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Abstract

Three dimensional (3D) images take an increasing importance in the medical imag-
ing field. They may be produced by X-ray Computed Tomography (CT), Magnetic
Resonance Imaging (MRI) or Positon Emitting Tomography (PET) for example. They
usually contain complementary informations which have to be combined together in
order to be useful to physicians. Combining the information of several 3D images sets
the problem of the registration of these images. It arises when two images of the same
modality are taken with different positions or taken at different times (before and after
a surgery for example) or with two images of different modalities. We present a new
method for computing the rigid transformation between two 3D objects. Qur method
looks like a gradient method that minimizes the distance between both objects, but is
more powerful because it is in fact an application of the fundamental laws of dynamics
which uses both first and second temporal derivatives of positions and allows an intu-
itive control of the minimization process. We show and discuss synthetic examples as
well as real examples involving the registration of CT or MRI data of the head and the
registration of PET and MRI images of the brain.

Index Terms: 3D matching, medical images registration, rigid transformation,

potential minimization.
Résumé

Les images tridimensionnelles (3D) deviennent de plus en plus prépondérantes dans
le domaine de I'imagerie médicale. Elles peuvent étre produites par tomographie par
rayons X (scanner X), imagerie par résonance magnétique (IRM) ou tomographie par
émission de positons (TEP) par exemple. Elles contiennent des informations complé-
mentaires qui doivent étre fusionnées afin de fournir une aide précieuse aux practiciens.
Combiner l'information de plusieurs images 3D pose le probleme de la mise en corres-
pondance de ces images. Il apparait avec deux images de méme modalité prises a des
positions différentes ou a des instants différents (avant et aprés une opération par
exemple) ou avec des images de modalités différentes. Nous présentons une nouvelle
méthode de calcul de la transformation rigide entre deux objets 3D. Notre méthode
ressemble & une descente de gradient qui minimise la distance entre les deux objets,
mais elle est plus puissante car c’est en fait une application des lois fondamentales de
la dynamique qui utilise les dérivées premieres et secondes de la position par rapport
au temps et permet un controle intuitif du processus de minimisation. Des résultats sur
des données synthétiques et réelles sont présentés, comme la mise en correspondance
de données scanner X ou IRM de la téte, ou la mise en correspondance d’images IRM
et TEP du cerveau.



1 Introduction

Three dimensional (3D) images take an increasing and major importance in the medical
imaging field. They may be produced by X-ray Computed Tomography (CT), Magnetic
Resonance Imaging (MRI) or Positon Emitting Tomography (PET) for example. In order
to follow and to quantify the evolution of a pathology, to locate the site of a metabolism,
or to identify the anatomical structures with respect to an atlas, it becomes important to
combine together several 3D images of the same part of the body.

Because of the extremely accurate quantitative results required by these application and
the large volume of data to be processed, an automatic method of registration is necessary.
Moreover, this registration has to be performed in 3D, simply because the protocols for
image acquisition vary from one image modality to another, and also because even between
two images of the same modality, the position of the patient is seldom perfectly known with
respect to the acquisition device. It is therefore necessary to design a completely automatic
3D registration procedure.

Functions with respect to voxel intensity have been proposed to maximize a similarity
index [27] or to minimize the variance of image ratio [34]. Those techniques give good results
for PET or SPECT images but have not been applied to others images. As voxel intensity is
obviously not invariant between images of different modalities, a first segmentation of images
is necessary in order to obtain landmarks.

External markers (points on a stereotaxic frame or customized head holder which can be
viewed in several modalities [13, 26, 35, 36]) or internal landmarks (some particular anatomi-
cal points, like blood vessel bifurcations [18]), have been widely studied. The transformation
parameters are then computed by a classical method (for example, a least square method).
Each method has its own disadvantages. External markers need the patient to carry a
stereotaxic frame between both acquisitions. Moreover, the registration with older images
is not possible. Internal landmarks often need a manual detection, whose accuracy depends
on image resolution, and which has an effect on the computation of the transformation pa-
rameters. A local matching, based on crest lines, is described in [33]. It is a feature based
method more robust to noise, resolution and anatomical variations, but it works only for
good quality and high resolution images.

Instead of segmenting only a few particular points as the ones presented above, we prefer
to look for a more significant part of the image like a complete organ (we use either the brain
or the skull in the results we present). Because this segmentation can be imperfect or the

considered landmark can be truncated, we are therefore looking for a 3D rigid registration



method allowing for occlusions. A preliminary segmentation method must yield two sets of
points such that a significant subset of the first one can be rigidly superimposed on a subset
of the second one’.

Because of occlusions, a transformation between the two data sets cannot be sought
globally, by superposing the centers of inertia, and aligning the axes of inertia for instance [1].

Many approaches for registration tolerating occlusions can be found in the literature of
computer vision and robotics [2, 4, 15] and also in the medical field [16, 21, 25].

Because of the large number of points in a classical segmentation of a 3D image (e.g.
the MRI image of the brain in figure 16 contains more than three millions points and the
brain itself more than 400.000 points), prediction-verification, geometric hashing or Hough
techniques as described in [2, 15, 16] are likely to be much too costly, with algorithms whose
complexity is growing quadratic with the number of model points. On the contrary, methods
based on potentials of attraction, like the ones described in [4, 19, 21, 25, 30] are potentially
more economical, and we propose in this paper a new method of this type.

