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ACCELERATION OF THE PATH-FOLLOWING METHOD
FOR OPTIMIZATION
OVER THE CONE OF POSITIVE SEMIDEFINITE MATRICES

ACCELERATION DE LA METHODE DU SUIVI DE CHEMIN
POUR L’OPTIMISATION
DANS LE CONE DES MATRICES SEMI-DEFINIES POSITIVES

Yurii E. Nesterov!, Arkadii S. Nemirovskii}

ABSTRACT

The paper is devoted to acceleration of the path-following interior point polyomial time
method for optimization over the cone of positive semidefinite matrices, with applications
to quadratically constrained problems and extensions onto the general self-concordant
case. In particular. we demonstrate that in a problem involving m of general type u x p
Linear Matrix Inequalities with n > pu scalar control variables the Conjugate-Gradient-
based acceleration allows to reduce the arithmetic cost of an e-solution by a factor of
order of max{n!/3;~%/¢ n'/>}: for the Karmarkar-type acceleration this factor is of order
of min{n,m!/?}. The Conjugate-Gradient-Based acceleration turns out to be efficient also
in the case of several specific "structured”™ problems coming from applications in Control
and Graph Theory.

Key words: interior-point polynomial time methods; path-following methods; Linear
Matrix Inequalities: eigenvalue minimization

RESUME

Cet article est consacré a l'accélération de la méthode polynomiale de point intérieur
avec suivi de chemin, pour l'optimisation dans le cone des matrices semi-définies positives,
avec application aux problémes d’optimisation quadratique et extension au cas général de
fonctions self-concordantes. Nous démontrons en particulier que, dans un probleme ayant
m inégalités linéaires sur des matrices générales it x jt dépendant de n > p variables de
commande, l'accélération de type gradient conjugué permet de réduire par un facteur de
I'ordre de max {n!/?1~1/¢. n'/%} le colit d'obtention d’une s-solution: pour une accélération
de type Karmarkar, ce facteur est de ordre de min {n.m!/?}. L’accélération utilisant le
gradient conjugué se trouve étre efficace également dans le cas de plusieurs problemes
spécifiques “structurés™ provenant d’applications en commande optimale et en théorie
des graphes.

Mots-Clefs: méthodes polynomiales de points intérieurs; méthodes de suivi de chemin;
inégalités linéaires matricielles; minimisation de valeurs propres.
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1 Introduction

This paper is devoted to acceleration of the path-following interior point polynomial time
method for optimization over the conc of positive semidefinite matrices. with applications
to quadratically constrained problems and extensions onto general self-concordant casc.

1.1 The problem

Let M = {p1.....ptm} be a collection of positive integers; we call such a collection a
structure and define its size as "
|M| = Z i
i=1

We associate with a structure M the space Sy comprised of all [M| x | M| symmetric
block-diagonal matrices with m diagonal blocks of the sizes yy, ..., ttm, and denote by S},
the cone comprised of positive semidefinite matrices from Sx. In what follows Siq is
regarded as a Euclidean space with the standard inner product

(X.Y) = Te{ XY},

Tr being the trace. The corresponding norm will be denoted || - [|,.
The problem we will deal with - the problem of optimization over the cone of positive
semidefinite matrices (PD problem for short) - 1s as follows:

P, minimize c’x  subject to A(z) € Siy, (1)

where A(z) is an affine mapping from R" into Su.

This 1s the natural form for many essentially nonlinear convex programs arising in
various applications. from Graph Theory and Combinatorics (computing Lovasz capac-
ity number of a graph [Lo 79]: nonlinear Lagrangean relaxation of a Boolean Program-
ming problem [SD 85]) to Control Theory (numerous problems of Robust Stability Anal-
vsis: [BB1 90. BBr 91. BB 89. BG 92. BY 89. DPZ 91, Do 82, FN 91, FT 86, FT 88,
FT 91. FTD 91. GB 86. KR 91. PZPB 91. PZPLB 91]). At the same time it was real-
1zed recently that in some aspects PD problems are very similar to LP programs (note
that an LP problem with n variables and m inequality constraints is precisely problem
P..m associated with u; = 1, ¢ = 1.....m). In particular, polynomial time interior
point methods known for LP can be naturally generalized to handle PD programs (see
[NN 838, NN 89, NN 9la. Al 91a. Al 91b. Al 92, Ja 91, BG 92]). In this paper we fo-
cus on the path-following method for P, v which extends onto PD problems the barrier
LP-method of Gonzaga ([Go 87]).

1.2 Basic barrier method for PD

The method can be applied to a strictly feasible problem P, aq, 1.e., with the image of
A(-) intersecting int ST,; besides this. one should assume the feasible domain

G={reR"| Alz) € Sam)



of the problem to be bounded, which immediately implies that the homogeneous part of
A is of full column rank.
The method is associated with the barrier

F(z)= —InDet(A(z)) (2)
for the feasible domain G of the problem and at its main stage follows the path
2*(t) = argmin {F,(z) = tc'2 + F(z) | z € int G} (3)

as t — +o0o. Namely, it generates sequential pairs (z',¢;) satisfying, for certain fixed
positive &k < 1 (path tolerance, the first parameter of the method) the predicate

Cu(z,t): {z €int G, £ >0} & {((F;(.T))T(F“(x))-l(F;(x)))”2 < K}. (4)

The pairs (2, ¢;) are updated as follows. First, we update the penalty parameter ¢:

)
tiz1 = exp W ti: (5)

the penalty rate ¥ > 0 is the second parameter of the method.
To describe the rule for updating x, denote by e(z, F;) the Newton direction of F; at
z,l.e.,
ez, ) = (F"(2)) Fi{z) (= (F/(x)""F/(2)):
this direction is well-defined, since F” is nondegenerate on int (G (as we already have
mentioned, the homogeneous part of A is of full column rank). Let the Newton decrement

A(z, F}) be defined as
Mas F) = {(ele, BT F (@)e(a, )},

To update z, we minimize F, by the following Newton-type procedure:

. 1
0 — pt. s+1 — 5 _ F/l s —lF/ s 6
y T Yy y 1 + /\(ys, Ftl+l)( (y )) 1,+](y ) ( )

Process (6) is terminated when the pair (y*.1,,;) satisfies C.(-.-). or, which is the same,
when A(y?®, F,,,) becomes less than «. and the corresponding y° is taken as il

It is known (see [NN 88, NN 89. NN 91a]) that

B.1. Process (6) terminates after O(1) steps. provided that (2'.t;) satisfies Cx(-,-);

B.2. For any pair (x.t) satisfving C.(-.-) one has

o —clem <o) m|t?

where &~ is the optimal solution to Py,
(in this section all O(1) are positive cosnatuts depending only on the parameters «
and ¢ of the method).



Thus, the presented method B (we shall refer to it as to the basic one) improves the
accuracy of current approximate solution " by an absolute constant factor, say, 2, at the
cost of no more than

O(1)|M|'?
steps of the type
y—y = (F"(y) " F(y). (7)
Of course, one should find an appropriate initial pair to start the method, i.e., a pair
satisfying C.(-,-); this can be done by the same technique, provided that we are given in
advance a strictly feasible initial solution w (i.e., a point w € int G). Namely, it suffices
to follow in the above manner the auxiliary path

z.(7) = argmin {®,(z) = —7zT F'(w) + F(z)}
maintaining the predicate
;/2(2,7):

{zeintG, 7 >0} & {((‘I)'T(z))T(F”(z))_1<1>’,(z))1/

2

< n/?,} :
To follow this auxiliary path, one starts with the pair (w,1) (note that w = z,(1), so that
(w, 1) satisfies Ci(+,-) and now there is no problem with a proper starting pair). When
following the path z.(-) we, instead of increasing penalty parameter 7, decrease it at the
same rate: '

J
Ts+1 = €Xp {—'——lMll/Q } Tsa

so that the path z. is followed as 7 — 0. This preliminary stage is terminated at the first
step when it turns out that the current iterate = satisfies. say, Cpu/3(+,0). and this = is
9. Now it is not difficult to choose t; > 0 such that (2% ¢y) is an appropriate
starting pair for the main stage.

taken as z

The main result on this method is as follows:

Theorem 1.1 Let € € (0,1). The described two-stage path-following method associated
with path tolerance k < 1 and penalty rate ¥ > 0, being applied to P, s, finds an e-solution
to the problem, i.e., a feasible solution x. such that

o —cla" <e {mcf;i.x T — m(in cTal.

m no more than

. 21
ounm‘”m{ﬁ}

£y
Newton-type steps (7) of the both stages. Here the quantity

v = max{t | w+t(w - G) C G}

15 responsible for the quality of the starting point w (this is the "asymmetry coefficient”
of G with respect to w). The constant factor denoted by O(1) depends only on the path
tolerance K and the penalty rate 9.



This statement is an immediate consequence of

(a) the fact that barrier (2) is |M|-self-concordant (see [NN 88, NN 89]),
and
(b) the general result on path-following methods associated with self-

concordant barriers established in the latter paper.

1.3 Acceleration: motivation and summary of results

In the above theorem the complexity of the method is measured in total number N(¢)
of Newton-type steps (6); the arithmetic complexity Mpg(e) of the method (i.e., the total
number of arithmetic operations) is N (<) times the arithmetic cost of updating (7). We

see that
2|M| }
€y ’

A’[B(S) = AIIB In {

where Mp is the arithmetic cost ”per twicening the penalty parameter”, i.e., the cost at
which one can solve the following Basic Subproblem

(BSP): given a pair (z,T') satisfying Co(x)(+,-), transform it into a pair
(z',T') of the same type with T’ = 2T

(we are speaking about the main stage; at the preliminary stage C should be replaced by
C" and the relation T" = 2T by T' = T/2).
For the basic method B one clearly has

1/2

Mp = [M|Np, (8)

where Ap is the arithmetic cost at which, given z, b and ¢, one can form and solve the

Newton system
F"(z)h = F'(z) + b. (9)

It is well-known that in the case of LP the path-following method admits acceleration,
i.e., there are possibilities to solve (BSP) at the cost less (in order of dependence of the
sizes n and m) than Mp. All known acceleration schemes in LP are based on the following
two observations:

(1) when solving (BSP), one can use "proper” approximate solutions to systems (9)
instead of exact ones; '

(11) since systems (9) arising at neighbouring steps are close to each other, there is a
possibility to handle them in such a way that the average (per system) arithmetic cost
of finding "proper” approximate solutions will be less in order than that one of finding
exact solutions.

In the case of LP there are several ways to use these observations. Most of researchers
(starting from Vaidya [Va 87] and Gonzaga [Go 87]) used various forms of the strategy



originating from Karmarkar [Ika 84]: approximate solutions &; to the sequential Newton
systems
are computed as

& = (H)™'b, (11)

where symmetric positive definite matrices H! are compatible with the precise Hessians
H; within a factor p close to 1:

p~"'H; < H{ < pH; (12)

(throughover the paper inequality A < B between matrices means that B — A is positive
semidefinite). It turns out that in an LP problem with n variables and m = O(n)
inequality constraints there is a possibility to maintain (12) by updatings

{H{(H)™'} = {H 1, (Hi)™ ')

based on rank 1 corrections, with O(n'/?) corrections (at average) per Newton step. This
allows to solve (BSP) in O(n®) operations (if the traditional linear algebra technique is
used; this assumption is used throughover the paper).

A somewhat different acceleration strategy for LP was developed in [NN 89, NN 91b).
The main difference with the Karmarkar scheme is that now ”proper” &, is computed by a
prescribed number A" = I'(n.m) of steps of the Conjugate Gradient method, the method
being associated with the Euclidean structure defined by the inner product (z,y), =
yTH!z. Since now NI is much greater than 1 (K = 1 corresponds to the Karmarkar
acceleration), we can relax the "compatibility condition” (12) by replacing fixed and close
to 1 parameter p by “large” (tending to oc as n,m grow) p = p(n, m); this allows to make
rank 1 corrections more rare. The total cost of solving (BSP) in the case of m = O(n),
anvhow, is the same as above. i.e.. O(n®) (the advantages of the latter scheme in the LP
case are seen only when "fast multiplication™ of matrices is used).

As far as we know, all developed so far acceleration schemes for path-following methods
deal with LP (or. which is basically the same for our topic, with linearly constrained
quadratic problems). The main goal of the paper is to demonstrate that the Conjugate-
Gradient-based acceleration scheme close to that one developed in [NN 89, NN 91b] can
be naturally extended onto PI) programming {Sections 2 and 3), and in a sense even onto
general nonlinear problems. (Section 6). In the case of "general” PD problems (no specific
sparsity-type stucture) the effect of acceleration varies from n!'/3 (case of y; «~ p « 1) to
n'/5 (case of jt; «~ yt «~ n). Besides this "unstructured” case, we consider several specific
"structured” PD problems coming from applications; for all these structures, Conjugate-
Gradient-based acceleration also is efficient.

We demonstrate also that PD programming admits a Karmarkar-type acceleration,
provided that all y; are of the same order of magnitude and the number m of diago-
nal blocks in the image space Sy is large (Sect. 4); the effect of acceleration here is
min{n, m'/?}. Section 5 is devoted to acceleration in quadratically constrained quadratic
programming.



The background for this paper is formed by theory of self-concordant functions which
takes its origin in [Ne 88a, Ne 88b] and is developed in (NN 88, NN 89, NN 91a). As far as
the path-following methods are concerned, a self-contained summary of the latter studies
(with complete proofs) can be found in 20-page appendix to [B-TN 92]; at the moment
this summary might be more available for the reader than the original papers.

2 Conjugate-Gradient-Based Acceleration

2.1 Preliminary remarks

Let us first indicate what are "proper” approximate solutions to Newton systems arising
at sequential steps of the method. We say that a vector £ is a v-solution to a linear system

V:=b
associated with a symmetric positive definite matrix V', if
(2 —2)TV(z = 2.) < V30— 2)TV(0—z) (=3 V 1)

where z, is the exact solution to the system (i.e., = should be 1/v times closer to 2. than
the trivial approximate solution 0, the distances being measured in the norm associated
with the inner product u7Vv).

Now assume that we modify the basic path-following method as follows: given certain
v > 0, we replace exact Newton steps (6) with the process

1

=2 ytl=yt - oo Ao = {(ETF(y)E} (13)
1+ A
where ¢ is a v-solution to the system
F'(y*)e = Fy,, (y°). (14)
We terminate process (13) at the first step where A, < x/4 and take the corresponding

y* as zitl,

In what follows we refer to the whole process (13) as to an iteration, and we say that
this iteration is associated with value ;. of the penalty parameter: updatings y* — y*+!
will be called Newton steps. The above modification of B will be referred to as B, (in fact,
of course, this is not a single modification, but a family of them differing in the manner
of finding v-solutions to the Newton systems: more precise wording would be "a method
of the type B,™).

