@ = b) to (I'[b] = »). where a > b. and J(I'[b}=r) = Q. (I'lbj=1r)=T.
So, the atom A, [l'[a]], which is AC-equal to A, [l]. is Q4-reducible by (« = b) to A, [I'[b]]. and
Qo (AL[[0]]) = Qul Au[r]) since A{U[a]] is Qn-reducible by (I'[a] = r) to A, [r].

By hypothesis. since (I'la] = r) <4 Ay . we can assume that there are two atoms (I"[a'] = r) and
(«' = b') such that "[d') =4¢ Ula] . o' > b, (' = V) is Q,-irreducible. (I"[a'} = r) —~‘(’gla=bl
("6 = 7). QU] = 1) = Qu('[b) = #) =T, and the right node of (' = ') is a failure
node labeled by a clause of GS.

So. we can take (a' = V') for (g = d). and A, [l"[d]] for Ag. O
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6.2 The quasi-rightmost path is AC-consistent

Proposition 3 If MCT(S*) is non cmpty, then the quasi-rightmost path Q. of MCT(8*) is
non empty and AC-consistent.

Proof : First. Q is non empty : since Q1 (defined on W) cannot be a quasi-failure node,
otherwise. there shiould be an equality (I = r}, smaller than Ag, which reduces an atom AC-equal
to Ap.

Second. we have to prove that ()., is AC-consistent. We reason by contradiction : if Q. is
AC-inconsistent. there exists a minimal ordinal o such that Q. is AC-inconsistent. Necessarily,
« is not a limit ordinal. Otherwise, as in the classical case [HR91]. if o is a limit ordinal, Q)
is defined by U, Qi. and some Q; is AC-inconsistent ; this is impossible since o is minimal.

Since « is not a limit ordinal, o has a predecessor a™. Let K be the partial E-interpretation
Q,-. and let B denote A,-. By minimality of a, K is AC-consistent. Then,

JAg <4 B, Ag=4c B and Q.(B) # QalA3)

WWe prove in lemma 8 that B is an equality (u; = v) and Ag is an equality (v = v), where
uy =4¢ w2 and uy > v . From now on, we assume that Ag = (u; = v) Is the smallest atom
such that Az =4¢c B and Qu(Ap) # Qa(B) . Then, several cases are possible, and the next
lemmas show that they all yield a contradiction :

1. If i has exactly one successor, (), : a contradiction is derived by lemmas 9, 11, 12.

2. If K has two successors L and R, at least one of them is not a [quasi-[failure node (Q,),
L(B)=T and R(B)=F.

(a) If Q4 is L : a contradiction is derived by lemma 13.

(b) If Q, is R : a contradiction is derived by lemma 14.

Since all cases are impossible, (), cannot belong to the quasi-rightmost path ()., and also
this sequence of partial E-interpretations is AC-consistent. O

Lemma 8 B is an equality (u; = v) and Ag is an equality (uq = v), where w =a¢ uy and
Ug > T .

Proof : e decompose the proof of this lemma in three facts :

1. top(B) is ”=" ; otherwise I} = P(sy,...,8,), Ag = P(t1,...,tn), $i =4a¢ t; foreach
t, and there is a j such that K(s; =t;) = F ; so, K should be AC-inconsistent.
Thus, in the following, we can assume : B = (u, = v,) and Ag = (u, = v,) . with
Ug > Mo, Uy 2 Uy, U Sac U and v1 Sac vo .

2. u, Zac vy ; indeed, assuming that Q.(B) = F | if uy =a¢ vy, either (wy = v3) € AC
(if top(uq) € Fac ), or thereis a position in uy such that |, Sac 2y, 5 loplugy,) € Fac
(i.e. (ugp, = v1,) € AC ) and K (ug), = v2),) = I . In both cases, an equation of AC is
falsified by K, and also K" should not helong to MCT(S™).

If Q.(B) =T, the reasoning is be similar on (uy = vy), since in that case Q,(Ag) =TI .
So, uy > vy, and hy AC-compatibility, w > vy .
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3. We can choose A; such that v, = v, . since il vy £ v, . KNy = 03) =1
(wy = vy) — 12772 (uy = v2) and Q.(B) # N(uy = r3) : then. we can take (uy = ¢2)
for Ag. Indeed. K is AC-consistent means rhat B cannot he K-reduced 1o (us = 1)) by

(vp = ) (KN (uy = v1) = K{ux = 1)) and also vy > v .

So. B is an equality (u; = ¢) and Ay is an equality (uy = ¢) such thet @ uy =43¢ us and
uy > v . 0

Lemma 9 If I has cractly one successor (Qy ). then B = (uy = ) ———'}\—7" (wp[r] = ¢) with
[>r and (I =r)is N-irreducible.

Proof : In the following. we prove that B = (u; = v) is N-reducible v an equality (I = r).
[is not AC-equal to r. and | is a subterm of u,.

1. Bis K-reducible by some (l = 7‘) sotherwise. by construction of the tree. B = (u = u)
and Qn(B)=T .ie. uy=u=v. But. uy > v implies that wy, 2 v . Then. there is a
K -irreducible equality (I = r). u'nh [ >r such : B —4=" B[r].