One of the image will create a potential of attraction, creating a dynamic evolution of
the second image towards an “optimal” registration position. The originality stems from the
original bases of the dynamic behavior of this system, which can be compared to the motion
of a solid under the action of a potential field and offers a intuitive understanding of the
minimization process.

We will discuss about the definition of the problem and the choice of the potential field.
Then we present the matching flowchart and results on a synthetic object (which allow us
to study the accuracy of the algorithm and its behavior with respect to local minima) and
on real medical data. Details about mechanical elements and links with the transformation

parameters are given in appendices.

2 Problem Formulation

In the formulation of the registration, two main problems arise. The first concerns the
definition of the objects to register. The second is the choice of the technique which performs
the registration.

The objects to register may be a set of scattered points (external or internal landmarks

! We assume that such a minimal segmentation procedure can always be found. This preliminary condition
is much less restrictive than asking for a perfect segmentation of at least one of the images. Such methods
have already been presented for the brain in [8, 14, 32] and also for other organs in [10]. In our results, 3D

mathematical morphology is sufficient to treat all presented examples in a completely automatic process.



for instance), curves (like crest lines [33]), surfaces (shapes of organs) or volumes (organs
themselves). The single condition which must be verified by both objects is that the chosen
representation is compatible with the imaging modalities, i.e. that the same object exists
in both images. In fact, the shape of the brain will be different in an anatomical imaging
modality (like MRI) and in a metabolic imaging modality (PET for instance).

Because of this remark, we assume that we already have segmenting first the objects of
interest (this segmentation will depend on images to register) which generalizes the problem.

The major contribution of our paper is to use the laws of mechanics to solve the registra-
tion problems, whereas other approaches are based on a static approaches. The idea is that
the inertial properties of the system are a way to avoid local minima, and that this property
can be controlled in a very intuitive way, due to our daily perception of mechanical events.
The main idea of our approach is that any object subject to a potential field will exhibit

motion derived from this field, and this motion leads to a minimum of potential.

2.1 Introduction

We prefer to deal with a potential because of its relation with energy. In fact, the potential
will be directly related to the distance between objects, as we will see below, but we think
that the potential approach is more appropriate to the formulation than the distance one.
As an example, dealing with energy allows us to add to the potential any term we want
(corresponding to some constraint we want to take into account) without changing the the-
oretical formulation (see [10] where the energy to minimize is made of several terms, each of
them corresponding to one constraint).

We will then discuss the choice of the potential, the practical computation of the potential
field, and the choice of the minimization process to use in order to find a minimum in the
potential field.

In the following, we will refer to the object that creates the potential field as the model,
and the object that will be subject to this potential as the object.

2.2 The Potential Field

To design a “good” potential field, we first state its desired properties. We identify two
properties: first, the potential energy must be minimum when the object and the model are
perfectly superimposed; second, the farthest the object from the model is, the greatest the
potential energy must be.

In order to achieve the second property, we can choose a potential which is an increasing



function of the distance between the object and the model. The first property is then verified
because the distance from the model to the model is equal to zero.

Let d(M) be the distance between any point M and the closest model point P to M:
d(M) = HM? ||. The first choice we can made for the potential field p is simply p(M) = d(M).
The problem is that the modulus of the gradient of the potential (which occurs in the
minimization process) is always lesser than one. We prefer to have a modulus of the gradient
which is an increasing function of the distance too. It will not change the convergence
properties but it will speed up the minimization.

Let us then consider the potential field p whose value for a point M is:

The minimization process uses the force field f, derived from the potential field p, which

is in this case:

£,(M) = —d(M)V (d(M))

where V is the gradient operator. A good approximation of this last form is simply the
vector M P2,

This vector MP can be computed by an euclidean distance transform which needs only a
few passes on the image [12]: it requires the storage of a complete vector (three coordinates
in 3D) per point. However, as we manipulate a big amount of data, we prefer to use chamfer’s
distance (see [6]) which is only an estimation of the distance but gives one single value per
point. An other efficient solution is to use a hierarchical data structure, like octrees [21].

Now, the potential energy of the object Oby is:

o :/ o(P)dP
P PeObjp( )

The problem is to find a 3D rigid transformation of the object which minimize this energy.
For that purpose, one can use classical numerical minimization algorithms (see [4, 7, 9,
19, 31] for example).
Because of the potential, it seems to us more natural to use a mechanical approach. In
fact, a direct application of the fundamental laws of the dynamic avoids the extensive analyt-

ical computation of the potential derivatives with respect to the transformation parameters.

21f all points in a neighborhood of M have the same closest model point P, there is an equality between

both formulations.



2.3 Minimization algorithm

The principle is the potential minimization using mechanical elements is the following. We
consider the object as a solid (a system of mass points where the distances between all pairs
of points remain constant) by attributing the elementary mass of the voxel to its center
of mass. By assuming that we know the voxel dimensions, we solve the scaling problem.
Deriving from the potential field, there is a force field which will draw the object towards
a potential minimum. The whole forces which apply to the object may be represented by
a force torque {7¢}. According to the general theorem of the dynamic, this force torque is
equal to the dynamic torque of the object. By integration with respect to time, we obtain

the behavior of the transformation parameters with:

. i = Ry
{ t = V(?) and B m
r = JYG)o(G) o= JTHG)Me(G)

where t is the translation vector, r the rotation vector (both give the complete transfor-
mation), v((G) the velocity of the center of mass G of the object, J(() the inertia matrix
computed with respect to GG, o(G) the angular momentum of the object with respect to G
and Rf and Mg(() are the components of the force torque.