Following the line of argument from [NN 89|, one can prove

Proposition 2.1 For any pair x € (0.1). ¥ > 0 one can find positive v = v(x,J) such
that

(i) Each iteration of B,y takes O(1) Newton steps. and the pair (2+! . t;4,) produced
at i-th deration satisfies the predicate required by the stage in question (i.e., either 'y /s,

6



or C). In particular, B, (.9 solves (BSP) in no more than O(l)}/\/fll/2 Newton steps,
with O(1) depending on (x,9) only.

(11) There exists some (depending on k,9J only) constant py such that for all iterates
y* generated by B, (. at an iteration associated with certain value t of the penalty one

has
pe F'(x*(1)) < F"(y°) < poF"(z(1)) (15)

(iii) There exists some (depending on k,9 only) constant p; such that for all iterates y°
generated by By« s) at an iteration associated with certain value t of the penalty one has

P A (1) < A(Y') < prA(e"(2)). (16)

Since the complexity bound from Theorem 1.1 in fact depends only on the amount of
Newton steps spent to solve sequential problems (BSP), it follows that the method B, (. 4
possesses the efficiency estimate (in terms of the number of steps) indicated in Theorem
1.1.

From now on let us fix « € (0,1) and ¥ > 0, and let v = v(&,d); by default all O(1)
below depend on these parameters only.

2.2 Acceleration strategy: outline

Our goal is to find a strategy for implementing B, with better arithmetic cost of solving
(BSP) than that one for the basic path-following method B, where we solve exactly the
sequential Newton systems. For the sake of definiteness, let us speak about problem
(BSP) associated with the main stage (the case of the preliminary stage is completely
similar).

Thus, we are given a pair (z,T) satisfying C, and wish to transform it into a pair
(z',T" = 2T') with the same property.

Our strategy is as follows: we split the whole segment [T, 2T’] of values of the penalty
parameter t into sequential segments A, = [T,, T,4+1], of length 6T each (the last segment
may be shorter); the quantity § < 1 will be specified later. Now we have O(1/6) sub-
problems (BSP,) of tracing the path along the segments A;. We solve (BSP,) as follows:
for t = T, we, same as in the basic method B, compute the Hessian H, = F"(x(T})) and
then compute the inverse of the Hesslan: here x(t) denotes the point at which we start
process (13) at the iteration associated with value t of the penalty, i.e., 2(t) is the result
of the preceding iteration.

Then we sequentially increase the penalty parameter according to (3) and update a’s
according to (13). It remains to explain how we compute approximate Newton directions
€s. This 1s done by applying to the corresponding system (14) a prescribed number A of
steps of the Conjugate Gradient method "prescaled” by the matrix H, (see below).

In what follows we refer to the presented scheme as to the Conjugate-Gradient-based
(CG-based for short). Note that the scheme itself is independent of the concrete analytical
nature of the PD-problem.



2.3 Prescaled Conjugate Gradients: description

Let us indicate exactly what is the "prescaled Conjugate Gradient method”. Let U and V
be positive definite symmetric matrices of the same size. Assume that we know U~! (more
precisely, know how to multiply vectors by this matrix) and wish to solve the equation

Vz=0». (17)
To this end let us rewrite the equation as
W¢=U-VvU-YYec=p8=UY%, 2=UY% (18)
and apply to the latter equation the usual Conjugate Gradient method:
o =0, m =0;

Tiar T
— _ Ps " Ts - = Ps ‘/V7rs+l
ps =W( — B, ngp1 = ps — 7r5TW7rs7r” Cs+1 = Gs — mﬂ's-f-l

(here a fraction with zero denominator by definition is zero). When rewritten in z-
variables, the process becomes

20 = 07 Po = Oa
Trr-1 Trr-1
r, U Vp r, U Vps-H
rs = ‘/zs - b’ Ps+1 = U_lrs - s—sp.n Sg41 = 25 — 8—'}73 1
* pIVp, * PLaVpers 7

This latter process will be called the Conjugate Gradient method prescaled by matrix U.
Note that each step of this process requires two matrix-vector multiplications involving
U~! and two more involving V (and O(dim z) additional arithmetic operations); in fact
one can make only one multiplication by V and one by U~! per step using recurrent
formulae for ry and U~'r,.

Now let us formulate the only property of the prescaled Conjugate Gradients we need.
To this end let us introduce a simple notion as follows.

Definition 2.1 Let U and V be a pair of symmetric positive definite matrices of the
same size and let p,, p; > 1 be a pair of reals. We say that V is [p,, p,)-compatible with U
if

pi'U <V < p, UL

We say that V is [p, p,]-compatible with [/ up to a correction of rank k, if there exists a
symmetric positive semidefinite matrix V' of rank & such that V — V' is [p,, p,]-compatible
with U.

k-rank matrix V"’ mentioned in Definition 2.1 will be called correction to V.

Remark 2.1 [t is clearly seen that
(i) V is [p1, pr]-compatible with U up to a correction of vank k if and only if W =
U-YV2VU-Y2 s (py, pe)-compatible with the unit matrviv [ up lo a correction of the samc



rank k. and if it is the case and W' is a correction to W . then V' = U'VPW/U2 s g
correction to ',

(i1) A symmetric positive definite matrie W is [p;. p.|-compatible with 1 if and only if
all eigenvalues of W are > p;=' and at most k eigenvalues of W are > p, (from now on.
all egienvalues are counted with their multiplicities). If it is the case, then a correction to
W can be chosen to have the same eigenvectors as W.

In view of the latter remark, if I and 1" are of certain common block-diagonal structure
and V is [pi, pr]-compatible with {" up to a correction of rank k, then this correction can
be chosen to have the same block-diagonal structure.

Now let us formulate the aforementioned property of the prescaled Conjugate Gradi-
ents.

Proposition 2.2 Let system (17) associated with positive definite V be solved by the
Conjugate Gradient method prescaled by a positive definite matriz U. Assume that, for
some py. p;, k., V' is [pr. p,]-compatible with U up to a correction of rank k. Then for any
v € (0,1/2) the method finds a v-solution to the system in no more than

2
k+ Ceglpip:)'? lﬂ(;)

steps, Ccg being an absolute constant (one can set Ccg = 1). All further approzimate
solutions found by the method also are v-solutions to the system.

This statement should be regarded as well-known: to make the paper more self-contained,
we present the proof in the Appendix.

In the outlined acceleration strategy the prescaled by H, Conjugate Gradients should
solve to the accuracy v(x. V) all Newton systems arising as the penalty passes through the
segment A,. To this end we should properly choose the number K of steps of Conjugate
Gradients. According to Propsition 2.2. in order to choose K properly it suffices to
understand how "far”™ could be the corresponding Hessians from the matrix ‘H,. This is
what we are coming to.

2.4 The Main Inequality

What follows extends straightforwardly to the case of PD problems the "main inequality”
from [NN 89, Chpt.5].
Let us write explicitly the expressions for the gradient and the Hessian of the barrier
F at a point z € intG. Let
Alx) = Ar 4+ a (19)
be the representation of the affine mapping A as the sum of a homogeneous mapping and
a constant. One evidently has

F'(x) = ~A"(A7(2)), (20)

9



F'(z)h = A"(A7 Y x)(AR) A" ()); (21)

here A* denotes the conjugate to A linear operator from S into R® (the usual notation

AT would be inconvenient, since the range space of A* is comprised of matrices, and

expressions of the type AT X would he confusing: A*X is not a product of matrices, but

the image of a vector (which occasionaly is a matrix itself) under a linear mapping).
From (21) it follows that

RTF"(z)h = || A~V2(2)(AR)A™V2(2) ||s (22)

(recall that || - ||, denotes the Euclidean norm on Su associated with the inner product
(X,Y) = Tr(XY)).

Let us start with the following key (although very simple) statement.
Lemma 2.1 Lett and t, be two values of the penalty parameter, and let
X = A(2™(t)). Xy = Al"(t4))
be the images in Sy of the corresponding points of the path. Set
7 = (X-V2x, X121/

Then

=1 2_ (t_t+)2 :
I /12 - Viz I, = 1Ml s (23)

Proof. By definition of the path z* (see (3)) and in view of (20) we have
A" (XY =te, AYXTY) = the

Multipluing these equalities from the left by (x4 — x)7 and taking into account that
A(ry —z) = Xy — X, we obtain

(X1 Xy = X) = (¢/t4) (X7 X4 - X).

whence, in view of (Y =1, Y) = Tr(Y ') = | M|,
Tr(X 7' Xy + (/6 X7 X) = (X7 X))+ (¢/t) (X7 X)) = (M1 + —t-t—). (24)
+

The left hand side of the latter relation clearly equals to Tr(Z? + (¢/t+)Z~?). which, in
turn, is nothing but Tr((Z — \/t/t+Z~")?) + 2| M|(¢/t;)/%. and (23) immediately follows
from (24). =

Lemma 2.2 Let t, ty be two values of the penalty paramcicr. and let x = r*(t), X =

A(@). Y = X7t oy = am(1y). Xy = A(ay). Yo = X1 S

M = max {4111;1x{l.t+} |\ (= ty) } (25)

min{t.1.} " Tmin?{t.1,}

10



Then for every p, such that
max{t,t,}

26

min{t,t,} (26)
the matriz Y, is [pi, p-]-compatible with Y up to a rank k-correction with
1 t—ty)? -

k= L_|M|(—+)J (27)

pr min?{¢,t, }
(from now on, |a| denotes the largest integer not exceeding a).

Proof. Let Z be the same as in Lemma 2.1, and let Ay, ..., Az be the eigenvalues of Z
taken with their multiplicities. Relation (23) means that

(Ml

1\? (t—ty)?
;( t+’\i—\/t-/\_i) —|M|m

In view of this inequality and (26) at most k of A;, with k given by (27), can be less than
p-'/2. Indeed, each A; with the latter property corresponds to a left hand side term which
is at least 2p, min{t,t,}, while the right hand side of the inequality is at most

| | (t —t+)2
4min{t,t,}

By similar reasoning, no A; can be greater than p,l/z. Consequently, no more than
k eigenvalues of Z=2 = Y ~1/2Y,Y~1/2 (counted with their multiplicities) can be to the
right of the segment [p;*, p,] and no one of them can be to the left of the segment. This
observation, in view of Remark 2.1, completes the proof. u

Proposition 2.3 Let t, t, be two values of the penalty parameter. let x = 2*(t), r, =
x™(t4) be the corresponding points of the path, and let p; be defined by (25) and p, satisfy
(26). Then the matriz F"(x,) is [p?, p?]-compatible with F"(x) up to a correction of rank
k, with k given by

t—t,.)?
i,\,qg

k=max{g +1,.., ftm+1 -
tm fm ¥ }Lp, min?{¢,t,}

. (28)

Proof. 1. We start with the following simple statement.

Lemma 2.3 Let for a positive definite matriv W € Sy the n x n matrix Py be defined
by the relation
Puyh = A*(W.A(R)W) (29)
(note that Py evidently is symmetric positive definite: strict positivity follows form the
fact that A s of full column rank, see Sect. 1.2).
Now, let U, V be a pair of positive definite matrices from Spq such that V' is [a,b]-
compatible with U:
a U <V < bU. (30)
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Then Py is [a?, b%]-compatible with Py:
a *Py < Py < b*Py. (31)
In particular. if U < V', then Py < Py.
Proof. Relation (30) means that the matrix
7 = yluzp-1/2
satisfies the inequalities
a”'wTw < (Zw)T (Zw) < bwTw, w e RMI. (32)

We have
‘/,v1/2 — Z(./1/2, ‘/'1/2 = U1/2zT (33)

(the first equality - by definition, the second - by taking the transposes). One clearly has
AT Pwh = Tr(WY2 A(R)W A(h)W1/2); (34)
since a~'U < V < bU, we conclude that
a'Q(h) = a 'Tr(VV2A(R)U A(R)VY?) < RT Pyh < bQ(h). (35)
Further (see (33)),
Q(h) = Te(VM2A(R)U A(R)VYV?) = Te(ZUY A(R)U A(R)UM?ZT). (36)

Now,
Ry, = UV2A(RYU A(R)UY?
is a symmetric positive semidefinite matrix; let

M|

R, = Z fiff

be its representation as a sum of rank 1 positive semidefinite matrices. We have (see (36))

|M]
Q(h) = Tr(ZRyZT) = Y (2£)1(Z f),
=1
whence, in view of (32),
M| [ M|

a ' ST T < Q) <03 T S

or, in view of origin of f; and (34)

« 'WTPyh =a Ty ((,.’1/2/4(/1)0";’\(11)UI/Q) < Q(h) < bAT Pyh.

12
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This inequality combined with (35) leads to
a P Peh < RTPch < BPRT Uk,

as required in (31). The "In particular™ part of the conclusion is nothing but (31) for the
caseofa=1.m
2. Now, in view of (21) and (29) we have

F'(x) = Py, F"(x,)=Py,. (37)

From Lemma 2.2 we know that
pl’lY <Y,,

which in view of (37) and Lemima 2.3 leads to
pPF" (@) < F'(24). (38)

Further, same Lemma 2.2 says that there exists a positive definite matrix Y’ <Y, of the
same block-diagonal structure as Y, which. on one hand, differs from Y, by a k’-rank
matrix, k&’ being given by (27). and on the other hand satisfies the relation

Y' < p,Y.

The latter inequality in view of Lemma 2.3 implies
Py < 2F"(2),

and since Y’ < Y. we also have (same Lemma 2.3) Py < Py, = F"(z,). We see that
all we need in order to complete the proof is to demonstrate that.

rank( Py, — Pyo) < E'max{pq + 1., + 1} (39)

(compare the definition of &' and the right hand side of (28)). This is an immediate
consequence of the following

Lemma 2.4 [fU, V' € Sy are such that rank(l' — V') = 1, then
rank( Py — Pv) < max{u; + 1, ..., ptm + 1}

Proof. Without loss of generality we mayv assume that ' — V = ffT where f €
R x ... x R*m. Since {" and V" are of the same block-diagonal structure M, all but one
projections of f onto the direct factors in the product R* x ... x R*" are zeros. That
evidently means that we can reduce our considerations to the case when m = 1, where U
and V are u x p matrices and f € R*, i being one of y,. We have

Py — Py = ANRS; + T;).

where:

13



Sy is the mapping from R" into the space L, of y x yt matrices which maps
a vector h € R" into the matrix f(VA(h))T;

R: X — X + X7 is the "symmetrization mapping” from L, into the space
S, of symmetric u x p matrices;

7; i1s the mapping from R” into S, which maps & € R into the matrix

(fTARNI ST

Since evidently rank &y < p and rank7; < 1. we conclude that rank(Py — Pv) < p + 1,
as claimed. =

To prove (39), note that one can evidently "link™ Y’ and Y, by a sequence of matrices
Y=Y, Y,...,Y =Y, from Sx in such a way that any two neighbours in the sequence
will differ by a rank 1 matrix. From Lemma 2.4 it follows than any two neighbours in
the associated sequence Py = Py, Py, .... Py, = Py, differ by a matrix of rank at most
max{s, + 1, ..., tm + 1}, and (39) follows. =

2.5 Prescaled Conjugate Gradients: # of steps
The results of Propositions 2.1. 2.2 and 2.3 can be summarized as follows.

Proposition 2.4 Consider the Conjugate-Gradient-based acceleration strategy from Sect.
2.2; let the strategy be associated with some § satisfying the relations

M7 <6 <. (40)

and let the number K of steps of the prescaled Conjugate Gradients at each Newton step

be defined as

K = [min{/,. K,}]. (41)
where 5
Ky = Coor(pf)* In(=) (42)
" Ky = 128p3Ceq 111(3) M| 6%/ + 1 (43)
v
here

o= max{fy. ... ftm };

po is the (depending on k,V only) constant from Proposition 2.1 (ii);

Ccg 18 the constant from Proposition 2.2;

pr = max{8.|M|&?} iz an upper bound for the right hand side of (23) for
the case of t.14 € A,.