2. 1 Zaic 7 :else. i should be AC-inconsistent, since N(:Az) # KN(Br]) and these atonis
are AC-equal. So: B —!=" B[r] with | »r.

3. B is K reducible at a position in u, : indeed, if B -—1,\: (uy = o[r]) . then
Ag —1\ =7 (uy = v[r])) ssince N(up = v[r]) # K(uy = v[r]) . i should be AC-inconsistent.

Thus. we have proved that B —!Z" (ua[r} = #) with =+ . O

The following lemma will be u<ed to prove lemmas 11, 12 and 13. It states that, for a node
I of the quasi-rightmost path. if two AC-equal atoms. taking a different value for A'. are K-
reducible by different equalities at different positions, then a failure node should occur earlier in
the path, provided that A" is AC-consistent.

Lemma 10 Lct K be « node of the quasi-rightmost path Q.. Let (v; = v) and (uy = v) be
atoms such that :
Uy =40 Uy, up > v (and also uy > v)
(g =) —‘,\-:d (wifdj=v). g>d
Auy =1) — ,\ uglr] =), =
(g =d) and (I = r) are K-irreducible
- Ky [d) = v) # K(ugir] = ©)
If K is AC-consistent. then KN falsifics a clause of GS.

Proof: Let (g =d). (I =7).(uy = ¢)and (u; = 1) be the atoms described just above, and let
us assume that K is AC-consistenut.
By proposition 2, there are atoms (Iy = ry) and (un[l;] = v) such that :

wi[lh]) =4 wy

(i =) is 1x'-irrpduciblc
l
'(1‘1[[]_“ _—l (lb][l]]:l), ll>-l'1
- the right node of (I} = ) i f ihire node labeled by a clause C'y of GS

8
- K(u[d] = v) = K(un[r] =
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In the same way, there are atoms (I, = ry) and (w[ly] = v) such that :

- 11)2[[2] = A U

- (ly = o) is K-irreducible

- (welly] = v) —[I'f-:” (ulra) = v) . Iy > ry

- the right node of (I, = ry) is a failure node labeled by a clause C'y of GS

- K(up[r] = v) = K{wg[ry] = v)
Since K(w[d] = v) # K(up[r] = v}, K(un[r\] = v) # K(up[ry] = v) and K(w[r] =
wyre]) = F' . From this, we can deduce the following facts :

[. 1, and l, are at AC-dependent positions in the AC-congruence class of wy, i.e. there
is no term w, AC-equal to wy, such that : w = w{h], [l2],, . wlrilp, 2], Sac wilr]
and wlly],, [72)p, Sac walra] . Indeed, K(wl[l], ir:),, = wirily[l)y,) = T since it is
K -reducible to (w{ri],,[r2]p, = wlrily, [12]p,) and AC-equal to (w[ry] = wa[r;]), and these
atoms have a different value for K. It would mean that K is AC-inconsistent.

2. 1, and [, are not AC-equal. Otherwise, K(ly =r3)= K(ly =7ry) =T, (l; = r) is not
reducible by ({, = rq) implies that »ry < ry, and (I, = ry) is not reducible by (l; = ry)
implies that vy > ry. So, r1 =1y . But. wi[r] Sac wy[re] and K(wi[r] = welry)) = F
wonld mean that K is AC-inconsistent.

3. 1, is not a proper subterm of a [;, AC-equal to [, : otherwise, (I3 = 7;) would be
K -reducible by (l; = ry), and also the failure node at the right node of (I; = ry) would he
a quasi-failure node, labeled by the atom (I3 = l,) or (I; = l3) instead of a clause of GS.

4. In the same way, [, is not a proper subterm of a [,, AC-equal to [,.

These four facts imply that there is a position ¢, of w, and ¢, of wy such that : wyy, Sac
fhith) =ac Wy, SAC f(la,t2) , where f is the AC-operator at the top of [} and 3. Since [,
and ly are at dependent positions, but none of them is a subterm of the other, there are ground
terms a, b and ¢ such that : |} = ¢ fla.b) . 2 =4¢ fla.c) . where :

top_AC _subterms(ly, f) Niac top-AC subterms(ly. f) = top_AC _subterms(a, f)
top_AC _subterms(b, f) Ny ic top_AC _subterms(c. f) = 0

We can notice that t; and t, are respectively ¢ and b. or f(c.d) and f(b.d) for a ground term d.
Let Cy and C; be the clauses of GS falsified by I at the right nodes of (I} = ry) and (I, = ;)
respectively. Then, denoting C|{ = (I} = )V D} and C) = (I} = ry) Vv DYy the clauses of
INF~(S) such that Cy =4¢ Cio and C, =3¢ Cho for a ground substitution o, all conditions
are satisfied to apply an AC-extended paramodulation step between clauses Clo and Co.
The deduced clause C' is (f(rjo.¢) = f(rho. b))V Dio Vv Dyo . which also belongs to GS.

