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Résumé

On considére des réseaux de Jackson finis, fermés, avec N noeuds
1,..., N et M clients. Nous obtenons les asymptotiques de la fonction
de partition et des fonctions de corrélation, lorsque M — oo, N —
o0, % — A > 0. Nous obtenons les conditions pour lesquelles les
tailles moyennes des files sont finies. Nous trouvons aussi les conditions
pour qu’il existe au moins un noeud dont la file ne soit pas bornée

(phénomenes de condensation, embouteillages de circulation, et.c.).
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Condensation In Large Closed Jackson
Networks

V.Malyshev * A. Yakovlev !
February 12, 1993

Abstract

We consider finite closed Jackson networks with N nodes 1,..., N
and M customers. We get the asymptotics of the partition function
and of correlation functions when M — oo, N — oo, % - A > 0.
We get conditions when mean queue lengths are finite and when there
exists a node where the mean queue length tends to infinity under the

above limit {condensation phenomena, traffic jams).

*Postal address: I.N.R.I.A.- Domaine de Voluceau- Rocquencourt-B.P.105-78153, Le
Chesnay Cedex,France

tPostal address: Université d’Orléans, Département de Mathématiques et
d’Informatique, U.F.R. Faculté des Sciences, B.P. 6759, 45067 ORLEANS Cedex 2, France



1 Introduction.

We consider finite closed Jackson networks Jy with N nodes (1,...,N), M =
My customers, exponential service rates u; x at the nodes ¢ and the transition
probability (routing) matrix Py defining a finite Markov chain. The latter is
assumed to be irreducible (consisting of one class of essential states, with no
inessential states) aperiodic. Let py = (p1,n, ..., pN,N) be the positive vector
(unique up to a positive factor) satisfying the following equality:

pn Py = pN (1)

Let {r;n}Y, be defined by r; y = Cﬁ, where C is chosen so that
maxr; y = 1. (2)

Note that the right hand sides of equations (3) and (4) below do not
depend on the choice of C.
The partition function for Jx is defined as

N
Ix =Zyn = Z Hrf‘,)\,, n2>0,2=1,...,N

ny+na+..+ny=Mi=1

Denote £ » the random number of customers at node i. Then, as it is
well known (e.g. [1]),

N
Hl TiN
1=
Pux{&in =n, 68 =ngy . Enn =N} = ,
ZMN
0<n;, <M1=1,...,N (3)
and the mean number of customers at the node 3
: 3‘9ZM,N
’ ri,N
TIZ,'JV = TTI.,‘,M‘N = E{,”N = (4)
ZMmN

The goal of the paper is threefold :



Firstly, we study the asymptotics of the partition function when M — oo,
N = oo, % — A > 0. The useful remark is that although a large Jackson
network strongly resembles an ideal gas (canonical ensemble) in statistical
mechanics, the crucial difference between the two is that Jackson networks
can be extremely inhomogeneous in the properties of the particles which
build up the system. This together with other pecularities can give rise to
features in the mere definition of the thermodynamic limit. To study the
limit behaviour we have to assume something about the families {Jn}%_, of
finite closed Jackson networks. The weakest assumption could be made in
terms of the distribution of r; y in the segment [0, 1] of the real axis R.

For any Borel set A we define the measure In(A) = ,—t,-ﬂ(i :riNn € A).

Throughout this paper we will suppose that the following assumption
holds true:

Assumption W,

As N — oo the measures Iy converge weakly to a (probability) measure

I on [0,1].

To study the limiting distribution of the queue at a node or of the corre-
lation functions we will also suppose that r; y for the nodes in consideration
have limits as N — oo: r; := lim r; n.

Nooo

The assumptions above concern the properties of solutions of the systems
of linear equations (1) and are related to the network topology (see section
6 for the discussion).

Under these assumptions we get the condition for the mean lengths of
queues at all nodes to be uniformly bounded (Theorem 1). In this case we
get the limiting distribution for the sequence of closed Jackson network in
equilibrium. It is of course the product of geometrical distributions.