Then the resulting method does find v-solutions to all Newton systems arising in course
of solving (BSP) and thereforc can be regarded as method 13, from Proposition 2.1.

Proof. From Proposition 2.1 it is easily seen (induction’ that what in fact should be
proved is the following:



(*): assume that we perform a Newton step from a point y at an iteration
associated with a value t, € A, = [T,,T,4,] of the penalty and it is known
that, first, (y,t) satisfies (15):

po F'(27(t4)) < F'(y) < poF"(z7(t4)). (44)
and, second, that
55 F"("(T,)) < F'(2(T,)) < poF"(2"(Ty)) (45)

(recall that z(7) is the point where we start (13) at the iteration associated
with penalty value 7).

Then K steps of the Conjugate Gradients prescaled by the matrix H, =
F"(z(T,)) do result in a v-solution to the Newton system corresponding to y.

To verify the latter statement, let us act as follows. Set
H,=F"(y), H, =F'(z(t})), H, =F'(z"(T,))

The relations between these matrices are as follows: H,, is [pg, po]-compatible with H,,
same as H; is [po, po]-compatible with H, (premise of the statement we are proving).
Further, from Proposition 2.3 as applied to ¢t = T, and our ¢, it follows that for any p > 8
the matrix H,, is [(p])?, p?]-compatible with H, up to a correction of rank k(p), where

Kp) = (u + 1)[% M| 6] (46)

Let us derive from these observations that

(C): the matrix H, (which is the matrix of the Newton system we are
solving at the step in question) is [pd(p] )?, pap?}-compatible with the matrix H,
(this matrix prescales the Conjugate Gradients at the step) up to a correction
of rank 2k(p).

Indeed, consider the Rayleigh ratio R(h) of the quadratic forms AT H,h and ATH h. We
have ) ‘
R(h) = hTH,h _ hTH,h hTH, k) [ RTHh
VERTHE T \WTH LA\ WTHE [\ RTHE [
As we just have mentioned, the first and the third factors in the right hand side of

this equality take their values in [p5', py]. Now, the second factor is the Rayleigh ra-
tio of quadratic forms associated with a pair of matrices with the first being [(p})?. p?]-

compatible with the second up to a correction of rank k(p); it follows immediately that

R(h) > p52(pi)™% h #0,

and that there exists a subspace L of codimension k(p) such that the ratio is < pZp?
whenever h € L.
Now (C) can be immediately obtained from the following evident statement:
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Lemima 2.5 Let U and V' be two positive definite symmetric matrices of the same size,
and let the Rayleigh ratio (RTVR)/(hRTUh) of the associated quadratic forms be > ¢!,
and being restricted onto a subspace L of a codimension k let it be < 7. Then V is
[, 7]-compatible with U up to a correction of rank 2k.

Proof. The statement clearly can be reduced to the similar one for the matrices U, = I
and V, = U~'Y?VU~Y2, so that we from the very beginning may assume U to be the
unit matrix. All that we should prove is that there exists a positive semidefinite matrix
Z of rank 2k such that V — Z < xI. Let I — P be the orthoprojector on L, and let

= (I - P)V(I — P)+ P. The Rayleigh ratio of the forms associated with the matrices
V" and I evidently is < 7, so that V' < xl. On the other hand, the matrix 2’ =V — V'
is of rank at most 2k. Now let Z be the "nonnegative part” of Z’, i.e., the matrix with
the same eigenvectors and the eigenvalues being positive parts max{-,0} of those of Z7
we clearly have V — Z2 <V — Z' < 7], and Z is the required 2k-rank correction to V. =

Now we are ready to prove (*). Assume, first, that X' = K,. Since k(p) = 0 whenever
p > p;, (C) implies that H, is [p3(p;)?, p3(p;)?]-compatible with H,, and in view of
Proposition 2.2 K} Conjugate Gradients steps do result in a v-solution to the system in
question.

Now let ' = K3, We set

1
n(p) = (k+ 1); | M| 62,

(so that k(p) < [n(p)], see (46)),

/2
7 2u + 1) M| 82}’
pr = argmin "17 ) + pip;pC ln p > 8} = max 8( - ,
gmin { OF T es )| } { p&p;Cec In(2)
which in view of pj = max{8, |M|62}, |[M]62 > 1 results in

2k(p,) + Ccapipi pr ln( ) < 128p5Ccq In(= )|M|52\/u +1

In view of (C) and Proposition 2.2, the first quantity in this chain is the number of steps
in which the Conjugate Gradient method prescaled by the matrix H, finds a v-solution
to the Newton system in question, and the last quantity is Ky = K, so that in the case
under consideration, same as in the previous one, K steps of the Conjugate Gradients are
sufficient to find the required approximate solution to the Newton system. =

3 Efficiency of CG-based Acceleration

In this section we investigate when the Conjugate-Gradient-based strategy, as compared
to the basic one, does result in acceleration in orders of dependence of the sizes of problem
Pn.m. Since we are interested only in orders, we do not take care of constant factors; all
these factors depend on the parameters «,1) of the path-following procedure only.
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To simplify notation. we do not write constant factors even as O(1): in order to express
that certain quantity .4 coincides with another quantity B up to a factor which is bounded
from above, same as bounded away from zero. by something depending on ~, 9 only, we
write A « B: this convention is extended in the evident way onto expressions of the type
Az B.

3.1 Efficiency: general relations

Assume that when solving P, a by the basic method B we act as follows: to perform the
Newton step from a current iterate y, we compute the gradient F’(y) (which is required to
form the right hand side of the Newton system) and then somehow assemble and invert the
Hessian F”(y) (independently of intermediate results of previous steps). Let Q. denote the
arithmetic cost of these computations; we assume that after they are finished, we obtain
a possibility to multiply an arbitrary vector h € R by the inverted Hessian (F"(y))~! at
certain arithmetic cost A/.. Of course, we assume that M, > n (we should spend at least
n operations simply to store the result which is an n-dimensional vector). It should be
stressed that we does not assume that the Hessian and its inverse are computed in their
standard form (as n x n matrices). All which is assumed is that we use certain procedure
which. given y, processes the data of the problem at the cost of Q. operations in such a
way that, first. the gradient F’(y) becomes known and, second, we obtain the possibility
to compute. for any given h. the vector (F"(y))~'h in no more than M, operations. In
what follows we refer to this procedure as to processing of Hessian.

According to our hypothesis, the cost of a Newton step for the basic method is Q.+ M.,
so that the arithmetic cost at which the method solves the basic subproblem (BSP) is

My (Q, + M,)| M| (47)

(the first factor is the arithmetic cost of a Newton step, the second - the total amount of
these steps when solving (BSP): according to our assumption that M, > n, we may once
for ever forget about the remaining operations at a step. like computing the stepsize and
y**! after the Newton direction is computed. since the corresponding effort is dominated
already by A).

Now let us evaluate the arithmetic cost of solving (BSP) by the Conjugate-Gradient-
hbased method B,. We assume that here at a Newton step from current iterate y we
compute the gradient F’(y) and, possibly. perform some additional preprocessing and
then obtain a possiblity to multiply an arbitrary vector from R™ by F”(y) at certain
arithmetic cost M > n. The cost of computing F'(y) and of the above preprocessing will
be called Q. Now. once per each segment A, of values of the penalty we should compute
the exact Hessian and its inverse: as in the basic strategy, it is assumed that a single
action of this type takes Q. operations and allows to multiply a vector form R" by 'Hq‘l
at the cost M. operations.

Sometimes we will refer to the above quantities Q.. AL, Q, M as to basic computational
characteristics of the problem.
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Under the above assumptions the arithmetic cost My, at which B, solves (BSP) can be
computed as follows. At each Newton step we spend (Q operations to compute the gradient
F'(y) at the current iterate y and to preprocess matrix-vector multiplications involving
the Hessian F"'(y) Then we should perform K « 1+ K = 1 + min{u'/?|M|§?, (JM]|6%)?}
Conjugate Gradient steps (see (41)). Each Conjugate Gradient step costs two multipli-
cations of a vector by the current Hessian («~~ M operations) and two multiplications of
a vector by the matrix inverse to that one used for the prescaling («~~ M. operations).
Thus, the total cost at which B, performs a single Newton step is v~ @ + (M + M,)K
operations. This cost should be paid « |J\/1|1/2 times (this is the total number of Newton
steps required to solve (BSP)); besides this, we should «~ §-! times pay Q. operations to
process Hy, ¢ = 1,2....,0(671).

Thus, we come to the following expression for the arithmetic cost of the method B, :

Mg, S (Q.+ M6+ (Q + M + M, + (M + M)K) M|,
K = |M] 2 min{y'/?, |M| 62}, (48)

This cost depends on 8, and of course we should choose § optimally, keeping in mind that
6 should satisfy (40). In fact we can forget about the lower bound in (40), since when the
6 1s at this bound or less, then the right hand side of (48) clearly is larger than that one
of (47), so that no acceleration occurs: it follows that if the value 6* which minimizes the
right hand side of (48) under the only constraint 6 < 1 does result in acceleration (and
these are exactly the cases we are interested in). then this 6% automatically satisfies the
left inequality in (40) and therefore optimizes the right hand side of (48) under the whole
pair of constraints (40).
To measure the acceleration, it is convenient to deal with the acceleration ratio

My

v.

R = :
My

the less is this ratio, the more is the efficiency of acceleration: we do have an acceleration
when R < 1.
It is easily seen the acceleration ratio corresponding to the optimal § is as follows:

Q+ M+ A, 1

R - + + min{R,.R,},

Qe + ;"[5 \/|'M| { 1 2}‘

M+ A\ M4 ALY

Ry = 16 | ——= . Ky = —° .
- g (Qe + ‘15> R- (26 + .""[e (49)

3.2 Efficiency: examples

Looking at expressions (49). we sce that the acceleration ratio heavily depends on relations
between the characteristics Q.. M, . Q. M of our basic Linear Algebra routines. Recall that
these quantities are the arithmetic costs of

—
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computing F’(y) and processing F"(y) (Q.) in a way which allows to mul-
tiply vectors by (F”(y))~! at the cost M,;

computing F’(y) and preprocessing [77(y) () in a way which allows to
multiply vectors by [(y) at the cost A.

In this section we consider several typical relations between these characteristics and
present the corresponding acceleration ratio. Within the bounds of this section, for the
sake of definiteness, we deal only with "homogeneous” structures:

m times
e e
M = {p, .. pu}.

(of course, this is the same as to deal with the structures where all u; coincide with each
other up to a constant factor of order of 1; we will meet this latter situation in Sect 3.2.4).

Recall that our problem P, o (see (1)) is defined by an affine mapping A(z) = Az +«
from R™ into Spy; the dimension of the latter space is «~~ mu?, and since A is of full column
rank (see Sect. 1.2), we have

n < mu’; (50)
it i1s convenient to assume also that
nzu, (51)

as it is the case in all applications known to us.

3.2.1 General "unstructured” case

We start with the general case where no specific structure of problem P, o¢ is assumed:
the affine mapping A is represented as a collection of n + 1 matrices (the constant term
and n images of the standard n-dimensional orths under the homogeneous part A of the
mapping), which can be arbitrary symmetric matrices of the block-diagonal structure M.

In this case one evidently has

Q «~ nmu® + mp® « nmy?

[according to (20), we should compute A(x), which takes -~ nmu? operations. then
invert A(zx) («~ mu® operations more) and, last, multiply the result by A~ (again «~ nmy?
operations); the term myu?® disappears due to (51)];

M — nmp? + mp® ~ nmy?

[according to (21), to compute F”h we should compute 4h («~ nmu? operations),
multiply this matrix from the left and from the right by already computed (A(z))~*
(«~ mu® operations) and, last, multiply the result by A* («~ nmpu? operations more)]

Now, in the case in question the natural way to process Hessian is to assemble and
to invert it directly, i.e., to compute its values at the standard basis orths in the range
space and then straightforwardly invert the resulting n x n matrix (or find its Cholesski
factorization); recall that we use the traditional Linear Algebra only. To find the value
of the Hessian at a basis orth e it takes the same «~ nmu? operations as to compute it on
an arbitrary vector (although now we should not pay for computing Ae, we still should
pay the above cost for applying A* to (A(z))~'(Ae)(A(x))~!). Thus,

19



Qe ~ n2mp? + 13« n?my?

[n3 dissapears in view of (50)] and, of course,

M, « n2

With these dependences, (49) and (50). (51) result in

R« min{g!/®n1/3 n=1/%} (52)

We see that in the range of sizes defined by (51), (50) accceleration does occurs; its order
varies from n'/3 (y « 1) to n/® (y « n).

Note that the case of i = 1 is precisely the case of Linear Programming; if, in addition,
n «~ m (this is the standard asssumption when analysing acceleration in LP), we obtain
acceleration of order m'/3, which is by factor m'/® worse than the efficiency of the usual
Karmarkar speed up. What should be stressed is that the acceleration of order n!/? is
achieved not only when p = 1, but also when g is a fixed constant (of course, then
the constant factors in our equivalences «~ depend on g). On the other hand, there are
important problems where u indeed is a once for ever fixed small integer.

Now let us look what happens in the case when A possesses a "nontrivial structure”.
We do not pretend to give a general definition of a "structured” PD problem; let us simply
list several real-world problems.

3.2.2 Robust Stability Analysis

There is a lot of PD problems in this area; from mathematical viewpoint, the ”structure”
here looks as follows. The control vector z is a collection of symmetric matrices: = =
(1,...,Zq), and the diagonal blocks of A(z) are of the type

an(z) an(r) ... aw(r)

an(z) apa(z) ... awx(x)

where the subblocks a,,(z) = aI (z) are sums of products of z; and fixed matrices of

vu
appropriate sizes. The maximum over subblocks number w of terms in these sums will be
called the weight of the problem.

