-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Scalable algorithms for bichromatic line segment
intersection problems on coarse grained multicomputers

Olivier Devillers, Andreas Fabri

» To cite this version:

Olivier Devillers, Andreas Fabri. Scalable algorithms for bichromatic line segment intersection prob-
lems on coarse grained multicomputers. [Research Report] RR-1882, INRIA. 1993. inria-00074791

HAL Id: inria-00074791
https://hal.inria.fr /inria-00074791
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50450038?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00074791
https://hal.archives-ouvertes.fr

IRIN

UNITE DE RECHERCHE
INRIA-SOPHIA ANTIPOLIS

Institut National
de Recherche
en Informatique
et en Automatique

2004 route des Lucioles
B.P. 93

06902 Sophia-Antipolis
France

Rapports de Recherche

Programme 4

Robotique, Image et Vision

SCALABLE ALGORITHMS FOR

BICHROMATIC LINE SEGMENT

INTERSECTION PROBLEMS ON
COARSE GRAINED
MULTICOMPUTERS

Olivier DEVILLERS
Andreas FABRI

Mars 1993

Scalable Algorithms for Bichromatic Line
Segment Intersection Problems on Coarse
Grained Multicomputers*

Problemes d’intersection de segments de deux
couleurs. Algorithmes paralleles a échelle
adaptative pour machine a gros grain

Olivier Devillerst Andreas Fabrif

Programme 4 : Robotique, Image et Vision.

Keywords: Computational Geometry, Data Structures, Decomposability, Parallel
Algorithms, Coarse Grained Multicomputer

*This work was partially supported by the ESPRIT Basic Research Action Nr. 7141 (ALCOM II).
TINRIA, B.P.93, 06902 Sophia-Antipolis cedex (France), Phone: +33 93 65 78 55, Fax: 433 93 65
76 43, E-mail: Firstname.Name@sophia.inria.fr.

Abstract

We present output-sensitive scalable parallel algorithms for bichromatic line
segment intersection problems for the Coarse Grained Multicomputer model. Un-
der the assumption that n > p?, where n is the number of line segments and p the
number of processors, we obtain an intersection counting algorithm with a time
complexity of O(M%Ogﬂ +Ts(nlogp,p)), where Ts(m, p) is the time used to sort

m items on a p processor machine. An additional O(]k;) time is spent on the report-
ing of the k intersections. As the sequential complexity is O(nlogn) and O(k) for
counting and reporting, respectively, we obtain a speedup of logp. As a byproduct
we present algorithms for the trapezoidal decomposition and 1-dimensional range

query reporting with the same speedup.

Résumé

Cet article présente des algorithmes paralléles a échelle adaptative qui calculent les
intersections de segments bichromatiques dans un modéle d’ordinateur paralléle
4 gros grain. En supposant que n > p?, ol n est le nombre de segments de
droite et p le nombre de processeurs, on obtient un algorithme qui compte les
intersections en un temps O(M%OFQ—FTS (nlogp,p)), ouTs(m, p) désigne le temps
nécessaire au tri de m données sur une machine & p processeurs. Il faut un temps
supplémentaire de O(%) pour énumérer les k intersections. Comme le temps de
calcul séquentiel, pour compter et énumérer les intersections est de O(nlogn) et
O(k) respectivement, le gain de temps est de @. Nous présentons en corollaire
des algorithmes de décomposition trapezoidale et de requéte en dimension 1 pour
lesquels le gain de temps est analogue.

1 Introduction

The bichromatic line segment inlersection problems can be stated as follows. Let R
(resp. B) be two sets containing n red (resp. blue) non-intersecting line segments.
The problem is to count or to report the intersections between red and blue segments.
This problem is well understood in a sequential setting [4, 11] and its sequential time
complexity is O(nlogn) for counting and O(nlogn + k) for reporting, where k is the
number of intersections. In the parallel setting there is an optimal algorithm for the
CREW-PRAM model solving the problem in time O(logn) with O(n+ 1o§n) PrOCessors
[7].

In this paper we consider the parallel complexity of this problem in the Coarse
Grained Multicomputer model, or CGM(m, p) for short. In this model a set of p proces-
sors, each with O(2) local memory, are connected by some arbitrary interconnection
network. The model is coarse grained, as the size O(%) of each local memory is defined
to be considerably larger than O(1). Throughout this paper we assume that % > p, un-

less otherwise stated. Interprocessor communication is done in communication rounds.
An operation performed in a communication round is typically a sorting or a broad-
casting step. Such operations are usually available as system calls on commercially
available parallel machines.