For more details, these mechanical theory elements are presented in appendix A and the
link with the transformation parameters in appendix B.

We are then able to compute the motion of any solid subject to a potential field.

However, this single relation generates a system which does not reach stability, i.e. a
minimum of potential. In fact, the global energy® is constant and the system cannot stop.
By analogy, the motion looks like the one of a non damped pendulum. We will introduce
“damping” for our system. The characteristic of “damping” is the following: it dissipates
energy, so the global energy decreases.

A first refined solution is to introduce viscosity, then any solid subject to the potential
field stop by itself at the potential minimum.

At each point P of the object we apply a viscosity force f,(P) = —k,v(P) where k, is
the viscosity constant and v(P) the velocity of the point P. It comes to deal with a global
force f equal to the sum of the force f, deriving from the potential field and of the viscosity
force f,. the force torque {7¢} is then equal to {Zg } + {7¢,} where {7t} is the viscosity

3The global energy E is equal to the sum of the potential energy E, and of the kinetic energy Ejy. We
1
have Ej = ) (m(Obj)vz(G) + w.Jw), see appendix A for notations.



force torque. We have:
—k,v(G)
=4 ko
m(0by)
which gives a very simple expression of the viscosity force torque which needs no computa-
tional effort.
However, we did not retain this solution, because we need first to identify the constant
k, which depends on the studied object and second the object needs an “infinite” time to
reach the minimum (i.e. too many iterations).

We prefer then an other solution. Let £, be the potential energy of the object, we have:

E:/ o(P) dP
P PEObjU()

The potential energy is a part of the global system (equal to the sum of the potential
energy and the kinetic energy), and it passes through a minimum when a stability point is
reached. We will use this property to find that minimum, when looking at the potential
energy during the motion.

We propose the following algorithm.

1. At time t we compute the force torque {7¢,}and the potential energy E,;. of the
object.

2. If the potential energy E,; is less than the potential energy at time ¢t — dt, then we

compute the new transformation which applies to the object (see appendix B).

3. If the potential energy F,, is greater than the potential energy at time ¢ — dt, then we

take the previous system state (at time ¢ — dt).

(a) If the velocity v(() and the kinetic moment () are not null (at time ¢ — dt), we
set them to zero. It is equivalent to set the kinetic energy to zero, which decreases
the global energy.

(b) If the velocity v(() and the kinetic moment o ((7) are already null (at time ¢t — dt),

t
we change the value of the elementary unity of time dt to 5 We are then looking

for smaller displacements.

(c) We compute then the new transformation by using the force torque at time ¢ — dt,

{Tr-a}



By applying this algorithm, we ensure that the whole system energy decreases because we
set the kinetic energy to zero each time it passes through a maximum (because the potential
energy is then minimum) with respect to the time step we use. When the whole energy is
not decreasing, we take a smaller time step in order to look for smaller displacements.

We stop the algorithm when these displacements become too small, that is, when dt

becomes too small (for example lower to 0.1 if the initial value of dt was 1).

3 Results

We first present in this section a bench test on a synthetic object, in order to discuss local
minima. The main remark we make is that the right match is always found if the rota-
tion angle between images to register is not too large. This conclusion must of course be
moderated by the specificity of the test we made.

Then, we will present results on real medical images (same modality or different modal-

ities): two experimental studies with CT scan of the head and of the skull, and two clinical

studies with MRI and PET data.

3.1 Synthetic object

In order to evaluate the performance of our algorithm and its behavior with respect to false
matches (i.e. local minima of the potential energy), we try to define a bench test.
For that purpose, we use a synthetic object defined by its equation in spherical coordinates

(r,0,¢) with 6 € [0...27] and ¢ € [0...7x]:

s

2 (2%)3 + 2 e((€+§)[2“_(6+§)]_ﬂ2)26(qb(g_d))_ﬁ)2 9 (1 _ 2%) ¢ <

2
2 (2-22)" +20(27 —0) (6 )’ 23;&(“_”/2)“_@_7_6) J2(22-1) 6>

This object can be seen in figure 1.

I

T =

[

Then we define a set of rigid transformations. We have chosen at random eight translation
vectors (one per space quadrant) and eight rotation axes (one per space quadrant too) which
can be seen in tables 1 and 2. It gives 64 combinations. For each of them, we apply 18
different angles of rotation (from 5 to 90 degrees with a step of 5 degrees). We apply the 8
single translation vectors too (it corresponds to an angle equal to 0). We have then a set
of 1160 different rigid transformations.

We define two bench tests: the first with objects of same resolution, the second with

objects of different resolutions. In both cases, we apply the whole set of rigid transformations



to one object and evaluate the algorithm by comparing the expected result (the applied rigid
transformation defined by the rotation vector r and translation vector t) to the found one
(the transformation given by the algorithm defined by the rotation vector r’ and translation
vector t'). The modulus of the rotation vector is the angle of rotation in degrees. We define
the final error e with:

e= o= + [t —¢|

Results are presented in figures 2 and 3. We give a few comments:

1. the high peak near 0 (which designs the right matches found by the algorithm) contains
more of 75% of all tests;

2. the matches which are not found by the algorithm always give a large error (greater
than 50), there is then no ambiguity to decide whether the transformation found is the

right one or not.