Let us denote wrql = url[rl]hl and wrq2 = lL‘-g[l'_)]lq) . Since wrql =ic f(ri.t)
and wrq2 =3¢ f(ra, ) « and by AC-consistency of K. N(wrql = f(r;.t1)) = K(wrq2 =
f(r2. )Y =T . If we do the hypothesis that K(f(rio.¢) = f(rho.0)) =T . we have :

K(f(rice) = f(raeb)) = K(f(n-0) = flra-ta) = W(wrgl = wrq2) = T

Then. (w\[r1] = wary]) is KN-reducible to (wq[r1] = w2lwrqlly,) or (wifwrqlly, = wolra)),
whether wrql is smaller or bigger than wrqg2. But. both sides of the deduced atom are AC-
equal : it implies that I is AC-lnconsistent.

The hypothesis that N satisfies (f(rjo.c) = f(ryo.b)) was wrong. and we conclude that K
falsifies the clause (" of GS. produced by the Ac-extended paramodulation step described above,
and that -interpretation is not in MCT(8™). O



Lemma 11 [f N lhas ceactly one successor (Q, ), then Ag is K-irreducible.

Proof : In lemma 9, we have proved that B = (uy = v) —1,\:’ (ug[r) = v) with > r and
(I = ») K-irreducible. Then, we will focus on Ag, proving first that it is K-irreducible into an
AC-equal atom. second that it is K-irreducible by any other equality.

[. A;is not K-reducible into an AC-equal atom ; indeed, if it was N -reducible by an
equality (g = d). where g =ac d , Ag[d] would he AC-equal to I3 and smaller than Aj.
It is impossible since Ag has been chosen minimal (in proposition 3).

2. Ay is K-irreducible. If not. there is an equality (¢ = d) which K -reduces (v, = 1)
in (u{d] = v), where ¢ > d and (g = d) is K-irreducible. Since N is assumed to be
AC-consistent, lemma [0 allows us to sav that K falsifies a clause of GS. Also, K cannot
he a node of the quasi-rightmost path.

The only valid solution is that Az has to be K-irreducible. O

Lemma 12 [f i’ has ezactly one successor (Qy), then K(Ag) = F and @, cannot be « node
of the quasi-rightmost path.

Proof : [From lemmas 9 and 11, we know that :

B = (uy = v) —Ilf’ (ug[r] = v) with {>r

Ag = (uy = v) and (I =r) are K-irreducible (v =i¢ u,)

We will prove that a quasi-failure node should occur at Az, and also that ), cannot belong to
the quasi-rightmost path. But first, let us prove that K(Ag)= F .

If we assume that K(Az) =T . the right node R of Ap. right extension of ()3 and falsifving a
clause C| of 87, Is

L. either a failure node : Cy = (uy = v)V Dy € GS (since uy > v ) : thus, (uy = v)VvV Dy is
in G§ too, and is talsified by Qq, which also should not be in MCT(S™).

2. or a quasi-failure node : Cy = (uz = wy) (or (u; = ug)), uz =4c ¥y . and (uzg = v)is h-
reducible by a K -irreducible equality (¢ = d) (g > d) to (u3[d] = v). R(uzld]=v)=T .
and R(uy = v) = R(uy = v) = Qulug = v) = F . Since we have two AC-equal
atoms (uy = v) and (us = v) which are K-reducible and have a different value for the
E-interpretation (KN (wz[r] = v) # K(ug[d] = v)). by the lemma 10. we can say that K
falsifies a clause of GS. and also it cannot belong to the quasi-rightmost path.

Finally. Ay = (v = v) is N-irreducible and K(Ag) = F ; B = (uy = v) is K-reducible by an
cquality (I = r) to (uy[r] = v). where [ > v and Q.(B) =T . Therefore. there should be a
quasi-failure node at the right node of Ag. labeled by (u; = wy). and Q4 cannot belong to the
guasi-rightmost path. 0

Lemma 13 [f K has two successors L and R. at least one of them is not a [quasi-[failure nodc
(Qa) LAB)Y=T. R(BY=F.and Q. is L. then Qo cannot belong to the quasi-rightmost path.

Proof : If N has two successors L and R. L(BY =T and R(B) = F. and Q, = L. then R
is a quasi-failure or a failure node. labeled by a clause C'g. We know that : B = (uy = v) .
Ag= =20y, wy Sac 2, g > v, Qu(B)# KN(Ap) (= F) . Moreover. Ay is the smallest
atom satisfying these conditions. Then. we can deduce the following facts :
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1. Cp & GS : otherwise, Cpr= BV Dp, A3V Dp isin GS too and it is falsified by I,
which cannot be in MCT(S™).
Since uy > v, R is a quasi-failure node, and Cr = (u; = ug[l]) or (us[l] = wy) ( uy =ac
us ). (us[l] = ) —=" (w[r] = v) (=71 and (I = r)is K-irreducible), K (us[r] = v) =
T .