This description, of course, is too diffuse for a productive complexity analysis, since to

the moment we did not say much; all depends on how many z; are involved in a block, how
many subblocks «,, are there in the diagonal blocks of A, etc. For the sake of definiteness,
we restrict ourselves to two particular cases coming from applications.
Example 1: H_-control. In problems of this type (see [PZPB 91, GA 92]) the numbers
of control matrices, blocks and subblocks per block, same as the weight, are small integers
(less than 10 in all problems we know). All control matrices are of the same row size, let
it be s. We have, consequently,

nws?t pes, mwl, wewl. (53)

Now evaluate our bhasic characteristics @, M, Q., M,. We have
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computing F'(y) and processing F"(y) (Q.) in a way which allows to mul-
tiply vectors by (F”(y))~! at the cost M,;

computing F'(y) and preprocessing ["(y) (Q) in a way which allows to
multiply vectors by F”(y) at the cost M.

In this section we consider several typical relations between these characteristics and
present the corresponding acceleration ratio. Within the bounds of this section, for the
sake of definiteness, we deal only with "homogeneous” structures:

m times
——
M ={p,..,u}.

(of course, this is the same as to deal with the structures where all y; coincide with each
other up to a constant factor of order of 1; we will meet this latter situation in Sect 3.2.4).
Recall that our problem P, a1 (see (1)) is defined by an affine mapping A(z) = Az +a
from R™ into Sx; the dimension of the latter spaceis «~ mu?, and since A is of full column

rank (see Sect. 1.2), we have
n < mpu?; (50)

it is convenient to assume also that
n= (51)

as it is the case in all applications known to us.

3.2.1 General Yunstructured” case

We start with the general case where no specific structure of problem P, a4 1s assumed:
the affine mapping A is represented as a collection of n + 1 matrices (the constant term
and n images of the standard n-dimensional orths under the homogeneous part A of the
mapping), which can be arbitrary symmetric matrices of the block-diagonal structure M.

In this case one evidently has

Q «nmp? + mud « nmu®

[according to (20), we should compute A(x), which takes «~ nmu? operations, then
invert A(z) («~ mu® operations more) and, last, multiply the result by 4~ (again «~ nmu?
operations); the term mu?® disappears due to (51)};

M «~ nmp? + mp®  nmy?

[according to (21), to compute F”h we should compute 4h (~ nmu? operations),
multiply this matrix from the left and from the right by already computed (A(z))™!
(v~ mu> operations) and, last, multiply the result by A* («~ nmu? operations more)]

Now, in the case in question the natural way to process Hessian is to assemble and
to invert it directly, i.e., to compute its values at the standard basis orths in the range
space and then straightforwardly invert the resulting n x n matrix (or find its Cholesski
factorization); recall that we use the traditional Linear Algebra only. To find the value
of the Hessian at a basis orth e it takes the same «~ nmy® operations as to compute it on
an arbitrary vector (although now we should not pay for computing Ae, we still should
pay the above cost for applying 4™ to (A(x))~!(Ae)(A(x))™"). Thus,
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Qe «~ nPmp? + n® «~ n?my?

[n3 dissapears in view of (50)] and, of course,

M, «n?

With these dependences, (49) and (50), (51) result in

R~ min{p!/®n~1/3 n-1/3%} (52)

We see that in the range of sizes defined by (51), (50) accceleration does occurs; its order
varies from n'/3 (i« 1) to n'/® (i« n).

Note that the case of i« = 1 is precisely the case of Linear Programming; if, in addition,
n « m (this is the standard asssumption when analysing acceleration in LP), we obtain
acceleration of order m!/3, which is by factor m!/® worse than the efficiency of the usual
Karmarkar speed up. What should be stressed is that the acceleration of order n!/® is
achieved not only when g = 1, but also when g is a fixed constant (of course, then
the constant factors in our equivalences «~ depend on gx). On the other hand, there are
important problems where u indeed is a once for ever fixed small integer.

Now let us look what happens in the case when A possesses a "nontrivial structure”.
We do not pretend to give a general definition of a "structured” PD problem; let us simply
list several real-world problems.

3.2.2 Robust Stability Analysis

There is a lot of PD problems in this area; from mathematical viewpoint, the ”structure”
here looks as follows. The control vector x is a collection of symmetric matrices: z =
(z1,...,%4), and the diagonal blocks of A(z) are of the type

au(:c) a12(.‘l7) (l]k(flf)

ap () ar(z) ... ar()

where the subblocks a,,(z) = al () are sums of products of z; and fixed matrices of

vu
appropriate sizes. The maximum over subblocks number w of terms in these sums will be
called the weight of the problem.

This description, of course, is too diffuse for a productive complexity analysis, since to
the moment we did not say much; all depends on how many z; are involved in a block, how
many subblocks a,,, are there in the diagonal blocks of A, etc. For the sake of definiteness,
we restrict ourselves to two particular cases coming from applications.

Example 1: H,_-control. In problems of this type (see [PZPB 91, GA 92]) the numbers
of control matrices, blocks and subblocks per block, same as the weight, are small integers
(less than 10 in all problems we know). All control matrices are of the same row size, let

it be s. We have, consequently,
nwsi, pes, mel, wel. (53)

Now evaluate our basic characteristics Q, M, Q., M,.. We have
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Qs M-S

[an immediate consequence of (20). (21) and our assumptions on the sizes of the
problem]

Now evaluate Q.. In contrast to the "unstructured™ case, now we can process Hessian
at a lower cost than that one corresponding to its direct assembling and inverting as an
n x n matrix. Indeed. to invert in the standard manner F” it would cost «~ n3 operations,
not speaking of the cost of assembling F”; thus, to process Hessian straightforwardly
2+ s' Let us
demonstrate that in fact the latter possibility can be "bought™ cheaper, namely, at the
cost «~ s°. Indeed, since we can multiply P = F"(z) by a vector at the cost M « s3,
we can use n steps of the standard Conjugate Gradients to obtain a linearly independent

system of n P-conjugate directions p;.1 = 1,...,n. i.e., a system such that

it would cost at least «~ s% and these “investments” result in AL, —~ n

pJ-TPpi =0.) #1,

and the arithmetic cost of forming this system will be «~ nM. We evidently have

P~ h =3 (p! Ppi)~ (AT pi)pi,
=1
and the cost of computing the right hand side of this expression is n?. The above trick is a

well known general fact completely independent of the particular problem we are dealing
with:

Remark 3.1 Given a possibility to multiply a positive definite symmetric n X n matriz
P by an arbitrary vector at certain cost M. one can obtain, at the cost of preprocessing
taking O(1)nM operations. a possibility to multiply an arbitrary vector by P~! in O(1)n?
operations, both O(1) being absolute constants.

In fact this trick is more of theoretical interest. due to numerical instability of Conjugate
Gradients as applied to ill-conditioned problems. but these ”"practical” issues are beyond
the bounds of our theoretical analysis.

Thus, 1n our particlar problem we have

Q. s, M, st

[t remains to use (49), and we come to

R ™15 =110,

Almost nothing, but not nothing.

Example 2: Luapunov Stability Analysis for differential inclusions. The problem
(see [BY 89, BG 92]) is of the following structure. There is a single control matrix, let its
row size be s, and a (possibly, large) number m of diagonal blocks in A(x) (m typicaly,
although not always, is the number of vertices in certain polytope in R*). All diagonal
blocks are of the same as 2 row size s, and their partition into subblocks is trivial (the



only subblock coincides with the corresponding block); the weight equals to 2. For this
structure one evidently has
new s, u=s.

Same as above, one can easily verify that
Q ~ms®, M« msd

As far as Q., M, are concerned, the situation is as follows. It is easily seen that the

2

straightforward assembling F" costs «~ ms® + nms? «~ ms* operations, and the standard

inverting the resulting matrix costs «~ n® « s® operations; to process F” via Conjugate

Gradients (see Remark 3.1) it costs «~~ nAf «~ ms® operations: both approaches result in
the same value « n? « s* of M,. Which one is better. it depends on the ratio s/m: if it
is less than 1, then the straightforward way is more profitable.

Let us start with the case s < m, which. in view of the origin of the problem, is quite

realistic. In this case
Qe stim+s%). M st s<m.

From (49) it is easily seen that

1/3 1/5
R —~ min{n~1/1? (——in——) .n~1/10 (—m—-) } < nV10
m <+ n m4+n

Now consider the case of s > m, where it is more preferable to process Hessian via the

CG. Here
Qe v~ ms®, M, s s>m.

and the acceleration ratio now is

R - min{m'l/an‘l/‘{ 771—1/077—1/10}‘

3.2.3 Lovasz capacity number of a graph

The structure of this problem (see [Lo 79]) is as follows. 4 is the number of vertices of
the graph in question and @ = (7, u), where 7 € R and components of u are indiced by
arcs of the graph. Now, A(r,u) = 71 — G(u), where t7-th entry of G is unit. if the vertices
¢ and 7 are not adjacent in the graph; otherwise this entry is the component of v indiced
by the corresponding arc.

It is easily seen that in the typical case n «~ p? (i.e.. the case when the number of
arcs in the graph is of order of squared number of vertices: we restrict ourselves to this
case only) the complexity analysis is completely similar to that one from Example 1 Sect.

R~ n~1/10,

v
[N



3.2.4 Multiloaded Truss Topology Design

For our current goals it suffices to make the following remarks on the structure of the
problem in question, let us call it TTD for short (for detailed presentation of TTD, see
(B-TN 92]).

(TTD,): the sizes of the problem are defined by a triple of integers £ (# of nodes in
the Truss), n (# of tentative bars) and A (# of loading scenarios). These numbers are as
follows: € is rather large (at least hundreds in problems of practical interest), n « £? (tens
of thousands) and A is a small integer (say, 3). Now, the block-diagonal structure M looks
as follows: m = 29 + 3n) 4+ X « €2, with g\ of p;’s being equal to 2 and the remaining
pui's equal to 1. Now, the dimension of the control vector z is n = (7 + £ + 1)A 4+ 5 « €2

Warning: The reader should be awared that in fact the formulation of the multiloaded
Truss Topology Design given in [B-TN 92| is not a PD-one; the problem there is set as

(*) minimize ¢’z subject to &(z)€ K;,i=1,..,m,

where &; are affine mappings into R**")| with s(1) = 1, s(2) = 3, and K; are the standard
second order cones in these R*(*!) (the standard second-order cone in R’ is the set which
in appropriate coordinates y can be described as {y | y1 > (2 + ... + y?)'/?}). Now, since
the 1-dimensional second order cone in R! is nothing but the cone of positive semidefinite
1 x 1 symmetric matrices and the 3-dimensional second order cone in R? is nothing but
the cone of positive semidefinite symmetric 2 x 2 matrices, the initial formulation of the
problem in terms of second order cones is its PD-formulation as well.

Note that an arbitrary problem (*) associated with affine mappings &€; and second
order cones K; can be reformulated as a PD problem, since a k-dimensional second order
cone can be easily represented as an intersection of the cone of positive semidefinite
k x k symmetric matrices and an appropriately chosen k-dimensional subspace. For Truss
Topology design, anyhow, this "reformulation” changes nothing but the way we look at
the problem.

(TTDy): although very large-scaled, at least for real-world values of £, problem TTD
possesses a very specific structure which allows to perform required Linear Algebra rou-
tines at a (relatively) extremely low cost. Namely, one has (see [B-TN 92])

Q « A% M A2
Q. « 303, M. N2

From (49) it follows immediately that
R - (/\{)—1/3’

which is rather encouraging, taking into account exttremely large sizes of real-world TTD
problems.



4 Karmarkar Acceleration

In this section we demonstrate that in the case of large m (we again deal with an arbitrary

structure M), the basic path-following method admits a Karmarkar-type acceleration; in

the homogeneous "unstructured” case the corresponding acceleration ratio is of order of
-1/2 4, -1

m +n".

4.1 The method

In our now scheme, same as in the previous one, we replace process (6) by (13) and
find "proper” approximate solutions to the Newton systems by a prescribed number K
of steps of the prescaled Conjugate Gradients. The difference with the previous scheme
is that now we update the prescaling matrix at every step and use low-rank corrections
to maintain its [p?, p?]-compatibility with the matrix of the Newton system; here p is a
constant which depends on the path tolerance x and the penalty rate ¥ only. As a result,
the number of Conjugate Gradient steps becomes independent of the sizes of the problem.
For appropriately chosen absolute constants x,?J the latter number could be reduced to
1, which in fact completely eliminates Conjugate Gradients and results in the "pure”
Karmarkar scheme.

In what follows y denotes the iterate updated at the Newton step in question, ¢, is the
corresponding value of the penalty parameter and B, is the matrix which prescales the
Conjugate Gradient method at the step. The method we are going to describe is governed
by certain parameter p > 1 (and, of course, by & and J). To specify the method, we first
explain how, given a p, we form the prescaling matrices B, and their inverses and how
the number K of the Conjugate Gradient steps is chosen; after this is done, we specify p
itself.

4.1.1 Preliminary remarks

Let us start with the following notion. Let U and V be a pair of positive definite matrices
from Sp. We associate with the pair a nonnegative m-dimensional ratio vector r(V :
U)=(ri(Vi: Up)y ooy i (Vin : Upn)), W, being 2-th diagonal block of W € Sy, as follows.
Let W = U-12VU-2; we set

ri(U; : Vi) = In(max{1,|| W; ||}) + In{max{1,]| W ' ||}), i=1,..,m, (54)
where || - || is the usual operator norm. As it is clearly seen, the ratio vector can be
equivalently defined as follows. Consider the Rayleigh ratios
) = RTV.h
YONTUR?
let «; and 3; be the maximum and the minimum values of i-th ratio over all nonzero &
and let ¢; = max{l,;},b; = min{1,3;}. Then

R(V;: U 0# h e R™,

r(Vi: U) = ln(%).
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From the latter description it follows that »(V : 7) is a "vector-valued distance™:
r(V:U)=r(':V). #(V:U)=0V=U »W:U)<r(W:V)+rV:0U).