In this measure of the final error e, the value due to the translation error has a minor
importance compared to the rotation error. Thus, the final error in rotation is the more
significant. This result is in fact not surprising because the final error in translation depends
only of the respective positions of the two centers of mass.

We examinate more carefully this rotation error with respect to the initial rotation angle.
Results are in figures 4 and 5. It appears that the right match is always found when the
initial angle is not too big (for instance less than 30 degrees in this example). Then the
percentage of successful matches decreases as the initial rotation angle increases.

This limitation seems not to be too restrictive for medical applications. In fact, we always
know the position of image axis with respect to the patient for each acquisition (for example,
we know that we have sagittal or coronal views of the brain). These positions give us a first
estimate of the transformation: before to register a coronal image and a sagittal one, we
will transpose one of them in order to obtain two coronal or two sagittal images. The final
rotation which still exists between both images has generally a small angle. In order to
illustrate this, we always find a good registration for all the real cases we treated as we will

see it below. The local minima have exclusively appeared when synthetic data were used.

3.2 CT Scan images with stereotaxic frame

We have two images of the same head coupled with a stereotaxic frame. Images have respec-
tively 135 and 126 slices of 256x256 voxels, with a size of 1x1x1.5 mm?. Some slices of both

images are shown in figure 6. Thanks to the stereotaxic frame, we are able to compute the



right transformation between both images. Then we extract the skull of these images (with
a threshold operation) and register both skulls using our algorithm. The difference between
both transformations is less than one voxel for the translation and less than one degree for
the rotation. We show in figure 7 slices of the first image already shown in figure 6 and the
corresponding slices of the second image after resampling.

In order to make the results clearer, we show again the lower left slice of the first image
with a frame of little crosses (left in figure 8). As we show the corresponding slice of the
second image after resampling with the same frame of little crosses (right in figure 8), it
is easy to verify the accuracy of the algorithm. The third image of figure 8 presents the
superimposition of edges detected in the slice of the first image on the corresponding slice
of the second image after resampling.

The accuracy of the result is perhaps more convincing in figure 9 where coronal views
are presented: at the top, from left to right, we present coronal slices of respectively the
first original scan image, the second original scan image and the second scan image after
resampling (please notice that top and bottom of the third head are truncated because of
the difference of size of both original images); at the bottom, from left to right, the same
coronal slice of the first image with a frame of little crosses, the corresponding slice of the
second image after resampling with the same frame of little crosses and superimposition of
edges of the first image on the second one after resampling. This shows clearly the three-

dimensional nature of the registration.

3.3 Skulls

We have two images of the same skull in two different positions (see figure 10). The size of
the voxel is 1.0x1.0x0.8 mm?® and one of both image (on the right) is truncated with respect
to the other. Images have a size of 220x128x161. Both skull images are easily transformed
into binary images by thresholding. We present the result of the registration in figure 11: on
the right, four slices of the first original data superimposed with a frame of little crosses; on
the left, the four corresponding slices of the second image after resampling with the found
transformation superimposed with the same frame. This frame helps to evaluate visually
the accuracy of the match.

Coronal views of the skull are presented in figure 12: at the top right a coronal slice of
the first original data, and left a coronal slice of the second original data; at the bottom, the
same coronal slice of the first image with a frame of little crosses, the corresponding slice of
the second image after resampling with the same frame of little crosses.

3D representations of the skulls are presented in figure 13 (one skull is shifted with respect

10



to the other for clarity). The same 3D representations after registration can be viewed in

figure 14: little crosses present typical correspondences.

3.4 MRI images of the brain

We have two MRI images of the same patient head, taken at different dates. They have
respectively 54 and 51 slices of 256x256 voxels. The voxel size is 0.94x0.94x3 mm?®. Some
slices of the original images can be seen in figures 15 and 16. We can easily extract the brain
from both images by using mathematical morphology (see [23]). We compute the registration
with both brains and apply the found transformation in order to resample one of the images.
We show in figure 17 some slices of the second image after resampling, corresponding to the
slices of figure 15.

Now if we look carefully at the central slice of each figure 15, 16 and 17, we can see in
the first original brain a thin black structure (the middle cerebral artery) which does not
appear completely in the corresponding slice of the second original data. If one look at the
corresponding slice of the resampled image, one can see now this whole artery.

This central slice can be seen in figure 18 too: from left to right, the central slice of
figure 15 of the first image, the corresponding slice of the second image after resampling (both
of them are presented with little crosses pointing out some details) and the superimposition
of edges extracted from the first image on the second image.

To be more convincing, we present sagittal and coronal slices of the two original images
and of the resampled one in figures 19 and 20: at the top from left to right, a slice of the
first original data, a slice of the second original data and the slice of the second image after
the registration; at the bottom from left to right, the same slice of the first image with
little crosses pointing out some details, the corresponding slice of the second image after
resampling with the same little crosses and the superimposition of edges extracted from the
first image on the second image. These figures seem blurred because we resampled them
a second time along the vertical axis in order to obtain quasi-isotropic voxels, for display

purpose only.