2. Ajis K-reducible. Indeed. R(uz[r]=v)=1T and R(wy =v)= R(uy =v)=I'. But,
(uy = v) is smaller than (uy = v), and if it was K -irreducible, a quasi-failure node should
occur at its level, and also I should not be in MCT(S*).

So: Ay ——>“,’\-=d (wy[d] = v), with g > d and (g = d) K -irreducible.

3. 1¢ d. since Ag has been chosen minimal. Therefore, g > d .
AC ‘
We can summarize previous facts by :

u; = v) _.g=d w|d] = v) with ¢ > d

( ) K

w3 = v) — 5= (u3[r] = v) with [>r
K

E(uld) = v) # K(uslr] = v)

Then, by lemma 10, we can say that K falsifies a clause of GS, and also it cannot belong to the
quasi-rightmost path (Q, too). O

Lemma 14 If I has two successors L and R, at least one of them is not a [quasi-Jfailure node

(Qa). L(B)=T, R(B)=F, and Q, ts R, then (), cannot belong to the quasi-rightmost path.

Proof : K has two successors L and R, L(B) = T and R(B) = F, and Q, = R. We know
that : B =(up =v), Ag = (up =v), w1 =4c U2, W1 > v, Qu(B) # K(Ag) (=1T) .
Moreover. Ag is the smallest atom satisfying these conditions. Then, we have to study two
cases :

- If (u, = v) is K-reducible by a K-irreducible equality (¢ = d) to (uy[d] = v) : we can
check that (¢ = d) € AC, since Ap has been chosen minimal ; so, ¢ > d , and also R
should be a quasi-failure node (R(B) # R(Ag)).

- If (u, = v)is K-irreducible : let C, be the clause falsified by the right node of (u; = v).

First, we can check that C) € GS, otherwise Cy = (u; = v)V Dy and (uy = v)V D,
would be in GS too ; however, R falsifies this last clause, and also it could not be in
MCT(S™).
Since wy > v, the right node of (u) = v) is a quasi-failure node, C| is either an atom
(w; = ua) or an atom (uz = uy), where uy is AC-equal to uy and (uz = v) ——'[,\:’ (us[r] =
v), where | > r and (I = r) is K -irreducible. Morecover, R(us[r] =v)="T # R(u; = v)
implies that R should be a quasi-failure node.

Since the situation is impossible in both cases, ), cannot be a node of the quasi-rightmost path
Q.. ©
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6.3 Proof of the Completeness Theorem

Since we have proved that @,. the quasi-rightmost path of 1/C7T(87) is non empty and AC-
consistent, we will prove that @, falsifies clauses of ¢§. This will finish the proof of theorem 5.
since, each node of the quasi-rightmost path being a node of MCT(8™). if one of them falsifies a
clause of G§, it means that MCT(S8™) is empty, and also that the empty clause belongs to ¢S,

and hence to INF*(S5).
Proposition 4 The last node @+ of the quasi-rightmost path falsifies a clause of GS.

Proof : Let k' = @, be the last node of the quasi-rightmost path. Hence. K is defined on all
the atoms A; where i <~ . L belongs to MCT(S8™). and every extension of k' is a failure or a
quasi-failure node. Let us write B for the atom A..

As in the empty theory [HR91]. there are three main cases :

- either N has one extension I. and B is K -irreducible
-or K has two extensions L and R
- or K" has one extension I. and B is KN-reducible

Case 1 : I has one extension I, and I3 is I -irreducible

By definition of the construction of the semantic tree, the atom B is an equality of the form
(v = u), which is K-irreducible. u being a ground term (I(u = u) =1, by definition).
Since I is a failure node for §*. there is a clause C' € 8™ such that I(C')=F .

As A does not falsifv ¢ (N € MCT(S8™)), and A and I differ only by their value on B,
we have :

C=-(u=u)vD and K(D)=1F,

for a D whose atoms are smaller than (u = u).

As I(u=u)=T,C belongs to GS. So, there are a clause C' € INF*(S) and a ground
substitution a such that C'o =4¢ C' .

We can deduce the clause D by AC-reflection of C'o. Thus, D is in GS.

Hence there is a contradiction between the fact that K belongs to MCT(S™) and the fact

that K falsifies D.

Therefore. first case cannot hold.

Case 2 : R has two extensions L and R (thus B is K-irreducible)
|
o I
B T “F
L / No R
[-BVv D] ‘5 |

The node K has two extensions that are failure or quasi-failure nodes. And, since L(B) =
T, there is a clause Cp = =BV Dy . where each atom of Dy is smaller than B (for the
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ordering > 4 ), such that €'y, belongs to GS and L(C';) = F'; just as K does not falsify Cp,
and, I differs from K only by its value on B, we have : K (D)= L(Dy)=F .

Let us denote C the clause =B’ v D of INF*(S) such that : Cpo =ac CL , where o is
a ground substitution.

As R can be either a failure node or a quasi-failure node, we have to study two subcases.