Computational Remark. Our rules for updating prescaling matrices will be based
on control of ratio vectors, and therefore we should understand how to compute these
vectors. Given [" and V', one can find matrices W/ orthogonally equivalent to W; at the
cost of O(Y 13) operations (it suffices to find the Cholesski decompositions U; = D; D!
and set W/ = D7'V;(D7)~'. Since these matrices are orthogonally equivalent to W;, the
question is reduced to computing norms of W/ and their inverses. To compute a norm
of a symmetric & X & matrix, this is not a problem which can be solved in a finitely
many arithmetic operations, although to solve it to a relative accuracy ¢ it costs no more
than O(4%In(1)) operations. Fortunately, in what follows there is no necessity in exact
knowledge of ratio vectors. What we need is to know the coordinates of the required ratio
vectors within a bounded by an absolute constant absolute accuracy, and this problem can
be solved in O(Y p;3) operations. The simplest way (which results in absolute accuracy
In3) is as follows: after the above matrices W/ and their inverses are computed, we find
3-diagonal orthogonal equivalents to their squares (which can be done at a cubic cost).
Now, the norm of a 3-diagonal symmetric positive semidefinite matrix i1s at least the
largest and at most 3 times the largest diagonal entry of it.

In what follows 7(- : -) denotes the latter "computable approximation” of r(- : -); for
this approximation one has

Ir(Vos ) = 7(Vi s U)] €£1n3, 2=1,...,m. (55)

4.1.2 Prescaling matrices

We will form the matrices B, in a way which ensures their [O(p?), O(p?)]-compatibility
with the matrices F"(y) of the corresponding Newton systems; namely, we are going to
ensure that

-2
E=F'(y)) < B, S81°F'(y). (56)
Q
This relation in our scheme is maintained as {ollows. Let
Yy = (Aly))™". (57)

All our B, will be produced by positive definite matrices V;, € Sy according to the
relation

o e Byho= AT(VyA(h)Vy)). (58)
At the very first Newton step (let yo be the corresponding iterate) we compute Y, and
set V,, = Y,; then we compute B, according to (58), which results in B,y = F"(yo) (see
(21)) and straightforwardly invert the latter matrix. :

Yo

In order to compute B, at the remaining Newton steps we act as follows.

Q]
J



1. We successively compute A(y). Y, and 7#(Y, : V,_), where y_ denotes the preceding
iterate. Then we define V, as

Fi((Yy)i : (V,_):i) < In(3p);

)= e (59)
v (Y,)i. otherwise,

(-); being :-th diagonal block of the corresponding matrix.

2. Now, let k, denote the number of "bad™ ¢’s, i.e.. those for which the second case in
(59) takes place. Then V, differs from V,_ by a block-diagonal symmetric matrix of rank
at most k,u, where, as always, y is the largest of y;. It follows (see Lemma 2.4) that the
matrix B, associated, according to (38). with V| differs from B,_ by a matrix D, of rank
at most s, = kyu(p +1). We represent D, as a sum of s, rank 1 symmetric matrices
(see Sect. 4.2.2 for details) and then add these matrices one by one to B,_ and update
the inverse matrices according to the Sherman-Morrison formula. Thus, (B,, B;') are
computed by s, sequential rank 1 corrections of (B, _, By‘_l)

Lemma 4.1 The above rules for forming prescaling matrices do ensure (56).
Proof. According to (59), (57). (58) and (21). we have
By=va._ Fll(y)):P)/y.

Further, by construction #;((Y,); : (V,);) < In(3p). whence. in view of (53), r;{((Y}): :
(V,)i) £ 1In(9p),i = 1,...,m. From the latter relation and the definition of the ratio vector
it follows immediately that Y, is [9p,9p]-compatible with V. This observation by virtue
of Lemma 2.3 means that B, is [81p%,81p%-compatible with F"(y). as required by (56). =

4.1.3 Prescaled Conjugate Gradients: # of steps

Let us choose K as follows:

K :JSICCG/)QIH(%)L. (60)

Proposition 4.1 The outlined method does solve to the accuracy v all Newton systems
arising at sequential Newton steps and therefore can be regarded as method B, from Propo-
sition 2.1.

Proof. By virtue of Lemma 4.1, at each Newton step the matrix F"(y), y being the cur-
rent iterate, is [81p?, 81p?]-compatible with the matrix B, which prescales the Conjugate
Gradients. It remains to apply Proposition 2.2. »

4.2 Complexity
4.2.1 Key estimate

Recall that updating (B, _. b’y‘_‘) — (B,.B;') is performed via rank 1 corrections and
requires at most s, = p(y + 1)k, of these corrections. k, being the number of "bad” ’s
at the corresponding Newton step (see Sect. 4.1.2).

To evaluate arithmetic cost of the method. the following statement is the key one.
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Proposition 4.2 Let p be chosen according to

In(p) =41In(p,y) + 1, (61)

where py is the (depending on x,¥ only) constant from Proposition 2.1 (ii1).
Then the total amount
§T = Z Sy
v

of rank 1 corrections in course of solving (BSP) admits the following upper bound:

st < O(l)p?’ml/2|/\/t|1/2 (62)
with O(1) depending on &,9 only.
Proof. 1. Let us start with the following

Lemma 4.2 Let y, y, be two neighbouring iterates and let t, t, be the corresponding
values of the penalty. Let also

X o= (A ()7 Xy = (Al=(t4))) 7"

Then
| (Xs: X) [, < O(1) (63)

and consequently

| r( Xy X)), < O(1)m!72, (64)
with O(1) depending on ¥ only.
Proof. Let Z = (X~V/2X, X~1/2)1/2_ From Sect. 4.1.1 we know that
ri( Xy 0 X) = In(max{1.p?}) + In(max{1, ¢7%}), (65)

where p; i1s the maximal, and ¢ is the minimal of the eigenvalues A;;, j = 1,...,p; of
i-th diagonal block of Z. At the same time, from Lemma 2.1 (see (23)) we immediately
conclude that

fj {Z (Viehs; ~ \/?A;j‘)z} < |M|(VT - V)% (66)

i=1 {j=1
where 7 = t/T, 7, = t,/T. Now, since we are speaking about two neighbouring steps. one
has either ¢t = t,, and then (63) is evident, or t, = exp{£d| M| /?}t. t.1, € [T.2T).
whence

.ty €[1,2], |M|(r-14)<0(1) ’ (67)
in this proof all O(1) are positive constants depending on ¥ only). Now, let
I g A

= ALY /4 =1/4 y-1 1/4_-1/4
8;; = max{A; — r'/"r, /,,\ij — Ay,

o
-1



One evidently has 6, > 0 and

(VA — VTAGH)? 2 0(1)8} (68)
(we have taken int account that 7,7, € [1,2], see (67)). Now, let

6, =max{d; | j =1,...,u}.
From (66), (67) and (68) it follows that

62 < o). (69)

On the other hand, we clearly have
pi < TV VAL g gl < p MV s
whence, in view of (67),
pi<1+OMIM|TV2 416, ¢ <1+0)M|TV2 46,
Since evidently In(max{1,a®}) < O(1)(b—1),0 < a <1+ b, b> 0, we conclude that
rE((Xa)i s Xo) S O()(IMI™ + 87)

(see (65)), which combined with (69) results in desired (63); (64) is an immediate corollary
of (63). =
2. Now let us estimate

k=S k.
y

Let the Newton steps be enumerated sequentially, and let y, be the iterate which is
updated at ¢-th step and ¢, be the corresponding value of the parameter. Let us fix
1,1 <12 < m. We say that at ¢-th Newton step an event of type 7 occurs, if

Fi((yyq)i : (V;/q_] )x) Z ln(3p)

(for notation, see (59)).
From (59) it follows that £* is exactly the total number of all events; thus, if £} is the

total number of the events of type ¢, then
k= k. (70)
1=1

It remains to bound from above the quantity A7. Assume that a pair of neighbouring
events of type 7 occurred at Newton steps ¢ and ¢’ > ¢. Let us verify that then

(Yo, )i 1 (Y,)i) 2 In(p). (71)

q

Indeed, in view of our rules for updating B, (see Sect. 4.1.2) we know that
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since at the step g an event of type ¢ occurred, we have (V, ), = (Y, )i
since there were no events of type i at the steps ¢ + 1,...,¢' — 1. we have

(Vo) = (Vo )i
since there was an event of type 7 at the step ¢'. we have F,(();/q:)i :

(Yy,_,)i) > In(3p). whence. in view of (55), (Y, )i - (Yy,,_,)i) > In(p).

Ye'—1

These observations immediately imply (71).

Now, as we already know from Proposition 4.1, our scheme results in a method which
finds v(«,d)-solutions to all Newton systems arising in course of solving (BSP); therefore,
in view of Proposition 2.1 (1i1), we have

pT A2 (1)) < A(yp) < prA(2™ (1))
It follows that. under notation X, = (A(x"(¢,)))~",
PN, S Y, < pi X
In particular.
ril(Xg)i + (Yy)i) € 2In(m), mi((Xg)i = (Yy,)i) < 21In(p).

As we have seen in Sect. 4.1.1. r;(- : -) is a distance on the space of symmetric y; X p;
positive definite matrices: therefore the latter inequalities combined with (71) imply that

ri((Xg)i + (Xg)i) 2 In(pi?p) 2 1.

(the concluding inequality follows from (61)).
Again taking into account that r; is a distance, we come to

> o ril(Xp)i s (Xpor)i) = 1 (72)
p=g+1
It follows immediately that
N
dord(Xy)i t (Xpon)i) > k=1, (73)
p=?

N being the total number of Newton steps. Taking sum of (73) overz = 1,...,m, we come
to

M=

| (X, X |, 2 K7 —m.
2

P
Now, in view of Lemma 4.2 t
1/

O(1)m!/2N = O(1)m!/?| M|

ie left hand side of the latter innequality does not exceed
. and we obtain

k" < O()m' | m M2 | (74)

with O(1) depending on «,? only.
3. To conclude the proof, it remains to note that s™ < p(pu+1)k*, since s, < p(p+1)k,,
see Sect. 4.1.2. w



4.2.2 Efficiency of Karmarkar-type acceleration

Now we are ready to estimate the arithmetic cost of the method based on Karmarkar
acceleration. Of course, we should choose the parameter p according to (61); indeed,
the less is p, the less is the number A" of the Conjugate Gradient steps, so that we are
interested in the smallest p which still allows to bound from above the total amount of
rank 1 corrections required by updating the prescaling matrices. Thus, from now on we
are speaking on the method with p given by (61). Note that under this choice of p every
Newton step requires « 1 steps of the prescaled Conjugate Gradients, see (60).

For the sake of simplicity, in what follows we restrict ourselves to the general ”unstruc-
tured” case (see Sect. 3.2.1); same as in the latter section, we deal with a homogeneous
block-diagonal structure (g; = g, 2 = 1,...,m) and assume that n > pu.

The computational effort in the above method is comprised of

“- |./\/1|1/2 computations of the gradient of the barrier, «~ mnu? operations
per each (see Sect. 3.2.1);

“ |.M|1/2 (totally) steps of the prescaled Conjugate Gradients, with «
mnu? operations per step (see Sect. 3.2.1);

computation of the very first prescaling matrix («~ n?mpu? operations. see
Sect. 3.2.1);

updating the prescaling matrices. As we shall demonstrate in a while, a
natural implementation of the updating rules described in Sect. 4.1.2 takes —
n? operations per each rank 1 correction (plus «~ mu® preprocessing operations
per Newton step; we can forget about the latter quantity, since it is dominated
by the cost of computing gradient, same as by the cost of a single Conjugate
Gradient step). Since the total amount of rank 1 corrections in the method is
< p*m'2|M|** (Proposition 4.2), all prescalings cost < m!/2n?u2|M|"/2.

Thus, the arithmetic cost at which the Karmarkar-accelerated method solves (BSP) is
My, —~ (mnp? + m 220 MM+ ma?)®
operations, while the cost associated with the unaccelerated method is (see Sect. 3.2.1)
Mg 772722;12|.M|1/2.

The acceleration ratio is
Rown"t+m™/2

and for large m we do obtain acceleration.

It remains to verify that rank 1 corrections do cost no more than «~ n? operations per
cach, plus negligible in our considerations preprocessing of «~ mu3 operations per Newton
step. Indeed, to perform updating (B,_. By‘_l) — (B,, B,)™'). we can act as follows (for
notation see Sect. 4.1.2):

1. We may assume that we already know A(y).Y, (these matrices are required by
the expression for [(y)): besides this. we have in our disposal the matrix V,_ formed
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at the previous Newton step. Given Y, and V,_, we compute the (approximate) ratio
vector 7(Y, : V,_), which takes — muS operations (Sect. 4.1.1, Computational Remark);
this vector indicates the "bad” diagonal blocks in V,_, i.e., the blocks which should be
replaced by those of Y, in order to obtain V.

2. We process the "bad” blocks in turn. When processing one of the blocks, everything
evidently goes on as if there were no other diagonal blocks at all, i.e., as in the case of
m = 1. Thus, our local task is as follows: we are given a linear mapping A from R" into
the space S, of i x p symmetric matrices, two positive definite matrices V and Y from
the latter space and a symmetric positive definite matrix B together with its inverse. It
is also known that

B=B"+BY, BYh=A"(WALW),
where B* is certain symmetric positive semidefinite matrix (this matrix comes from the
remaining diagonal blocks of V,_). Our task is to update (B, B~!) into (B, (B’)™"), with

B' = B~ + BY.

To this end let us straightforwardly compute B’ according to the latter relation, which
evidently costs «~ n2u? operations (indeed, to compute the image of a standard basic orth
under BY and BV it takes «~ u3 4+ nu? «~ nu? operations, and we need 2n of these images).
Then let us compute the symmetric matrix D = B’ — B; as we know from Lemma 2.4, D
is a symmetric matrix of rank at most u(u + 1), and we can straightforwardly represent
it as a sum of p{u + 1) rank 1 matrices at the cost «~ u?n? operations. Now we can add
these rank 1 matrices one by one to B and use the Sherman-Morrison formula to update
the corresponding inverses, which takes us « p?n? operations. Thus, we can replace a
single "bad” block (i.e., perform pu(u + 1) rank 1 corrections) in « n?u? operations, as
claimed.

Of course, this way is completely theoretical (rounding errors will for sure make D
a matrix of full rank). In fact there exists a slightly less trivial stable procedure which
performs the required updating at the same cost.

5 Applications to Quadratically Constrained prob-
lems

Consider a convex quadratically constrained quadratic problem (which without loss of
generality can be rewritten to have a linear objective):

(QP): minimize cTa st fitx) <0, 2=1,....m, z2€ R",

where all f; are convex quadratic forms. Assume that the constraints satisfy the Slater
condition, and that the feasible domain G of the problem is bounded. It is well known
([Ja 87, MS 88, NN 88, NN 89]) that under these assumptions (QP) can be solved by a
polynomial time path-following method associated with the barrier

n

b(2) = —Z]n(—fi(.l')). (75)
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To obtain the description of the method, one should simply replace | M| in relation (5)
by m, which results in the rule

J
t,' 1 = eXx —_— t,' (76)
+ PAmi

(of course, the rule for updating penalty at the preliminary stage should be modified in
the same manner) and replace the barrier F' whenever it is met in the description of B
(see Sect. 1.2) by ®. For the resulting method, let it be called B?, there is a convergence
statement completely similar to Theorem 1.1, again with |[M| replaced by m.