3.5 Brain: PET-IRM registration

We have an MRI image of size 256x256x120 of the brain with voxels of size 1.3x1.3x1.3 mm?
and no inter-slice distance (acquired on a GE Signa-Advantage 1.5 T), we show some slices
of this image in figure 21. We have extracted the brain with an automatic algorithm, using

mathematical morphology operators [17, 23].

11



We have also a PET image of size 256x256x7 of the same brain with voxels of size
1x1x9 mm?® and an inter-slice distance of 3 mm (acquired on a TTV03), we show the seven
slices of this image in figure 22. We can extract the brain by thresholding.

In figure 23, one can see the trace of PET slices on slices of MRI brain after automatic
registration of both images. Please notice the typical orientation of the PET slices with
respect to the sagittal view of the brain.

The registration takes 134 seconds CPU on a DEC 5000 workstation. In figure 24, we
have resampled the MRI slices corresponding to PET slices. We have extracted the edges of
these resampled slices with a classical algorithm [29] and superimposed them with original
PET slices in figure 25. This shows the accuracy of the registration.

The good results already obtained should allow clinical studies in Neurology, such as the

follow up of diseases, or the localization of various brain functions.

4 Conclusion

We presented a new matching algorithm between 3D objects which does not need explicit
markers. The principle of our method is a minimization of a potential which is solved by
using an application of the fundamental laws of dynamics. The algorithm, in its actual form,
allows us to register either mono-modality or multi-modalities images.

We reported an experiment with a synthetic object, which allowed us to study the algo-
rithm behavior with respect to local minima. The main conclusion was the good registration,
i.e. the global minimum, is always found when the rotation angle is not too big, which is
always the case for medical images according that one knows the geometry of the acquisition.

Another solution towards this limitation is to try several initial positions for both objects
to register (see [4, T]), the trouble is then the computational cost of each trial. Then we plan
to develop our algorithm in order to be able to do multiscale registration and to reduce this

computational cost.
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A Mechanical Theory Elements

In the following, we assume that we are in a euclidean and galilean reference frame. We
recall now a few basic definitions (inertia parameters, kinetic, dynamic and force torques)
and present some relations between them. We will then be able to deduce the parameters of

the transformation of the object derived from the motion due to the potential field (see [5]).

A.1 Notations and definitions

We denote by v(P) the velocity of a point P ~(P) its acceleration which can be computed
from:
v(P) = P
v(P) = P
where dot means the derivation of the point coordinates with respect to time.
The torque of a vector field f for a solid Obj are the resultant vector R¢ and the moment

vector with respect to a point @, M¢(Q). The torque is denoted by {Z¢} and can be

computed with:

R R
M@ = [ QP xt(P)dp

where f(P) denotes the value of the vector field f at P, and x the vector product.
Once the moment vector M¢(Q) is computed with respect to a point @), it can be easily

computed with respect to any point R by:
N
Mf(R) = ./Mf(Q) + R() X R¢

A.2 Inertia Parameters

The inertia parameters of a solid Obj are useful for a simplified description of its motion:
they are the center of mass and the inertia matrix.

Let us call GG the center of mass of the object which can be computed with:
P dm(P)=m(0bj) G
S, P dm(P) = m(Obs)

where m(0Oby) is the whole mass of the object and dm(P) is the elementary mass associated

to any point P € Obj *. We set dm(P) = 1 in our experiments.

4We have obviously / dm(P) = m(0bj) .
PeObj
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Let us denote J(Q) the inertia matrix of the object computed with respect to a point
() € Obj (computed in an orthonormal basis (X,Y, 7)).

v 42 dm(P) = [ ey dm(P - dm(P

/PeObj (y"+27) dm(P) PEObj zy dm(P) PEObj 2@ dm(P)

JQ)=| — eon; zy dm(P) reon; (2% + 2*) dm(P) —/PGObj yz dm(P)
- dm(P - yz dm(P 24 yH) dm(P
PeOby = m( ) PeOby Yz m( ) PeOby (x + Y ) m( )

where (x,y, z) are the coordinates of the vector QTJ in (X,Y, 7).

The eigenvectors of this matrix give the principal axes of the solid Obj and the eigenvalues
are the inertia momentums with respect to these axes.

According to the generalized Huyghens theorem, we can compute the inertia matrix with

respect to any point of the object and in particular to G, thanks to:

J(Q) = I(G) + I(Q, {G,m(0bj)})
where J(Q, {G,m(Obj)}) is the inertia matrix with respect to the point @ of the point ¢
with a mass m(Oby).
Finally, let J'(Q) be the inertia matrix of the object with respect to the point @) in an
orthonormal basis (X', Y’ Z') and let M be the transformation matrix from basis (X, Y, Z)
to basis (X', Y, Z’), then:

Q) =MIQ) M

A.3 Kinetic Torque

The velocity vector field of the solid Obj is described by the kinetic torque, denoted by
{7y (Obj)}, whose elements are given with respect to an arbitrary point Q:

Rv = /P oy, V(P dm(P)
My(Q) = QP x v(P) dm(P)

PeOb;

{Tv(0bg)} =

The torque moment of the velocity field at @) is called the kinetic moment (or angular
momentum) in ) and is usually denoted by o (Q). Its expression simplifies when it is
expressed with respect to the center of mass (G. Let us denote by w the angular velocity
vector of the solid Obj. The kinetic torque with respect to G is then:

: m(0bj) v(G)
T, (0by)} =
(T (08} { e
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A.4 Dynamic Torque