Case 2.1 : if Il is a failure node
Then, Cr is either in GS or in AC.
Case 2.1.1 : if CreGS
It means that there is a clause Cp of INF*(.5), such that : Cho =4c Cp =
BV Dp . As for Dy, we have: K(Dp)= R(Dgr)=1I".
Hence, by AC-resolution between ('jo and Cro, we can generate a clause AC-
equal to Dy, VvV Dpg ; so, this last clause belongs to GS.
Hence K, which falsifies Dy V Dp, cannot be in MCT(S™).
Case 2.1.2 : if ('€ AC

It means that B € AC. So, we can apply an AC-reflection step in C'j o to deduce
the clause D} o which is AC-equal to Dy,. So. Dy belongs to GS and as it is
falsified by K, this last E-interpretation canunot belong to MCT(S™).
Case 2.2 : if R is a quasi-failure node
In this case, by construction of the rightmost path. B is of the form (u = v), with
w = v, and Cg is either (uw = uy) or (uy = u) with u = ¢ u;.
Then, the atom (uy; = v) is K-reducible by an irreducible atom (I = r) (I > r) to
(u[r] = v). Since | £.1¢ r, and by AC-compatibility of the ordering, (u1{r] = v)is in
the domain of K and : K(u[r]=v)=T.
Let 3 be the index of (I = ») ; Q3 is the restriction of K to W3. As (I = r)is
Q) s-irreducible, Q3 admits two extensions. and by proposition 2, we have proved that
M, the right extension of @3, is a failure node labeled by a clause Cy; of GS : let
Car be (I =17)V Dy ; thereis a ('Iausc-_\ Cy E.(l’ =1r") v DYy of INF*(S) such that
Car is AC-equal to a ground instance Cy,0 of C'\;. As Q5 and M differ only by their
value on (I =), Qg(Dar) = M(Dp)=TF (= k(D)) .
So, B' = (v =v"), where w'o =43¢ u and v'c =4¢ v . aund there is an occurrence
0 € Occ.maz(u'o,top(l)) such thateither u'c|, =4c l'c . or top(l) = f.€ Fyc and
u’(r,u =.4c f(t,l'a) . where t is a ground term.
- If Wop, =ac Vo, we can apply an AC-paramodulation step from Cy o into Cpo
to get ~(w'olo —1'g) =v'o)v Djov D0 .
- If w'o), =ac f(t.l'0) . we can apply an AC-contextual paramodulation step from
Cy0 into Cpo to get —(u'alo — f(t.r'a)] = 'a)v Dyo Vv DYy,0 . The condition on
top-AC _subterms for applving that inference step is trivial since we are using ground
literals,
In both cases. the deduced clause is AC-equal to —(wu{r] = v)V Dy V Das . So, this
last clause belongs to G8 and falsified by K. Hence. this last E-interpretation cannot
belong to AICT(S™).

Case 2 is also impossible.
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Case 3 : I has one extension I, and B is K -reducible.

Let (g = d) be the smallest equation such that g > d, KN(g =d)y =T and there is an
occurrence p such that

By, =g if B is not a positive equational literal,

s, =g if Bis an equation (s = t), with s > t and [(B)=T .

In the second case. the existence of (g = d) is not immediate. It can be proved as follows :
assume s is N-irreducible ; then t must be K-reducible to some t' : but then it is easy
to show that K(s = ') = T and therefore s can be K -reduced by (s = t'), vielding a
contradiction,

Let 3 be the index of the atom (g = d) and J the restriction of k' to Wy (defined on
the atoms smaller than (¢ = d)). We verify that (¢ = d) is J-irreducible. Hence .J has
two successors. Let M be the right successor of J. By the construction of K, M is a
[quasi-Jfailure node.

|B|V Dy with : |B|= if I(B)=F then B, else =B

By construction of the quasi-rightmost path, we can establish that I falsifies a clause
Cr =|B|vD; of GS, where every atom of Dy is smaller than B, and I{D;) = K(D;) = F:
indeed, I cannot be a quasi-failure node, and if C; was in AC, B would be an equation
(slg] = &), where s[g] =ac §', and K would be AC-inconsistent, since K (& = s[d]) =
K(slg)=s")=F and K(s[g]=s[d])= K(s[d]=s[d])="T.

Moreover, by definition of an E-interpretation, as I(g = d) = T . it implies that B and
Blp — d] have the same truth value for I. Since B[d] <4 B , we can deduce that
K (B[d) = [(B[d]) .

Let C} = |B'|Vv D} denote the clause of INF*(§) verifying Cjo =4¢ Cy . where o is a
ground substitution.

As in Case 2. we have to consider two main subcases :

Case 3.1 : If M is a failure node

Then, C'g is either in GS or in AC.
Case 3.1.1 : If Cp; €GS
Then, Cyr = (g = d)V Dy, every atom of Dy is less than (g = d) for the
ordering > 4. J(Dpr) = K(Dpr) = F, and there is a clause 'y, = (¢’ = d')v DY,
of INF*(S) verifving Cj;0 =ac Cas . Let o be an occurrence of B'o such that
either B'a| =ac g'c .or top(g) = f € Fa¢ and B'a| =,c f(t.g'a) ftor some
ground term t.
- If B'o), =4¢ g'0 . we can apply an AC-paramodulation step from clause 'y,
into clause Co to get |B'alo — d'o]|V Djo VvV Dy,0 .