What we are interested in now is to understand whether the above strategies can be
used for accelerating B?. It becomes clear immediately that, generally speaking, it is
impossible. Indeed, consider the case when m is large (say, of order of n or more) and the
Hessians of f; are matrices of full rank. It is easily seen that in this case computational
effort in the straightforward implementation of B9 is dominated by the necessity to com-
pute gradients of ®; since, as far as we know, there are no ideas how to avoid necessity
to compute the gradients of the barrier exactly, here we have no hope for acceleration.
Anyhow, there are large scale real world quadratic problems which involve a lot of low
rank quadratic constraints represented as

filz) = :L'TA,-TAix + biT.r + ¢, (77)

with rectangular p; x n matrices A; and p; <« n. Here the effort required by computing
and inverting Hessians of ® may again become the bottleneck, and we might hope to
accelerate the process efficiently. What we are going to do is to study the corresponding
possibilities. To simplify our considerations, let us assume that the ranks of Hessians of
all f; in our problem (QP) do not exceed certain u — 1, and that all constraints f; from
the very beginning are represented according to (77) with p; < p — 1.

Let us start with the following observation. Given a convex quadratic form f with the
Hessian of certain rank g — 1, we always can represent the Lebesque set {z | f(z) < 0}
of the form as the inverse image of the cone of positive semidefinite symmetric g X p
matrices under an appropriately chosen affine mapping a;. Indeed, we can represent our

form as
flz) =2TATAz + b7z + ¢,

A being a (¢ — 1) x n matrix, and define the affine in = ;¢ X g matrix ay(z) as follows:

af(z) = (—bl'ir_c (A;C)T) .

It is easily seen that as(z) is positive semidefimite if and only if f(z) < 0.
Now, given a problem (QP), let us set y; = rank f”+1, M = {y, ..., um } and consider
the affine mapping

Agp: R = Sy Agel(a) = oy (2) b ... D ay, (T),
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so that ay (x) is 7-th diagonal block in Agp().

By construction, Aqp(a) is positive semidefinite if and only if 2 is feasible for (OP),
and the PD problem P,y generated by the mapping Aqp and the objective ¢ is nothing
but our initial problem (QP). Moreover, the barrier F' associated with this PD problem
is exactly the barrier ®. since Det(as(x)) = —f(2).

Thus, we conclude that B9 is nothing but B, with the only (and essential) difference
that now, due to very specific embedding A = Aqp, we may (and, of course, wish) vary
the penalty at a significantlv higher rate (compare (76) and (5)).

In view of the latter conclusion, we may try to apply our acceleration schemes to
the basic path-following method for (QP), keeping in mind that the only element of the
schemes which we should modify is the rule for updating the penalty (our previous rule
should now be replaced by (76)). Our goal in this section is to understand what are the
resulting acceleration ratios.

In view of the above remarks, to obtain results on acceleration of the path-following
method for quadratically constrained problems it suffices to follow step by step the rea-
soning of our previous sections. Not presenting this (mostly quite straightforward) work
in full details, we indicate only the key points and, of course, the final results.

Background. Proposition 2.1 turns out to be still valid (in fact items (i) and (ii) of this
proposition, same as Theorem 1.1, are completely independent of the concrete analytical
structure of the barrier underlyving the path-following method in question; what is crucial
1s self-concordance of the barrier, see Sect. 6. There are also no difficulties with more
specific item (iii) of Proposition 2.1. due to the above representation of (QP) as a PD
problem). Note that this Proposition contains all facts about the path-following scheme
which were used in our reasoning.

Main inequality, i.e. Lemma 2.1. This was the key statement for our reasoning. Since
this is a statement about the path itself. not about the manner in which we increase the
penalty parameter in our method, it remains valid. In fact it can be strengthen:

Lemma 5.1 Lett and t, be two values of the penalty parameter, and let
X = Agp(27(t)). Xy = Agp(27(t4))
be the images in Sy of the corresponding points of the path. Set
7 = (‘¥—1/2‘X'+X'—1/2)l/2'

Then

oot % . (t—t4)
I/t - Viz I, = 1Ml = (78)

morecover, if \;, 1 = 1,...,my are (taken with their multiplicities) those of eigenvalues of

Z which differ from 1, then

< 142 ) (t _t+)2
;( ted — VEATY S_hn——(\/f—k\/t:)"' (79)
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Proof. The only news here is (79). To prove the latter statement, denote by N the
multiplicity of the unit eigenvalue of Z and take into account that :-th diagonal blocks
of X and X, differ from the unit matrix of the corresponding size by matrices of rank at
most 2 (construction of Agp). Consequently, i-th block of Z differs from the unit matrix
by a matrix of rank at most 4, so that N > | M| —4m, which immediately transforms (78)
into (79). =

It is easily seen that whenever earlier we used (23), we would obtain better results if
we could (but we could not) use (79). And now we can do it.

Relations ”rank of a correction in Sy, — rank of the induced correction in
S,”. Besides Lemma 2.1, the basis for our analysis included only the following simple
observation (Lemma 2.4): let U and V' be two positive definite matrices from Sa which
differ by a matrix of certain rank k£, and let the n x n matrices P and Py be defined by
the relations Pyh = A*(UA(R)U), Pvh = A*(VA(h)V). Then P, differs from Py by a
matrix of rank at most (u + 1)k, where, as always, u is the largest of components of the
structure M. We used this statement in two cases: first, when we knew nothing about the
difference U — V, only its rank (this was the case in the Conjugate-Gradient-based part),
and, second, when we knew that U — V is a matrix with a single nonzero diagonal block
(Karmarkar acceleration, the rule for updating prescaling matrices); in this latter case we
used the estimate rank(FPy — Py) < u(u + 1), keeping in mind that rank(U - V) < pu.

Now, the "general” estimate rank(P; — Py) < (¢ + 1)rank(U/ — V') hardly might be
improved even in our current specific situation. This is not the case with its consequence
used in the analysis of the Karmarkar acceleration. Indeed, all blocks of all U and V we
in fact are interested in in this analysis (see Sect. 4.1.2) are inverses to matrices from the
image subspaces of the mappings ay,. By construction, all elements from each of these
subspaces differ from the unit matrix by a matrix of rank at most 2; of course, their
inverses share the latter property and therefore differ from each other by matrices of rank
at most 4. Thus, every "bad”, in terms of Sect. 4.1.2, index ¢ causes not a u(y + 1) rank
1 corrections in the prescaling matrix, but at most 4(x + 1) of these corrections (in fact,
of course, no more than g of them).

Keeping in mind the latter remarks and following the line of argument of the previous
sections, one can easily come to the resluts we are about to present.

5.1 CG-based acceleration

As a result of possibility to use (79) instead of (23), we can ensure the conclusion of
Proposition 2.4 by a better, as compared to (41), choice of the number of steps of the
prescaled Conjugate Gradients:

K = |min{h\, K2}], (80)

with
Ky, =0(1)m?*8*, Nk, = 77762/[’/2. (81)
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where, same as above, all O(1) depend only on the path tolerance and the penalty rate;
the quantity 6,
m 2 <5<, (82)

is responsible for the frequency at which we compute prescaling matrices (recall that we
keep these matrices fixed until the penalty parameter ¢t remains in "current” interval A
of the length oT').

Consequently, we come to the following expression for the arithmetic cost of the CG-
accelerated method associated with 6 satisfying (82):

M, ~(Qe+ Mo)6™" +(Q + M + M + (M + M)K)m'/,
K = m&? min{u!/?, mé?) (83)

(cf. (48)) and for the acceleration ratio associated with the optimal choice of é:

M+ M, 1 .
= Q+ + + —~ +m1n{R1,R2},

Qe+ M. V1
M+ M\ M+ M\
=p | —=] ; Ry=|—2] . (84
Rl ﬂ <QC+M8> ) 2 (Qe+Me> ( )

(cf. (49)). Here Q, M,Q., M, are the same arithmetic costs of the basic Linear Algebra
routines as in Sect. 3.
Now let us look what might be the typical values of the acceleration ration.

5.1.1 General Yunstructured” case

Assume that, when solving (QP), we are given representations (77) of the constraints (i.e.,
the corresponding data A;, b;, ¢;), with g X n matrices A;, ¢ < n, which may be arbitrary
dense matrices of the indicated size. We also assume that we are given (or compute in
advance) the n x n matrices A7 4;. Note that since the feasible domain of the problem is
assumed to be hounded, the total rank of the constraints is at least n:

i< n<mpy.
It is easily seen that in the case in question one has
QM —mnu, Q.—n*(m+n), M,n?

With these dependences, (84) says that the acceleration does occur if, first,

m
R=—"Ft _«1
n(n +m)

(which simply means that the cost of computing gradient of ® should be negligible as
compared to the cost of assembling and inverting the Hessian of @), and, second, if

1 € m,



i.e., when (QP) indeed is a "nontrivial” optimization problem. Now, under these assump-
tions the acceleration ratio is

1 .
R R+ NG + min{R,, R;},

where
R, = 1[1/6R1/3’ R, = Rl/s'

For example, if m = n, u « 1, then the acceleration ratio is «~ n!/3.

5.1.2 Sparse case

Now consider the case when each of the constraints f; depends on u of our n independent
variables (in our previous case f; depended on p linear forms of our control variables).
Now we have

Qo Moemp®, Q. mu®+ n3, M, «n’

Same as above, (84) says that the acceleration does occur when m is large and the cost of
computing gradient of ® is negligible as compared to that one of computing the Hessian

of ®; the latter means that

mu® + n?
muc +n

Under these assumptions the acceleration ratio is

1
R« R+ — + min{ Ry, R},

Jm

where

Rl — [LX/GRI/S, R2 — RI/S‘

Consider as example the single load Truss Topology Design in dual formulation (see
[B-TB 91]). In this problem n is of order of hundreds, m = O(n?) and u is a small
integer, namely, 4. Our relations result here in R - n~1/3, which is not so bad!

5.2 Karmarkar acceleration

Following the line of argument from Sect. 4 (with (23) replaced by (79)) and keeping in
mind the above remark on the number of rank 1 corrections in current prescaling matrix
caused by processing a "bad” i, one can verify that the scheme in question is "compatible”
with our new updating rule (76) for the penalty parameter, i.e., an appropriate choice of
p ~ 1 results in a method which solves all Newton systems to the prescribed accuracy v,
and each system is solved in « 1 steps of Conjugate Gradients. Besides this, the total
amount of rank 1 corrections in course of solving (BSP) 1s < myu. Let us evaluate the
arithmetic cost of solving (BSP) by the accelerated method in the case of "unstructured”
problems (see Sect. 5.1.1). The total computational effort is comprised of
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«~ m'/? computations of the gradient of the barrier. «~ mn g operations per
each (see Sect. 3.1.1):

« m!'/? (totally) steps of the prescaled Conjugate Gradients, with «— mnp
operations per step (see Sect. 5.1.1);

computation of the very first prescaling matrix (v~ n?(m + n) operations,
see Sect. 5.1.1):

updating the prescaling matrices. As we just have indicated, the total
number of rank 1 corrections in course of solving (BSP) is «~ my. Same as in
Sect. 4. it turns out that these updatings cost -~ n? per each rank 1 correction,
up to the cost of computing the matrix Y, and the ratio vector 7(Y,, V,_) (see
Sect. 4.1.2) associated with the Newton step in question. Now, after the
gradient of ® at the current iterate is computed, to compute Y and r it costs
not «~ myu® operations. as in Sect. 4.1.2, but only «~ mu? of them. This
follows from the fact that all diagonal blocks in all our Y’s and V'’s are inverse
to matrices of the form a; (-), and these latter matrices are of size at most
i X p and differ from the unit matrix by a matrix of rank at most 2. Same as
in the PD case. the cost mu? per Newton step can be ignored - it is dominated
by the cost of computing ¢’

Thus, the arithmetic cost at which the Karmarkar-accelerated method solves the QP Basic
Subproblem is
-‘Izsv “ (mnp + 1711/2712“)7711/2 + 712(m + n)

operations, while the cost of the unaccelerated method is (see Sect. 5.1.1)

Mg —~n*(m+ 71)7711/2.

The acceleration ratio is
my m!/?y

+ .
nim 4+ n) m+4n

-

To conclude this section we note that if we were interested in quadratically constrained
quadratic problems only, we could come to the above results independently of any PD

studies. Indeed, we could use the following simple observation which is fact was done in
[NN 89]:

Remark 5.1 Lef ¢.....0,, be concare positive smooth functions on an open convez do-
main Q, and let

Assume that for some positive t and l the following two points are well defined:

r = argmin {tc’ z + B(=) | 2 € Q).
z, = argmin {tyc’ s + ®(2) ] z € Q}.
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Then

(85)

Proof. By assumption, we have

O'f(l'+) —t.ic

olry) T
i(z)
— = {c.

Z oi(x) ¢

Multiplying the first equality by ¢! (v — 24)7T and the second by t~'(z; — z)7 and taking

into account that ¢; are positive and concave on (). we come to

> (‘5"(1’) - Qf('””) < (z—z4)7e

¢1($+)

2t <¢i($+o) (;)@(I)) <(zy—2)Te

adding these two inequalities, we obtain

> (t oi() + t+0f(17f))) < m(t+t,)

oi(ay) oi(a

which clearly is nothing but the desired inequality. m
To obtain the results of this section directly, one could apply (83) to ¢, = —f;, @ =
int G’ and use the resulting inequality instead of (23).

6 Generalizations

To the moment we dealt with a rather specific problems. It is time to ask ourselves whether
there are any possibilities for acceleration of polynomial tiie path-following methods in
the general case”.

Consider a convex programming problem in the so called standard form:

Ty st xed.

P:  minimize c
where G is a closed convex set in R”; it 1s easily seen that every convex problem can be
equivalently rewritten in this form. From now on we assume the feasible set GG of the
problem to be bounded and to possess a nonempty interior. Note that a PD problem is
exactly a standard problem associated with certain specific (70 namely, an inverse umage
of the cone of positive semidefinite symunetric matrices under an affine mapping.

In [NN &R, NN 89. NN 91a] it ix demonstrated that every standard problem can be
solved by a globally linearly converging path-following method associated with a “proper™
barrier for ;. The notion of a "proper™ (= self-concordant) barrier is defined as follows:



Definition 6.1 Let G be a closed conver domain in R™ and F be a C*-smooth convez
function defined on int G and such that F(z) tends to oo along every sequence of points
from int G converging to a boundary point of (. We say that F is self-concordant, if

\D3(z)[h, b, k]| < 2{D*F(z)[h,h]}*?, z€intG, heR"

(D*F(z)[h1, ..., hi] denotes k-th differential of F taken at x along a collection of directions
hiy...,hy). If, in addition,

|DF(z)[h]| < ©Y*{D?F(z)[h,h]}/?, z€intG, heR",
for some constant © > 1, then F is called a O-self-concordant barrier for G.