The coarse grained multicomputer model has recently been used to solve problems
in computational geometry [6] and image processing [1]. The first paper uses a decom-
position of the Euclidean space and the second paper a data compression technique.
In this paper we present a further decomposition technique which can be applied to
tree-like data structures, in our case segment trees. We further present a load balancing
scheme to solve the 1-dimensional range query reporting problem. The combination of
these techniques yields efficient scalable parallel algorithms, which are independent of
the communication network. The main objective in the design of algorithms for this
model is to use a constant or small number of communication rounds. Roughly, this is
achieved by reorganizing the n data in such a way that each processor can sequentially
treat an independent subproblem of size O(%).

The main result of this paper can be stated as follows. Given two sets of n non-
intersecting red and n non-intersecting blue line segments, we show how to solve the
intersection counting problem on a CGM(nlogp,p), % > p, in time O(”logpw +
Ts(nlogp,p)). For reporting the k intersections we need a machine with max(k, nlogp)
memory and it takes additional time O(%), that is our algorithm is output-sensitive.

We further show how to obtain a trade off between the memory and the number
of communication rounds. We can solve the counting problem on a C’GM(nl—OTgﬁ,p),
% > p, in time O(”logpw +r- Ts(nk’%,p)), for 1 < r < logp. That is, we can
vary between O(nlogp) memory and O(1) communication rounds and O(n) memory
and log p communication rounds. As we need O(k) memory for the reporting problem
in order to store the output, we can obtain a similar trade off between memory and
number of communication rounds, if £ < O(nlogp).

Our algorithms are scalable in the following sense. They have two parameters, the
problem size n and the number of processors p, and the speedup of the algorithm is
maintained when one of these parameters changes. Hence, the speedup is a function
of p, not of n. This condition is crucial as the following example shows. Suppose the
sequential time complexity for a problem is O(nlogn) and the time complexity of a

parallel algorithm for the CGM(n,p) is O(nbp#). Then, a speedup of logn would be
obtained, and hence the parallel algorithm is only faster than the sequential algorithm
for n < 2P, The design of scalable algorithms is one of the main goals of the recent

High Performance Computing and Communication Initiative [8].

This paper is organized as follows. In Section 2 we shortly discuss the underlying
communication model. In Sections 3, 4 and 5, we present a binary search, a trapezoidal
decomposition and a 1-dimensional range query reporting algorithm, which are inter-
esting in their own right and which are used as building blocks for the bichromatic line
segment intersection algorithms presented in Section 6.

2 Communication Model

The processors of a CGM(m, p) communicate via an interconnection network in which
each processor can exchange messages, of size O(logm) bits each, with any one of its
immediate neighbors in constant time. Commonly used interconnection networks for
CGM include 2D-mesh (e.g. Intel Paragon), hypercube (e.g. Intel iPSC/860) and the
fat-tree (e.g. Thinking Machines CM-5). We refer the reader to [2, 3, 9, 10] for a more
detailed discussion of the different architectures and algorithms.

We will now outline the four operations involving interprocessor communication
which we use in this paper and give the time complexity of the operations. The first
two operations concern all n data. Assume that the p processors of the CGM(m, p) are
numbered from 0 to p — 1.

1) global sort: Ts(m, p) refers to the time to sort O(m) data items stored on a CGM(m, p).
Initially, O(%) data items are on each processors. When the sort is complete, the data
are distributed such that data on processor p; are greater than data on p; if ¢ > 7, and
data are sorted on each processor.

The time complexity® is Ts(m,p) = O(7(logm + /p)) for a 2D-mesh, Ts(m, p) =
O (logm + log? p)) for a hypercube and Ts(m, p) = O(7 logm) for a fat-tree, which
is optimal provided that m > 2V?, pl°8P p respectively.

2) segmented broadcast: In a segmented broadcast operation, ¢ < p processors with
numbers j; < j2 < ... < j, are selected. Fach such processor p;, broadcasts O(%)
data from its local memory to the processors pj 11 to pj,,, 1. The time complexity is
Tgy(m,p) = O(7/p) for a 2d-mesh and Ty (m, p) = O(7 logp) for a hypercube and a
fat-tree. If the data to broadcast are on different processors we either first have to sort

!The time complexity for the hypercube and the 2D-mesh is based on Batcher’s bitonic sort[2]. Note
that for the hypercube better deterministic [5] and randomized [13] sorting algorithms exist, which,
however, are not of practical use.

them or, when they are in the correct order, we have to move them using monotonic
routing operations. The latter can be done in the same time as the segmented broadcast.

3) multinode broadcast: In a multinode broadcast operation, every processor (in par-
allel) sends one message to all other processors. The time complexity 7;(p) for any
interconnection network is T3(p) = O(p).