- If B'o), =4¢ f(t,g'a) , we can apply an AC-contextual paramodulation step
from clause Cy 0 into clause Cho to get |B'olo — f(t,d'a)]|V Djo Vv Djy,0 .
In both cases, the generated clause is AC-equal to |B[d]|v D;Vv Dy . So this
last clause belongs to GS.
As K(|B[d]|V D;v Dpp) = F | K cannot be in MCT(S™).
Case 3.1.2 : if Cpr € AC
It means that g =4¢ d, and also Bld) =.4¢ B. Hence, |B[d]|V Dy belongs to GS
too. and is falsified by I'. So. a failure node occurs at the level of B[d], and K
is not in MCT(S™).
Case 3.2 : If M is a quasi-failure node
In this case, by definition of a quasi-failure node, ¢ > d , and C'yy is either (g = ¢')
or (¢’ = g) with g =1¢ ¢'. Moreover, (¢' = d) is reducible by an irreducible atom
(l=7)({>7r)to(d[r]=d).and K{g'[r]=9)=J(¢'[r]=d)=T.
Let g be the index of (I = r) and G be the restriction of J to Wz. As (I = r) is
G-irreducible, G admits two extensions. and by proposition 2, we have proved that
H, the right extension of (i, is a failure node labeled by a clause C'y of GS ; let
(I = r)V Dy denote this clause Cyy ; there is a clause Cyy = (I' = +') v D}; of INF*(S)
such that Cy is AC-equal to a ground instance Cjyo of Cly. As G and I differ only
by their value on (I = v), G(Dy) = H(Dy) = F (= K(Dpy)).
So, B'c =4¢ Blg] =ac Blg'[l]]. There is an occurrence o € Occ.maz(B'o,top(l))
such that either B'o|, =ac l'o , or top(l) = f € Fy¢ and B'o =ac f(t,l'0),
where t is a ground term.
-If B'o|, =ac l'o , we can apply an AC-paramodulation step from C},0 into Cjo to
get |B'oo— r'ol| Vv Djo Vv Dyo .
- If B'o|, =ac f(t,l'a), we can apply an AC-contextual paramodulation step from
Cjo into Cio to get |B'olo — f(t,r'0)]|V Djo v Do .
In both cases, the deduced clause is AC-equal to |Bg'[r]]|V DV Dy . By definition
of an E-interpretation, K(¢'[l] = d) = K(¢'[r] = d) = T ; therefore, I(B[g'[r]]) =
I(B[d]) , and I{(Bl¢'[r]]) = I(Blg]) . Hence, the clause |B[¢'[r]]|Vv D;V Dy is
falsified by K and this interpretation cannot belong to MCT(S™).

Therefore Case 3 leads to a contradiction too.

Since all cases are impossible, necessarily MCT(S8*) is empty and therefore the empty clause
belongs to INF*(5). O

7 Simplification rules

In this section, we introduce new inference rules that allow to delete redundant clauses, and
therefore to reduce the search space of the theorem-proving procedures.

Subsumption and simplification

Definition 16 {AC-subsumption)
Let C1 and Cy be two clauses satisfying : Cy has at least as many literals as C'y, and there is a
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stbstitution o such that Cya Ty Cy . considering a clause as a st of lilcrals. Then, we say
that the clause C'y AC-subsumes the clause (7.

Definition 17 (Strict AC-subsumption)

Let Oy and (' be two clauses. We say that Oy strictly AC-subsumes the clause Oy 0 € AC-
subsumes (5 and Cy, does not AC-subsumes (.

The application of this rule consists of the deletion of the strictly subsumed clause (C'y).

The result of Loveland [LoviR] about the impossibility of an infinite sequence Cy. ...
where each (41 strictly subsumes (';. for all /. remains true in AC theories :

Lemma 15 There is no infinite sequence (o.Cy.... such that the clause Coypy strietly AC-
subsumes the clause C;. for all i.

Now. we define two simplification rules. where AC-matching is used.
Definition 18 (AC-shmplification)

(s=t)vDy LvD;
Llp — talv D,

(AC-simpl)

L|p =3¢ so where p € Occomax (L. top(sa))
1)10’ C ic D-_g lLe. 1)-2 =41C D1(T Ul i DIQ
sog - tlo

JA € Atoms(L v D). (s=t)o <4 A

Comuments : this ordered AC-simplification rule applies if there is a non variable occurrence p
of the literal L and a filter o. such that L, is AC-equal to so. Fach literal of Dio has to be
AC-equal to a literal of Dy (and also of the same sign). Moreover, an atom of LV DY, has to be
greater than (s = t)o (it often is L itself).

The application of this rule consists of the replacement of the reducible clause (Lv Dy) by the
reduced one (L[p — tolv D,). The position p has to be a mazimal occurrence in L of the top
operator of so. if it is AC.