Let F be a O-self-concordant barrier for G. One can associate with this barrier the basic
path-following method solving problem P; the description of the method looks exactly as
that one for B (see Sect. 1.2) with the only difference that now the quantity | M| in the
rules for updating penalty at the main and preliminary stages should be replaced by O.
As it is shown in the cited papers, this "general” path-following method satisfies certain
general Convergence Theorem (which looks exactly as Theorem 1.1, up to substitution
[M]| — O). In fact all convergence properties of the above path-following methods for
PD and QP are immediate consequences of this general Convergence Theorem: it is easily
seen that the PD-barrier (2) is a |M]-self-concordant barrier for the feasible domain of
P..m, while the QP-barrier (75) is an m-self-concordant barrier for the feasible domain
of (QP).

Now, we may ask ourselves whether it is possible to accelerate the path-following
method associated with a "general” self-concordant barrier in the same manner as it was
done in the cases of PD and QP. First of all, we should understand whether it is possible
to use approximate Newton directions instead of exact ones. The same general theory
developed in [NN 89, NN 91a] says that it is possible: items (i) and (ii) of Proposition 2.1
in fact are completely independent of the particular analytical structure of barriers (2),
(75); these statements are valid for the path-following method associated with an arbitrary
self-concordant barrier. This is not the case with item (iii) of the latter proposition. but
this item was used in the Karmarkar acceleration scheme only, and this latter scheme
in any case could hardly be useful for acceleration of "general” path-following methods.
Indeed, the Karmarkar acceleration is based on the fact that the "essential rank” of the
difference between the Hessians occuring at a neighbouring pair of Newton steps (i.e., the
dimension of the subspace where the Rayleigh ratio of the corresponding quadratic forms
is greater than, say, 1.1) is a small fraction of the dimension of the control vector; this
fact heavily depends on the analytical structure of the PD-barrier and. as it can be easily
demonstrated, fails to be true for an arbitrary self-concordant barrier.

Thus, we might hope on CG-based acceleration only. The first feeling is that it also
cannot help: our results on CG-based acceleration heavily depend on the "main inequal-
ity” (23), and it, of course, is related to the specific analytical structure of the PD-barrier
(2). Nevertheless, let us look how did we use this inequality. Recall that all we need is
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to understand how "far” could be the Hessian F"(y) occurring at a Newton step associ-
ated with certain value t of the penalty from the prescaling matrix, which is the Hessian
F"(z(T)) corresponding to the first Newton step from the same segment of Newton steps
(so that we know in advance that T and ¢ are not too far from each other: |t/T. —1] < 6,6
being the parameter of our acceleration scheme). Now, what does it mean ”far”, or, better
to ask, "not far” for us? It means that the Rayleigh ratio (AT F"(y,)h)/(RT F"(y)R) is at
least something not too small and that there is a subspace of not too large codimension
where this ratio is not too large. Now, to evaluate this "distance”, we used the "main
ineaquality”, and it told us (see Proposition 2.4) that

(a) the Rayleigh ratio is always within the bounds [po=2(p; )2, po*(p})?],
with pp being some constant depending on the path tolerance and the penalty
rate only and p; «~ |M] &%, and therefore prescaled Conjugate Gradients for
sure find v-solution to the Newton system in question in K; « (|M|6?)? steps
(see Proposition 2.4);

(b) for any p > 8 there is a subspace of codimension at most 2k(p)
p~ ! max; p; | M| 8% where the Rayleigh ratio is less than po2p?; consequently,
the desired v-solution to the Newton system in question can be found in K, «

(max; u;)1/? | M| 62 steps of the prescaled Conjugate Gradients.

Of course, we have no hope to prove something like (b) for a path-following method
associated with a general self-concordant barrier. Surprisingly, (a) turns out to be a
completely general fact:

Proposition 6.1 Let G be a closed and bounded convex domain in R™, F be a O-self-
concordant barrier for G and c be a nonzero n-dimensional vector. These data define the

path
z"(t) = argmin {—tc"z + F(z) | z €intG}, t>0.

There exists an absolute constant p such that for any t,T, 0 < t < T, the following
inequality holds:

(14o(E-ver s E1r0)) Pia) 2 Prary 2

I ]

2
F"(2(t)). (86)

This proposition is proved in Appendix.

Combining the latter statement with Proposition 2.2 and items (i) and (ii) of Propo-
sition 2.1 (as it was already indicated, these items are valid for a path-following method
associated with an arbitrary self-concordant barrier), we come to the following statement

Proposition 6.2 Let F be a O-self-concordant barrvier for the feasible set G of problem
P, and let G be bounded with a nonempty interior. Assume that problem P is solved by the



CG-accelerated path-following method associated with the barrier F. and let the number
K of steps of the prescaled Conjugate Gradients be chosen according to

K = O(1)(06&%)%.

where 6, ©~Y% < § < 1. is the parameter of the CG-based acceleration scheme and
O(1) is an appropriately chosen constant (which depends only on the path tolerance
and the penalty rate ¥ used in the method). Then the method does find v(k,V)-solutions
to all Newton sustems arising in course of solving the Basic Subproblem (BSP) and,
consequently. finds an s-solution to P in no more than

1
0(1)0'?1n (—)
e
Newton steps of the preliminary and the main stages, v being the asymmetry coefficient
of G with respect to the starting point w (see Theorem 1.1), with O(1) dependng on «,9
only.

We immediately conclude that the acceleration ratio associated with the optimal § is as
follows:

Q+ M+ M, 1
TTo.10 /B
- (M + Me)”ﬂ
Q. + M, ’
here Q, M, Q.. M, are our basic computational characteristics, see Sect. 3.1.
Looking at this expression, we see that the acceleration does occur (i.e., R <« 1), if
the following two assumptions hold: first. @ is large (i.e., P is a "nontrivial” optimization

problem), and, second. the cost @, of assembling and inverting F” dominates significantly
all other basic computational characteristics of the problem.

+R11

7 Concluding Remarks

The results of previous scctions demonstrate that there are theoretical possibilities to
accelerate the interior point path-following method for optimization over the cone of pos-
itive semidefinite matrices: similar possibilities. under appropriate relations between the
sizes of the problem, exist also in quadratically constrained quadratic programming and
even in the case of a path-following method associated with an arbitrary self-concordant
barrier. These are theoretical possibilities: what about practical advantages of the above
acceleration schemes? The very first feeling is that these schemes from practical viewpoint
look not too attractive. First, the effect of acceleration is not so large (we save 1/3 or at
most 1/2 in order of dependence on one of the sizes of the problem); note that in practical
range of values of the sizes this effect is at least comparable with absolute constant fac-
tors which occur in our analysis. Of course, more careful analysis allows to reduce these
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constants by order of magnitudes; but even then a practically oriented researcher might
be dissapointed by things like a priori chosen number of steps of the Conjugate Gradi-
ents and the frequency for restoring the prescaling matrices in the CG-based acceleration
scheme, same as by a priori fixed "compatibility levels” in the Karmarkar acceleration.
Even with extremely carefully estimated constants, theoretical recommendations are al-
ways based on the worst-case analysis, and therefore computational procedures governed
by too rigid theoretical recommendations usually are not very effective. Another, more
specific source of objections could be the well-known practical instability of Conjugate
Gradients as applied to ill-conditioned linear systems (so that in practice Conjugate Gra-
dients hardly will "kill” A largest eigenvalues of matrix W (see (18)), as it should be
according to Proposition 2.2).

We think, anyhow, that there is a possibility for very natural "practical” implemen-
tation of the CG-based acceleration. Let us fix in advance a "small” number k (what is a
"small” k, it will be explained later) and act as follows. We move along the path according
to our basic scheme and at each Newton step allow the Conjugate Gradients (prescaled by
certain current matrix H) to perform at most k steps. If we are successful (i.e., manage
to find a "high accuracy” solution to the current Newton svstem), then we update the
iterate and do not vary the prescaling matrix: if we fail to solve the Newton system in k
steps, we compute and invert the Hessian of the barrier at the current iterate and take
it as our new prescaling matrix (we could also use the karmarkar rank 1 corrections to
restore "proper compatibility” of the prescaling matrix and the current Hessian of the
barrier).

If we choose k according to Proposition 2.4. this scheme would in fact be nothing but
our CG-based acceleration, but this would again be the choice based on the worst-case
theoretical analysis, and we would like to get free of the "worst case™ recommendations:
k should, of course, be chosen in such a way that the arithmetic cost of & steps of the
Conjugate Gradients would be a small fraction (say, 10%) of the computational effort
required by assembling and inverting the Hessian. If it is the case. than we for sure
do not loose much: not more than 10% of total computational effort even in the most
unpleasant case when Conjugate Gradients fail at every step. But - and this is a good
news — in the case of PD problems, and consequently in the case of LP and QP problems
- this unpleasant situation is "almost impossible”. Let us indicate exactly what i1s meant.
Consider the Newton step where Conjugate Gradients fail (and therefore the prescaling
matrix at this step is set to F”(y). y being the current iterate). How long will this matrix
"survive”? The answer is as follows. Let G, = G N (y+ (y — G)) be the largest symmetric
with respect to y subset of the feasible domain, and let G, , =y +a(G, —y). 0 <a < 1.
be the set which is obtained by (1/a)-times shrinking G, to y. An extremely simple
observation is that in G, the Hessian [”(x) is compatible with F”(y) within the factor
(I —a)~ 2%

PEG,, = (1+a7Fy) < F'2) < (1 —a) 2 F"(y). (87)

Indeed, let & € Gyq. and let h = o~ — y). Since A(y) £ Ah = A(y £ h) is positive
semidefinite (recall that we are speaking about a PD problem P, 4). we conclude that
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the matrices Y = A(y), X = A(z) are such that Y £ o~(Y — X) > 0, whence X >
(1—a)Y, X <(1+0)Y. In view of Lemma 2.3 the latter inequalities immediately imply
(87).
In view of (87) while current iterates do not leave G, current Hessians are [(1 +
a)?, (1 — a)"%]-compatible with F’(y), and Proposition 2.2 says that if
LYo (88)

- 14

k>

then then the Conjugate Gradients are successful (recall that one can take Cog = 1),
In other words, for given k the Conjugate Gradients successfully follow the path until
it leaves "a-neighbourhood” of y, a being the largest real satisfying (88). For example,
let v+ = 1072, which is more than enough for "reasonable” x and ¥, and let & = 30
(which does result in at most 10% ”risk” in, say, dense PD problems with more than
1,000 variables). Then «a is 0.59, so that the Conjugate Gradients are successful while
the path remains in 60%-neighbourhood of the iterate y where we compute and invert F"
(we mean the neighbourhood in the symmetrized domain G,); while following the path in
this neighbourhood, we pay per each Newton step at most 10% of the price corresponding
to the basic path-following method, and the segment of the path followed in this manner
looks "large”.

In concern with the latter "self-tuning” CG-based scheme one might ask a reasonable
question: how could we understand whether the Conjugate Gradients with %k steps are
successful or not: given the result found by the method after k steps, we, generally
speaking, do not know whether it is a desired v-solution to the Newton system. There
could be at least two ways to reslove this difficulty. First, we could simply define the
largest o such that the current iterate y, belongs to G,, (this is a one-dimensional
problem: we should find the points where the line passing through y and y, intersects the
boundary of G); if this a does not satisfy (88), then it is time to update the prescaling
matrix; this is the strategy where we are governed not by successses or failures of CG, but
by the behaviour of the path itself. Second, we could choose very small v, say, v = 1071¢,
and ask the Conjugate Gradients to solve the system up to a relative residual at most v: if
they are unable to do it in k steps, we update the prescaling matrix. Note that in actual
computations even "exact” Newton step results in the same level of accuracy, so that the
quality of the CG-based following the path will be the same as when "exact” Newton
steps are performed. On the other hand, from (88) it is seen that 100-step Conjugate
Gradients do solve Newton systems to the accuracy 1076 while current iterate is in G,
with o = 0.45. Note that for problems with thousands of variables a hundred of CG steps
is nothing as compared to the cost of assemling and inverting F".

Of course, the above reasoning is based on the theoretical rate of convergence of the
Conjugate Gradients; it is known that this method is rather sensitive to rounding errors.
much more than the "non-iterative” Linear Algebra routines like Cholesski factorization.
So, may we trust in the above reasoning? The answer seems to be positive. Indeed, when
working within G, , with a not too close to 1, we apply the Conjugate Gradients to well-
conditioned problems (for o = 0.59 the condition number of the prescaled system is less
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than 16; for o = 0.45 it is less than 7), and there is no reason for instability of the CG.
It seems that the above "self-tuning™ CG-based implementation of the PD path-following
method possesses certain practical potential.
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8 Appendix A. Proof of Proposition 2.2

First note that optimal solutions to (17) (z*) and to (18) ((*) are related as z* = U~V2(*,
It follows that if = = U~Y2(, then (z — z")TV(z — z*) = (¢ = (T(WU-YVVU-YV3)(¢ -
("), so that z is a v-solution to (17) if and only if ¢ is a v-solution to (18). Now, the
prescaled Conjugate Gradient method for (17) "in (-variables”, by construction, is the
usual Conjugate Gradient method for (18). Thus, we should prove that the indicated in
Proposition 2.2 number of steps is sufficient for the usual CG to find a v-solution to (18).

In view of Remark 2.1 under assumptions of the proposition in question the matrix
W involved into system (18) possesses the following property:

(P): W is a positive definite symmetric matrix with no eigenvalues less
than p;! and at most k of eigenvalues greater than p,.

Let ¢(¢) = (¢ — ¢*)TW(( — (), so that the accuracy of a vector ( regarded as an approxi-

mate solution to (18) is y/<(¢)/<(0). Thus, all we need is to demonstrate that if ¢, is s-th
approximate solution to (18) found by the Conjugate Gradients, then the ratio

£(¢)/<(0)

is at most v2, provided that s is the quantity announced in Proposition 2.2.
[t 1s well-known that (; can be defined as follows:

Cs = ps(‘/‘/)ﬂﬁ (89)
where p, is an optimal solution to the problem
minimize =(p(W)3) s.t. p € Ps, (90)

P, being the space of all polynomials of degrees < s — 1 (the only polynomial of negative
degree is = 0).

Now, let A be the spectrum of W. let (y, A € A, be orthoprojections of the solution
¢ to (18) onto the spectral subspaces of W and let wy = ¢7(y. One clearly has

p(W)3 Z M1 = Ap(XA))2w,,
A€A
= dwy. (91)
AEA

Now, let T,(t) = ch(qch™'(t)) be ¢-th Tschebyshev polynomial, and let A = (i, pe). We

set
_pupe +1 =2t

PiPr -1
0,(0) = T,(7(t)),
0y(t) = I1,(¢)/11,(0)
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m(t) = o,(t) J] (1 —1t/X).