The acceleration vector field of the solid Obj is described by the dynamic torque, denoted
by {7~(0bj)}, whose elements are given with respect to an arbitrary point Q:

{7T(0bj)} = Ry - /PEObJ,'y(P) dm(P)
Y\VOj ) = ./M’Y(Q) = /PEObj Q_P) x v(P) dm(P)

The torque moment of the acceleration field at () is called the dynamic moment of () and
is usually denoted by 8(Q). In general, the derivative with respect to the time of the kinetic
moment o is not equal to the dynamic moment §. But, when these moments are expressed

with respect to the center of mass (7, this equality holds and we obtain:

[ mlOoB) A(G) = m(08)) ¥(G)
{T4(0))} {d@) s

A.5 Force Torque

The solid Oby is subject to a potential field p. From this potential field derives a force field £,
which causes the motion of the solid Obj towards a minimum of potential energy. This force
field is:

f,(M) = =V (p(M))

where V is the gradient operator. According that the potential field has the form presented

(d(M))?
2

in section 2.2, i.e. p(M) = , then the expression of the force field becomes:

f,(M) = —d(M)V (d(M))

Let us denote by f(P) the sum of all forces which apply at point P. It includes obviously
the force f, deriving from the potential field but can include another forces (like viscosity
forces).

The forces of the force field f which apply to the solid Obj can be described by the force
torque denoted by {7¢} whose reduction elements in a point ) are the resultant vector Rg

and the moment vector with respect to @, Mg(Q):

@] /Peowf(f) .
M@ = [ QP xt(p)ap
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We choose to compute the potential for the whole space with a distance transform, to
store it, and then we calculate forces only where we need it. There exists an alternative which
is to compute the force field for the whole space with the euclidean distance transform [12]
and to store it. This second approach comes to store one entire vector per each space point
which is more expensive in term of memory.

According to the general theorem of the dynamic, we know that the force torque {7¢} is
equal to the dynamic torque of the object Obj, {ZT4(Oby)}.

As we have expressed the dynamic torque with respect to the center of mass G, we have

to express the force moment with respect to GG too. It comes:

Me(G) = M¢(Q) — QT x Re

B Transformation parameters

Because of the force field which derives from the potential generated by the model, the
solid Obj subject to it will exhibit motion parameterized by time. We describe it by a series
of successive positions, with an elementary unity of time dt between two successive positions.

Let us denote the transformation parameters from the initial position (at time 0) to the
position at time ¢ by the rotation vector r; and the translation vector t;. Of course, we have
ro =1ty = 0.

We express this transformation with respect to the center of mass . It allows us to
apply rotation and translation in any order. The derivative with respect to time of the
rotation vector r and the translation vector are respectively the angular velocity vector w
(by definition of the angular velocity vector) and the velocity of G, v((G) (because the
translation between two positions is defined by the two positions of the point ). We have
then: '

t = v(G)
{ r = w = JYG)e(G)

According to the general theorem of the dynamic , the derivative of the kinetic torque
with respect to time expresses simply with the force torque. We obtain for the second

derivative of the transformation parameters with respect to time:
. Re
t = v(@ = ——
(@) m(0bj)
o= I G)e(G) = ITHG)Me(G)
We are then able to compute the transformation parameters from the initial position to

the position at time ¢ + dt (i.e. ripqr and tipq).
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At time t, we are able to compute the force torque which applies to the object, i.e.
Tr+ = {Rgs, Mg +(G)}. According to the general theorem of the dynamic, this force torque

is equal to the dynamic torque, we are then able to link it to the kinetic torque. We obtain:

R
Vt—l—dt(G) = Vt(G) + szj) dt

O-t-}—dt(G) = O't(G) -+ ./Mfﬂg(G) dt

where (G4 is the center of mass at time t. We consider the solid Ob;7 without motion at time 0:
Vo(G) = Uo(G) = 6

This kinetic torque gives us the new transformation parameters at time ¢ + dt:

tirar = ti+vipa(G) dt
Piyge = Ty + J;I(G) O-t-l—dt(G) dt

where J;(() is the inertia matrix of the object with respect to G at time t. Let R be the

rotation matrix due to the vector r, we have then (because R™* = RT):

J7HG) =R, Jg(G) RT .

17



References

[1]

[10]

[11]

N.M. Alpert, J.F. Bradshaw, D. Kennedy, and J.A. Correia. The principal axes trans-
formation - a method for image registration. The journal of nuclear medicine, 31(10),

October 1990.

N. Ayache. Artificial vision for mobile robots: stereco vision and multisensory perception.

MIT Press, 1991.

R. Bajcsy and S. Kovaci¢. Multiresolution elastic matching. Computer Vision, Graphics,
and Image Processing, 46:1-21, 1989.

P.J. Besl and McKay N.D. A method for registration of 3d shapes. IEEE Transactions
on PAMI, 14:239-256, February 1992.

J.C. Bone. Mécanique générale. Ecole centrale des arts et manufactures, 1986. Paris.

G. Borgefors. Distance transformations in arbitrary dimensions. Computer Vision,
Graphics, and Image Processing, 27:321-345, 1984.

G. Borgefors. Hierarchical chamfer matching: A parametric edge matching algorithm.

IEEE Transactions on PAMI, 10(6):849-865, november 1988.