Definition 19 (AC-contextual simplification)

(s=tyv D, Lv D,
Lip— f(t,a)o]lV D,

(AC-cont-simpl)

L, =ac fls.ac)a where fas an AC-operator at the Lop of sa.
x 1$ a new vartable, p € Occomazx( L, f)

if Do CTac Dy de. Dy =ae0 Do Uiy D

sa = to

3A € Moms(Lv DY), (f(s,z)= flt.a))a <4 A

Comments : this ordered AC-contextual simplification rule applies if there is a position p of the
literal L and a filter o, such that Ly s AC-equal to f(s.a)o, where [ is the top AC-operator
of sa and p is « mazimal occurrence of f in L. Fach literal of Dy has Lo be AC-equal o
literal of Dy (and also of the same sign). Morcover, an atom of [,V DYy has to be greater than
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([ls,2) = f(t,2))o.
The application of this rule consists of the replacement of the reducible clause (L V Dy) by the
reduced one (L{p — f(t,z)o}Vv Dy).

In these siinplification rules, the restrictions about the existence of an atom greater than
(s = t)o (or (fls,z) = f(t,2))o) are necessary for applving our completeness proof method.
But we conjecture that they are not needed, or, more precisely. that they can be restricted to
some particular cases.

7.2 Completeness

Let INFs be the set of inference rules : AC-factoring, AC-reflection, AC-resolution. A(-
paramodulation, AC-contextual paramodulation, AC-extended paramodulation, AC-simplifica-
tion, AC-contextual simplification and strict AC-subsumption. A derivation from Sy is a se-
quence Sp, 57, ... of sets of clauses obtained by application of inference rules of INFg.

The method used in Section 6 cannot be used here since. if two clauses allow to deduce a third
one, it could be possible that they never appear in a same set .S, : so the inference will never be
considered. We will show that, fortunately, this never keeps from generating the empty clause.

Definition 20 A derivation So. 54, ... is fair if : if there is j such that € (5, RP(9;) .
then C is strictly AC-subsumed by C' € ;50 5: . where RP(S;} is the set of all clauses that
can be inferred from S; in one step of a rule of INFs.

Definition 21 A clause C is persistent in a derivation Sg.51.... if there is an indexr k such
that C belongs to (N;>i Si -

Let us introduce the following proposition :
Proposition 5 Every failure node of \J;5q9: falsifies a persistent clause.
First, we will assume that this proposition is true : we will prove it later.

Theorem 6 Let S be an AC-unsatisfiable set of clauscs. Then. every fair derication from S
generates the empty clause.

Proof : Let Sy,S51.92.... be a fair derivation from S (Sy is §). an AC-unsatisfiable set of
clauses. S will denote J;5oS: . As to prove theorem 5 (Section 6). we define the sets :

GS = {C|3C" eS8 . C =40 C'o. for some ground instance C'a of ('}
AC = {(u=d")|ud € T(F). u=4¢ . toplu) € Fye }
5' = Q;S U A(,

We will not deseribe the entire proot of this theorem. since all subcases are solved in the same
wav. So. let us detail proof of case 2.1.1 (proposition 4). where the E-interpretation K . last node
ol the quasi-rightmost path of MCT(S8™). built as in the initial proof. admits two successors L
and R which are tailure nodes of 8. Let (" and C'i be two clauses of G8S respectively falsified
by L and R.

By the proof of proposition 1. we know there is a clause ' in RP({C.Cr}) falsified by K.
obtained by AC-resolution between ;. and Cr. By proposition 5. we can assume that C'p and
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(i are persistent, Le. : O, Cp € ﬂizj Si . Hence, '€ U5, RP(S;) . The hypothesis of
fairness of the derivation ensures that €' is AC-subsumed by a clanse C' of GS. Therefore, K
falsifies the clause (!, and also cannot belong to MCT(S*).

The use of the quasi-rightmost path ()., described in Section 6.1 is always valid, and proofs
ol all other subcases are similar, since we can follow the same reasoning. assuming that initial
clauses are persistent, as C';, and Cp. O

Proof : (Proposition 5) Let us define some notations :

GR(S) ¢ set of clauses AC-equal to a ground instance of a clause of the set 5, i.e.

{C13C"es, C =0 C'o . for some ground substitution a }

1 :a failure node of $™

A} : set of clauses of §* falsified by I, l.e.
{C|Ceb* IC"e GRACY), (C"Yy=TF}

e ¢ set of minimal clauses of GR(Y) for the ordering << 4

II : subset of clauses of ¥ having an instance in TG

I : set of minimal clauses of Il for the ordering of strict AC-subsumption

We can notice that : GR(Il)=GR(II") =TG .
In the following lemma, we prove that each clause of Il' is persistent, and also that each failure
node falsifies a persistent clause. O

Lemma 16 If C belongs to 1, C is persistent.