A€A\A

Since in view of (P) at most k points of A are outside A, 7, is a polynomial of degree at
most k + ¢; by construction, 7,(0) = 1, so that

T (1) =1 = th,(t), 1, € Pork.

Now, when t varies in A, the ratio 7(¢) varies in [—1,1], and therefore the first of two
factors comprising 7, i.e., the polynomial @,(t), in its absolute value is at most 1/II,(0);
since in view of (P) all points in A\A are to the right of A, the second of the factors
comprising 7, is bounded in absolute value by 1. t € A. Thus, |r,(t)] < 1/I1,(0),t € A.
When t € A\A, 7,(t) = 0 by construction. Thus,

1 —ty,(t)] < 1/11,(0), te A
for some polynomials ¥, € Pyir, ¢ = 0,1, ..., whence, in view of (89), (90), (91),
e(Cryq) < (I1,(0))7%2(0), ¢=1,2....

Now the conclusion of Proposition 2.2 can be obtained by straightforward estimating from

below the quantity
I,(0) = ch (q ch~! <ﬁ‘ﬂl)) .
pipr — 1

9 Appendix B. Behaviour of Hessians along the Path

Let G be a closed and bounded convex domain in R", let F' be a ©O-self-concordant barrier
for G and let ¢ be a nonzero linear functional on R". Consider the path

z(t) = argmin {F(z) — tcT2 | ¢ € int G}, t >0, (92)

which is well-defined and twice continuously differentiable on the whole R, = {t > 0}
(the proof of the latter statement, same as of all other facts from the theory of self-
concordant functions which we use below, can be found in [NN 89, NN 91a)).

Our goal is to establish the following

Theorem 9.1 The second-order derivative of the barrier do not vary too fast along the
path, namely, for certain absolute constant o and for any pair of t. T. 0 < t < T, one has

{1+e(E-nevs(- 1)’2@)}2 F'(x(t) 2 F"(2(T)) 2

> {1 +0 ((% —1)0'* 4 (Z:- - 1)2e>}_2 F'(x(1)). (93)
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Proof. It is more convenient to deal with the Legendre transformation of F, i.e., with
the function
®(s) = max{s'z — F(2) | € int G},

which, as it is known from the general theory of self-concordant functions, is a self-
concordant function on R™ and is such that

sTP"(s)s <O, seR" (94)

The transformation £ — F’(z) maps z(t) onto the point tc, so that the image of the path
is simply the ray
v = {tc| t >0}

in R™, and, of course,
F'(x(t)) = (2"(tc))™

We see that to prove (93) is the same as to prove that for certain absolute constant ¢ and
all t,T, 0 <t < T, one has

{1 + 0 ((:: 1)0'/2 4+ )} "(te) > ®"(Tc) >
T -2
> {140 ((7 - 1)@‘/2 (7 -10)} o) (95)
1. Notation. Let us fix ¢t,T, 0 <t < T, and let

a=T[t-1. (96)

Let us provide R™ with the Euclidean structure

(s',8") = ()T @"(te)s"; (97)
the corresponding Euclidean norm will be denoted by |- |. Now, let e be the unit vector
collinear to ¢. We set

s(r)=re, r€R, (98)

and denote by Q(r) the Hessian matrix of ® taken with respect to our Euclidean structure
at the point s(r). We also set

f(r) = ®(s(r)), (99)
so that
f'(r) =

|
—
O
—~
~
~——
o
e
—

= 72 $T(r)8"(s(r))s(r) < Or~% 7 >0 (100)

(see (94)).
Last, let o > 0 be defined by the requirement s(o) = tc. so that

tc=s(o), Tc=s(0"), o =(1+a)o. (101)



Note that in view of choice of our Euclidean structure we have
Qo) = 1, (102)

and what we should prove is that for an appropriate absolute constant p the following
matrix inequality holds:

(1+ o(a0'? 4 02@))2 I>Q(e") > (1+ o(a®'? + oﬂe))‘2 1. (103)

Note that in view of (102), (100) and since |e| = 1 (definition of e) we have
f'lo) =1, (104)

whence, by (100),
o < 0V2 (105)

In what follows p; denote appropriate absolute constants.
A. It may happen that
a’c? < 1/4. (106)

Since, by construction,
a’0? = (tc — Te)T®"(tc)(tc — Te),

in the case of (106) from basic inequalities on local behaviour of the second-order derivative
of a self-concordant function it follows immediately that

(1 — a0)’Q(0) < Q(d') < (1 — ao)~2Q(0). (107)

Since o < OY2 (see (105)), (107) means that in the case under consideration (103) is true,
provided that ¢ > g,.
Thus, from now on we restrict ourselves to the case when

ola® > 1/4. (108)

B. Let us start with proving that for certain absolute constant g, one has

Q(a') > (1 4 2020%0) 1. (109)

Let
B =1/(20), o"=0-po, q:a;ﬂ, (110)
S = s(o) (=tc), S =s(o')(=Tc), S"=s(a"), (111)

and let h be an arbitrary vector from R". Since ® is convex, we have
D(S") + g{®(S + h) - D(5")} < Y(S" + ¢(S +h —5")) = ®(S" + qh),

B(S") + ¢{®(S — h) — B(5")} < B(S" + (S — h — S")) = B(S5" — qh),
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whence

O(S"+ gh) + B(S' = gh) = 20(S') 2 2{-50(5") - 8(5) + L (5)) +
+2 '; T (8(5 + h) + &(S — h) - 20(5)},

or, which is the same,

®(S' + gh) + B(S' — gh) — 28(5") > 2{—§f(a"> — f(o") +
+“,,—:*3'5{<1>(5 +h)+0(5 - k) —28(S)}, (112)
Lemma 9.1 There exists § € [0”.0'] such that
O " 1 O + "8
36"+ flo') ==

Proof. We have 0’ = 0 — Jo. 0’ =0 + ao. Let g(r) = f(o(1 +7)),—8 <r < @, and let
p(r) = g(r) — ¢(0) — ¢’(0)r. Then the left hand side of (113) equals to

fo) = ala + B)o’ f'(6)/2. (113)

3
Lla) = So=3) + gla) - TTE0(0) = Sp(=B8) + pla) =
a 3 a a a r
= /p )dr — %/ (=r)dr = /p'(r)dr —/p’(—gr)dr = /dr{ / p"(&)d¢}.
0 0 0 0 0 _B,

<@

We immediately conclude that if m i1s the minimal, and M is the maximal value of f” on
[¢”, ¢'], or. which is the same. o?m is the minimal, and 02M is the maximal value of p”
on [—8,a], then the left hand side of (113) is between L[o?Z7?] = ma(a + §)0?/2 and
L{o?Yr? = Ma(a + 3)0?/2. which immediately implies (113)

Lemma 9.2 For all p > o0 —1/2 one has
f'(r) < 160(0 +1)72 (114)

Proof. Assume, first. that ¢ — 1/2 < r < o + 1/2. The function f is self-concordant
on the whole axis and f”(o) = 1 (see (104)). and basic results on local behaviour of the
second order derivative of a self-concordant function imply that f”(r) < 4 < 160/(c+1)?
(we have taken into account (105)). Now.if r > o4 1/2, then (see (100)) f"(r) < ©/r? <
40/(20 + 1)2. .

Combining (114) (note that by construction ¢” = ¢ — 1/2) and (113), we can rewrite
(112) as

B(S' + gh) + B(S' — gh) — 20(5") > —16ala + B)O(a/(o + 1)) +

“;”{@(.5‘+/z,)+<1>(5'—h)—2<1>(S)}, (115)
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Now, assume that h in (115) is subject to the restriction
Al 2 15 (116)

then, in view of the origin of our Euclidean structure and basic properties of self-concordant
functions,

O(S 4+ h)+O(S — h)—20(S) > (4]h] = 1)/6 > 2(|h| = 1)/3 (117)
so that for h satisfying (116) relation (115) results in

B(S' 4+ qh) + (S — gh) — 20(S") > —16a(a +3)0(a/ (o + 1)) + ga 5

(IRl =1). (118)

Given an arbitrary unit vector w, let us choose ¢t from the requirement that

2048

2a(a+ B)O(c/(c+ 1 )(—3 3 (t—1),
so that
t =1+ 48a30(c/(c + 1)), (119)
and let us substitute into (118) & = tw. We obtain
O(S' + gtw) + B(S' — gtw) — 20(S’) > 16a(a + 3)O(a/(a + 1))% (120)

Let
Q= Qw) = wl®"(S")u;

then either

2,2 ¢

¢t" > 1/32, (121)
or

1?0 < 1/32. (122)

Let us prove that in fact (122) is impossible. Indeed. assume that it is the case. Then
the left hand side of (120), in view of basic results on local behaviour of self-concordant
functions, does not exceed 82t%q* < 1/4, so that (120) transforms into

(ac)(ao + Bo)(O/(0 +1)%) < 1/64. (123)

1) and ac > 1/2
3) is impossible.

But ©/(c + 1) > ©/(202 4+ 2) > 1/4 (in view of (105) and since © >
(see (108)), so that the left hand side of (123) is at least 1/16. and (123
Thus, (122) is impossible and (121) is the case. Therefore

Q> q7 732 = B a+ 8) {1 +48a30(a /(0 + 1))*}7?/32. (124)

Now, ac > 1/2. 30 = 1/) and, as we already have mentioned, ©/(o +1)? > 1/4, whence
{1 +48aﬂ@ /(o + 1))} < 01a80(c/(c + 1))?%, and (124) implies that

Q> {o2(a + FaO(a /(0 + 1))} 7% (125)
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We have

g

o+1 E o+1 ao

(a+5)a®(a/<o+l))2=02@{( >2<1+/’>}=a29{< 1+ )} <200

(we have taken into account (108)), whence
Q> {20:0°0}77 > {1 4 202070} 72
Thus, for any unit vector w we have
Qw) = wT (S = (Q(o)w,w) > {1 + 20,070},

as required in (109).
C. It remains to prove that for certain absolute constant g; one has

Q(c') < (1 + 2p3a%0)1. (126)

Let
B =1/(20), ¢"=0c"+ fBo, q:a;ﬂ’ (127)
S=s(o)(=te), S =s(d)(=Tc), S"=s(c"), (128)

and let h be an arbitrary vector from R™. Since ¢ is convex, we have
(S") + ¢{@(S" + k) — ®(S")} < (5" + q(§' + h = §")) = ®(S + qh),

O(5”) + q{®(5" — h) — B(5")} < &(5" + (5" = h = 5)) = B(S — ¢h),

whence

O(S + qh) + B(S — qh) - 29(S) > 2{_%4,(5/,) _a(5)4° ; 3

+2 ; 'B'{é(s’ +h) + ®(S — k) —20(5")},

d(S")} +

or, which is the same,

B(S + gh) + (S ~ gh) — 20(5) 2 2~ 110" ~ (o) + 22 110"} +
+2 ; B{@(S’ +h)+@(S — h)—20(S))},  (129)
Lemma 9.3 There ezists 0 € [o,0"] such that
CHE" 4 5(0) = 2L (") = ata + 810 0) 2 (130)



Proof. We have 0" = o0+ (a+f)o,0' = o+ ao. Let g(r) = f(o(1+a+r)),—a < r < B,
and let p(r) = g(r) — g(0) — ¢’(0)r. Then the left hand side of (130) equals to

Ligl = S9(8) + g(—a) — Z22g(0) = %p(ﬂ) +p(—a) =

B

|0

o B

= —/p'(—r)dr +%/p’(r)d1‘ = —/ap’(—r)dr +/ap'(§r)dr = ]dr{7rp"(x)dx}.

We immediately conclude that if m is the minimal, and M is the maximal value of f” on
[¢,0"], or, which is the same, o%m is the minimal, and ¢?M is the maximal value of p”
on [—a, ], then the left hand side of (130) is between L{o?Zr?] = ma(a + B8)0?/2 and
L[o”—;r] = Ma(a + ($)o?/2, which immediately implies (130). =

Combining (114) and (130), (129), we come to

(S + qh) + (S — qgh) — 28(S) > —16a(a + B)O(c /(o + l))2 +

+G+B{<I>(S’+h.)+<b(5’—h)—2‘1’(5')}a (131)

Now, assume that & in (115) is subject to the restriction
m(h) = (Qo")h, h)? > 1; (132)
then, in view of basic properties of self-concordant functions,
O(S"+h)+ (S = h)—28(S") > (47(h) —1)/6 > 2(x(h) —1)/3 (133)

so that for h satisfying (132) relation (131) results in

O(S +qh)+ ®(S — qh) —20(S) > —16a(a+B)O(c/(c + 1)) + % 2 ; B(W(h) —1). (134)
Given an arbitrary vector w with 7(w) = 1, let us choose ¢ from the requirement that
s2a(a+ fo(o/io+ 1) = 2222 - 1),
so that
=1+ 48a80(c/(c + 1)), (135)

and let us substitute into (134) h = tw. We obtain
(S + gtw) + B(S — qtw) — 28(S) > 16a(a + B)O(c /(0 + 1))% (136)

Let
Q= Quw) = w  ¢"(S5)w;

then either
¢*t*Q > 1/32, (137)
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or ’
10 < 1/32. (138)

Let us prove that in fact (138) is impossible. Indeed, assume that it is the case. Then
the left hand side of (136), in view of basic results on local behaviour of self-concordant
functions, does not exceed 8Qt2g% < 1/4, so that (136) transforms into

(ac)(ao + Bo)(O/(0 +1)?) < 1/64. | (139)
But ©/(c +1)* > ©/(20% + 2) > 1/4 (in view of (105) and since © > 1) and ac > 1/2
(see (108)), so that the left hand side of (139) is at least 1/16, and (139) is impossible.
Thus, (138) is impossible and (137) is the case. Therefore
Q> q¢7%t7%/32 = B%a + B)7*{1 + 48aB0(a /(o + 1))?} ?/32. (140)
Now, ac > 1/2, 30 = 1/2 and, as we already have mentioned, ©/(c + 1)* > 1/4, whence
{1+ 48aB0(c/(c + 1))’} < p03a809(c /(0 + 1))?

and (140) implies that

Q2 {esla + Bad(o/(o+ 1)} (141)
We have
(a + 3)a®(a/(c + 1)) = o*0 {(ai )2(1 + g)} =

1
1

= 2@{ 7y _}<22
a (0+1)(1+2a0) < 2a°0

(we have taken into account (108)). whence
0 > {20070} 7% > {1 + 2030’0} 2.
Thus, for any vector w with (Q(o')w.w) =1 we have
Qw) = wT(I)"(.S')w = (w.w) > {1+ 29302@}_2,

and (126) follows. =
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