M.E. Brummer and al. Automatic detection of brain contours in mri data sets. In
XIlth international conference on Information Processing in Medical Imaging (IPMI),
Wye, Kent, England, pages 188-204, July 1991. Lecture notes in Computer Science
511, Heidelberg, Springer Verlag.

L. Brunie, S. Lavallée, and R. Szeliski. Using force fields derived from 3d distance maps
for inferring the attitude of a 3d rigid object. In 2nd European Conference on Computer
Vision (ECCV 92), May 18-23 1992. Santa Margherita, Ligure, Italy.

I. Cohen, L.D. Cohen, and N. Ayache. Using deformable surfaces to segment 3d images
and infer differential structures. Computer Vision, Graphics, and Image Processing:

image understanding, 1992. In press.

D.L. Collins, T.M. Peters, and A.C. Evans. Multiresolution image registration and
brain structure segmentation. In IEEE EMBS satellite symposium on 3D advanced

image processing in medicine, November 2-4 1992. Rennes, France.

18



[12]

[13]

[14]

[15]

[16]

[18]

[19]

[20]

[21]

[22]

P.E. Danielsson. Euclidean distance mapping. Computer Graphics and Image Process-

ing, 14:227-248, 1980.

A.C. Evans, C. Beil, S. Marret, C.J. Thompson, and A. Hakim. Anatomical-functional
correlation using an adjustable mri-based region of interest atlas with positron emission

tomography. Journal of Cerebral Blood flow Metabolism, 8:513-529, 1988.

G. Gerig and al. Automating segmentation of dual-echo mr head data. In XIIth inter-
national conference on Information Processing in Medical Imaging (IPMI), Wye, Kent,
England, pages 175-187, July 1991. Lecture notes in Computer Science 511, Heidelberg,
Springer Verlag.

W.E.L. Grimson. Object recognition by computer: the role of geometric constraints.

MIT Press, 1990.

A. Guéziec and N. Ayache. Smoothing and matching of 3d space curves. In 2nd European
Conference on Computer Vision (ECCV 92), pages 620629, May 18-23 1992. Santa
Margherita, Ligure, Italy.

K.H. Hohne and W. Hanson. Interactive 3d segmentation of mri and ct volumes using
morphological operations. Journal of Computer Assisted Tomography, 16(2):285-294,
March/April 1992.

D.L.G. Hill and al. Registration of mr and ct images for skull base surgery using point-
like anatomical features. The British journal of radiology, 64(767):1030-1035, November
1991.

H. Jiang, R. Robb, and K. Holton. Visualization in biomedical computing. In Proceed-
ings of the SPIFE, volume 1808, pages 196-213, 1992.

O. Kibler and G. Gerig. Segmentation and analysis of multidimensional data-sets in

medicine. In 3D Imaging in Medicine, pages 63—-81. Springer Verlag, 1990.

S. Lavallée, R. Szeliski, and L. Brunie. Matching 3d smooth surfaces with their 2d
projections using 3d distance maps. In SPIF, Geometric Methods in Computer Vision,
July 25-26 1991. San Diego.

M.N. Maisey, D.J. Hawkes, and A.M. Lukawiecki-Vydelingum. Synergistic imaging.
Furopean journal of nuclear medicine, 19:1002-1005, 1992.

19



23]

[24]

[25]

28]

[29]

32]

33]

G. Malandain. Filtrage, topologie et mise en correspondance d’images médicales multi-
dimensionnelles. PhD thesis, Ecole Centrale de Paris, Septembre 1992.

G. Malandain and J.M. Rocchisani. Registration of 3d medical images using a me-
chanical based method. In IEEE EMBS satellite symposium on 3D advanced image

processing in medicine, November 2—4 1992. Rennes, France.

J.F. Mangin, V. Frouin, and B. Bendriem. Nonsupervised 3d registration of pet and
mri data using chamfer matching. In Conference on medical imaging, october 27-31

1992. Nuclear Science Symposium, Orlando, Florida.

C.C. Meltzer and al. Anatomical localization for pet using mr imaging. Journal of
computer assisted tomography, 14(3):418-426, 1990.

S. Minoshima, K.L. Berger, K.S. Lee, and M.A. Mintun. An automated method for
rotational correction and centering of the three-dimensional functional brain images.

Journal of Nuclear Medicine, 33:1579-1585, 1992.

O. Monga, S. Benayoun, and O. Faugeras. From partial derivatives of 3d density images
to ridges lines. In IEEFE Computer Vision and Pattern Recognition, pages 354-389, June
15-18 1992. Champaign, Illinois, USA.

O. Monga, R. Deriche, G. Malandain, and J.P Cocquerez. 3d edge detection by recursive
filtering and edge tracking. In International Conference on Pattern Recognition (ICPR),
June 1990. Atlantic City, USA.

C.A. Pelizzari and al. Accurate three-dimensional registration of ct, pet and/or mr

images of the brain. Journal of computer assisted tomography, 13(1):20-26, 1989.

W_.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes in
C. Cambridge University Press, 1988.

S.P. Raya. Low-level segmentation of 3d magnetic resonance brain images - a rule based

system. [EEE Transactions on Medical Imaging, 12(3):327-337, 1990.

J-P Thirion, O. Monga, S. Benayoun, A. Gueziec, and N. Ayache. Automatic regis-
tration of 3d images using surface curvature. In IEEE Int. Symp. on Optical Applied
Science and Engineering, San-Diego, July 1992.