Proof : Let C he any element of Il'. First, C' is never simplified ; otherwise. there would he
an index j such that C' € §;, and a clause (s = t) € S; which could simplify C" at a non variable
position p. Let s’ denote C|p. Then :

- either s’ =,4¢ so @ then, Sj4 = (5;\{C})U{C[ta],} . Since C belongs to Il there is a
substitution 8, I(C#) = F and C8 is minimal in (; R(X). By definition of AC-simplification.
there is an atom A in ' which is greater than (s = t)o for the ordering > y. By stability
of this ordering, A8 >, (s = t)o8 , and, by AC-compatibility. A8 >4 (s’ = te)f . We
can assume that I((s' = to)0) = T, otherwise there should be a failure node at the level
of this atom.

So, 1(C[ta]d) = I(C[s')0) = I(CH) = F. But, as Clto]d << 4 CH. CH is not minimal in

GR(T), which contradicts the hypothesis.

-or ¢ =4¢ f(s,2)o, where [ = top(sa) : then, S;4y = (S;\{CHU{C[f(t. )]} . As
in previous case, there is a substitution 8, [(C8) = F and ('8 is minimal in GR(Z). By
definition of AC-contextual simplification, there is an atom - in C which is greater than
(fls,2) = f(t,a))o ; and also, A8 is greater than (s' = f({.x)e)0 : morcover. [((& =
flt,x)0)8) = T, since the maximal path built is AC-consistent. and (&' = f(t.x)o)0 is
AC-equal to (f(s,x) = f(t,x))o8 which is valid for the E-interpretation I.

Therefore. [{C[f(t,2)0)8) = [(C[<18) = I(CO) = F. and as C[f(t.2)o)8 <<, (8. C¥H

cannot he minimal in GR(Y). which yields a contradiction.

At last, (' is never strictly subsumed, otherwise, let 8 be the substitution so that I(C8) = F
and ('8 is minimal in GR(Z). and let C' € 5; be a clause strictly subsuming . It means
that there is a pattern matching o verifying : cach literal of ("o is in O {modulo AC). So.
1(C8) = [(("ab) = F, and C" belongs to 1. By definition of TI'. ¢ cannot be one of its
clements. 0O
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7.3 Other simplification rules

A number of other simplification rules are compatible with AC-paramodulation. Ior instance,

we can delete fautologies ; there are two kinds of tautologies : clauses that contain a literal AC-
equal to an identity (s = &) ; and clauses that contain complementary literals, i.e. literals L and
=L'. where I and L' are AC-equal.
Another iportant rule is the clausal simplification rule, which delete all instances of a literal
L in every clause of S.if =/ is a clause of §. We can also delete every instance of =(x = a). A
clausal simplification step mayv be viewed as a resolution step, followed by the deletion of one of
the parent clauses.

Other reductions are possible. as reductions by replacement, i.c. to replace a clause —(s =
t)v D . where s > t. by the clause -(s = t)v D', where D’ is equal to D, except that all
subterms AC-equal to s have been replaced by f. A variant of this reduction is to replace a
clause —(r =)V D . where o ¢ V' (1), by the clause D', where D’ is equal to D, except that
each occurrence of the variable & has been replaced by .

8 Implementation

The svstem of inference rules described in this paper has been implemented in a theorem-
prover named DATAC. Another strategy is also available in DATAC : the positive ordered AC-
paramodulation!, which is based on the idea that any inference step uses at least one positive
clause.

DATAC is written in CAML Light, a functional language of the ML family. It runs on SUN,
HP and IBM PC Workstations. The AC-unification (resp. AC-matching) procedure is based on
Stickel’s (resp. Hullot’s) algorithm. In our implementation, we try to balance the complexity
of AC-unification by applying a number of simplification rules for keeping the search space as
small as possible. We have implemented a variant of the associative path ordering ([BP85]) for
comparing terms and atoms.

DATAC is entirely automatic : after the user has entered a problem, specified by a set of
first-order clauses. he gives a precedence between operators and predicates. Many parameters
can be set before an execution. It is possible to limit the number of AC-unifiers computed, to
limit the number and/or the size of generated clauses, to use different trace degrees, to enable or
disable simplification rules. There is also a “step by step” mode where each choice of clauses and
inference rules is performed by the users. Our first experimentations on non trivial examples
were encouraging.

9 Further works and conclusion

We have designed a refutationally complete paramodulation-based strategy for associative-
commutative deduction. It has been adapted from the ordered paramodulation strategy of
[Pet83. HR91]. We have shown that AC-paramodulation is compatible with associative-com-
mutative simplification. This is a fundamental issue for the efficiency of theorem-proving. Our
strategy has been implemented in the system DATAC and experiments with non-trivial examples
are encouraging. A similar treatment has been applied to another strategy, the positive strategy.
and we think that our method could be applied to other theorem-proving strategies such as

T"['his system was presented at the First CCL Workshop, Val d*Ajol, France, 1992



superposition [Rus89]. Moreover. some use of extended clauses could be avoided. as described
in [BD89], where Bachmair and Dershowitz define a set of useful extended rules for a given
rewriting system.

The idea of replacing axioms by ad-hoc mechanisms such as unification algorithnt or inference
rules can be further extended to other equational or non equational theories. In general the
efficiency gain is noticeable, but this still needs to be carefullv studied by experimentations.
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