4) total exchange: In a total exchange operation, every processor (in parallel) sends
a different message to each other processors. The time complexity 7..(p) of the total
exchange is T, (p) = @(p%) for a 2D-mesh, and 7,(p) = O(plog p) for a hypercube and
a fat-tree.

3 Binary Search

In this section we present a parallel binary search algorithm for the coarse grained
multicomputer CGM(n,p). The algorithm is not particularly difficult, but should be
considered as a “warmup”, as it shows a basic loadbalancing technique which will be
used and refined in the next sections. The algorithm is given in suflicient detail, which
permits to skip over similar details later on.

The problem can be stated as follows: given a sequence S of n elements perform a
binary search on S for each element of a set ¢) of n queries. This problem can easily be
solved by sorting SUQ, if S and @) come from a totally ordered universe, but that is not
the case in our application later on (point location in a planar subdivision). Essentially,
it is the lack of a total order for the queries, which makes it necessary to perform n
independent search processes.

The idea of the algorithm is to determine for the p subsequences 5; of size % how
many queries end up in each of them. Then, we make the appropriate number of copies
of each subsequence, in order to balance the ratio of queries per subsequence. The
details of the algorithm are as follows:

0. S;, the i*" subsequence of size % of the sorted sequence 5, and a set ¢); of % queries

are on processor p;.

1. Perform a multinode broadcast, where each processor p; sends the biggest element
of 5; to all other processors. Let S denote this ordered sequence of size p.

2. Each processors p; performs the binary search on S for its % queries ;. Let g;; be

the number of queries from ¢); which end up at entry 5 [7].

3. Perform a total exchange, where each processor p; sends ¢;; as message to processor
pj, 1 < j < p. Each processor p; then computes ¢; := Z§:1 ¢;i, which is the overall
number of queries which want to do binary search in 5;.

4. In order to loadbalance the number of queries per copy of a set .5; we need [Zp]
copies of §;. Perform a segmented broadcast to create them. Note that we end up
with at most 2p — 1 copies, if £ = % + 1, for 1 <12 < p. Hence, each processor has
to treat at most two copies of sets 5.

5. Perform a multinode broadcast, where each processor p; sends ¢; as message to all
other processor. Given this information each processor generates the O(%) dummy
queries, which are needed, for that the number of queries falling in §5; is an exact
multiple of %. Globally sort the queries which yields that queries which ended up

at 5'[]] in step 2 are on a processor holding a copy of S;.

6. Locally continue the binary search.

The correctness of the algorithm is easy to see. The time complexity of the binary
search can be analyzed as follows. The local binary search in Steps 2 and 6 takes time
O(%logp) and O(%log n), respectively. The communication complexity is 275(p) +
T.(p) + Tsp(n,p) + Ts(n,p), where the sorting step is the dominating term. We thus
can state the following lemma.

Lemma 1 Given a sorted sequence S of n elements and a set () of n queries we can
perform the binary search on a CGM(n,p), % > p, in time O(”k}"# + Ts(n, p)).

4 Trapezoidal Decomposition

The trapezoidal decomposition of a set of n non-intersecting line segments in the plane is
a planar subdivision and obtained as follows. Starting at each endpoint of each segment
in 5 we draw two vertical rays, one upwards one downwards, each extending until it
hits another segment from 5. Various sequential algorithms compute this subdivision
in optimal O(nlogn) time and ©(n) space. In this section we will first present a less
efficient sequential algorithm, its parallelization and its modification in order to obtain
a scalable parallel algorithm with speedup 107; -

The idea of the non-optimal sequential algorithm is as follows. We build a segment
tree [12] on the z-coordinates of the segment endpoints. Each node v represents an
interval and stores the catalogue S(v) of segments covering the interval of the node
but not the interval of its parent. As the segments do not intersect we can order the
segments in S(v) by the relation below. As each segment is stored in at most 2logn
catalogues, the size of the segment tree is O(nlogn). For each segment endpoint we
traverse the tree and perform a binary search on the catalogue S(v) for each node v on
the path from the root to the appropriate leaf. The binary search gives us the closest
segments above and below the query point in S(v), that is we have to determine a kind
of “minimum” of logn segments, to determine the closest segments in 5. The time
complexity is thus O(nlog?n) and the space requirement is O(nlogn).

We obtain an obvious parallelization of the query phase, by unfolding a loop of the
sequential algorithm. Instead of letting a query s traverse the nodes of a path ¢ of
length log n in the tree, we create logn queries for each segment s. Each query consists
of pairs (v, s) for each node v on the path ¢. Suppose that the nodes of T are uniquely
numbered. For these nlogn queries we perform a binary search on the concatenation of
the catalogues S(v) of all nodes v € T" with increasing node numbers, which is a totally
ordered sequence of length O(nlogn). We finally determine the closest segment in .S by

4