R.P. Woods, S.R. Cherry, and J.C. Mazziotta. Rapid automated algorithm for aligning
and resclicing pet images. Journal of Computed Assisted Tomography, 16(1):1-14, 1992.

20



[35] J. Zhang and al. Multimodality imaging of brain structures for stereotactic surgery.

Radiology, 175(2):435-441, May 1990.

[36] G. Zubal and al. 3d registration of intermodality medical images. In Annual interna-

tional conference of the IEEE engineering in medicine and biology society, 1991. vol. 13,

no 1.

21



—

=<l

=X
—Eﬁs"é‘x'\ll‘!r{ééé.-

C\)
3
o
)
()
'l

i~
P

X
t!v

777
1]
||\|

7
1]
/\{\\

Figure 1: View of the synthetic object.

ty | to| ts| ta| t5| te| tr]| ts
x |50 |-26 | 14 | -37 8|1 -9 22| -44
y |30 | 46 |-14 | -3 | 30| 48 |-45 | -15
Z2 | AT 26| 12| 37 |-24 | -45|-16 | -16

Table 1: The eight translation vectors chosen at random.
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ry | ro|rs| rg|rs| reg| r7| rs
x| 8|-14| 8|-18 |13 |-17 41 -17
1| 17 -7(-11| 6| 12| -2 |-13
4 612 ] 20| -6 |-15|-16 | -9

Table 2: The eight rotation axes chosen at random.
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Figure 2: Histogram of errors (for the test with objects of same resolution). Horizontal axis:

measure of the final error e; vertical axis: corresponding number of trials.
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Figure 3: Histogram of errors (for the test with objects of different resolution). Horizontal

axis: measure of the final error e; vertical axis: corresponding number of trials.
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Figure 4: Percentage of right matches with respect to the initial angle of rotation. Model

and object have the same resolution.
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Figure 5: Percentage of right matches with respect to the initial angle of rotation. Model

and object do not have the same resolution.

Figure 6: Left and right, four slices of both original data (provided by GE-CGR (Buc,

France)). We try to show corresponding slices.
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Figure 7: Left, four slices of the first original image. Right, the four corresponding slices of

the second image after resampling with the found rigid transformation.
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Figure 8: Top, corresponding slices of both images after registration: a frame of little crosses
has been overlaid to highlight the accuracy of the result. Bottom, superimposition of the

edges of the first image on the second image after resampling.
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Figure 9: Top, from left to right, we present coronal slices of respectively the first original

scan image, the second original scan image and the second scan image after resampling.

Bottom, we present corresponding slices after registration with a frame of little crosses and

superimposition of the edges of the first image on the second image after resampling.

/N A
Vi A

Figure 10: Left and right, four of the 161 slices of both original images. These data

provided by GE-CGR (Buc, France).
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Figure 11: Left, four slices of the first image with a frame of little crosses. Right, the
four corresponding slices of the second image after registration with the same frame of little

Crosses.

Figure 12: Top, from left to right, coronal slices of respectively the first original scan image
and the second original scan image. Bottom, corresponding slices after registration with a

frame of little crosses.
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Figure 13: 3D views of both skulls in original position.

Figure 14: 3D views of both skulls after matching. The upper border of the right skull is
no more horizontal because the rotation vector is not vertical. Little crosses are showing the

same details in both images.
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Figure 15: Three consecutive slices of a MRI image of a brain. Please notice the horizontal
thin black structure (the middle cerebral artery) at the top of the brain in the central slice.
Data are provided by Ron Kikinis, M.D., Department of Radiology, Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA.

Figure 16: Three consecutive slices of a second MRI study of the same brain two months
later. We try to show the same slices as in figure 15. Please notice that the middle cerebral
artery does not appear completely at the top of the brain in the central slice. Data are
provided by Ron Kikinis, M.D., Department of Radiology, Brigham and Women’s Hospital,
Harvard Medical School, Boston, MA.
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Figure 17: The same three slices of the second data volume after resampling (with the found
transformation) as in figure 15. The middle cerebral artery appears now completely in the

central slice.

Figure 18: From left to right: the central slice of figure 15 of the first data, the corresponding
slice of the second data after resampling (little crosses are showing the same details in both

images) and the superimposition of edges extracted from the first image on the second image.
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Figure 19: Top, from left to right, we present sagittal slices of respectively the first original
scan image, the second original scan image and the second scan image after resampling.
Bottom, we present corresponding slices after registration with little crosses pointing out
some details and superimposition of the edges of the first image on the second image after
resampling. Images seem blurred because of the second resampling we made along the

vertical axis in order to obtain quasi-isotropic voxels (for display purpose only).

Figure 20: Same as figure 19 with coronal slices.

33



Figure 21: Some slices of the MRI image of the brain. Images are a courtesy of Dr. Jael

Travere of Cyceron center (CEA, Caen, France).
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Figure 22: The seven slices of PET data. Images are a courtesy of Dr. Jael Travere of
Cyceron center (CEA, Caen, France).
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Figure 23: The trace of PET slices on slices of the IRM brain.
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Figure 24: The seven resampled slices in MRI data corresponding to all PET slices.
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Figure 25: Superimposition of the PET slices with edges extracted from corresponding

resampled MRI slices.
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