We study the asymptotics in question by means of the integral represen-
tations of the partition function of the network, and of its derivatives. We
apply to those integrals the techniques of the “saddle-point” method ([2]).
The necessary knowledge of the theory of functions of a complex variable can
be found, for example, in ([3]).

Secondly, we show (Theorem 2) that the conditions of Theorem 1
are not only sufficient but also necessary. Otherwise for the node with the
maximal load the mean queue length tends to infinity. This is a traffic jam
phenomenon. It resembles the Bose condensation phenomenon in quantum

[SV]



statistical physics: particles condense in the minimal energy state. This
phenomenon is governed by a density parameter, denoted by A, we find the
critical value A, of this parameter. This gives us the means to change u; v
to avoid traffic jams.

The rate of divergence of queue lengths can be quite arbitrary, since it
depends on the way the measures Iy and the values of r; y converge. In
Theorem 3 we provide an example where the mean queue length diverges
linearly with N.

Our third goal is to give some useful techniques for fast numerical com-
putation for closed product form networks with large number of nodes (see
[4] about this problem). The main difficulty here is to compute Zp n, while
we are providing the asymptotic formula for it. _

Various asymptotics for certain type of closed networks, posessing a prod-
uct form solution, and consisting of fixed finite number of queuing nodes, a
fixed number of processor-sharing CPUs and a finite number of classes of jobs,
and for large populations, were studied in the series of papers ([5],[6],[7]). In
thas case the load distribution in the system was in fact fixed throughout
the limit transition.

We hope that our results can be extended to more general product form
networks ( BCMP etc.) Our results give an easy way to avoid traffic jams
by appropriately choosing service rates u;.

2 Main results.

Let us put ey = % - 1.

Denote for 2 € C\[1, +o0)

1
h(z) :=! 7 _rzrdl(r) (5)
{ N
Sn(z):= —/\(l—i-éN)lnz—-N-Zln(l —zTiN) (6)
=1
1
S(z) = —Alnz — /ln(l — zr)dI(r) (7)



It is obvious that h(z) is strictly monotone on [0,1). We will denote
Aer 1= zl_Ll}]- h(z). A

Remark 1. Note that if d/(r) is absolutely continuous with a smooth
density f(r), then A, < oo if, e.g. f(1) =0.

Remark 2. The case when A, = 0 is, of course, possible. Then for any
A > 0 we observe the overflow behaviour in the system, but we do not study
it in this paper. In the sequel, we will assume that

A >0

The main results of the paper are the following theorems.

Theorem 1. Let A < A... Then

. 1 1
(2) Zn ~ —————==—crp(NSn(z0n)), N — 00
2 NS (20) 20

and the asymptotics of the free energy

1
FN = Nln ZN ~ S(zo).

(22) m; Ny are uniformly bounded in N and ¢,
i.e. there exists some constant @), that m;y < Q, N >1, 1 <: < N.

(222) if there exist r; = A}im rin, 1 <1 < K for some K, K >0, then
S0

Vg, ng,...,nx >0
K
Pv{& =n,& =ng,.... 6k =ni} — H(l — zo7;)(20m:)™, N — o0
i=0
(this is, of course, true for any finite set of nodes, but we choose the

“first” ones for the sake of simplicity of notations)

4



o7

(zv)  if for some 1 Ir; = A}l_l}lo riN, then m; y — g N — oo
where

Pn{A} is the probability of an event A in the N-th network Jn, z¢ is the
root of the equation

d05(z) A
—0eh(z)=2
5, = 0®h(z) =7,
such that 0 < zg < 1 and zg n is the least root of the equation
dSNn(z2)
8z 0

Theorem 2. Let A > A, and let :(N) be such that ryyn = 1.
Then MiN),N — 00, N - oco.

We also provide a particular example of overflow behaviour.

Theorem 3. Let forall Nryy =land iy < B< 1,1 # 1, A > A,
and in some neighbourhood to the left of B %(-}l exists, d—{}rﬂ > L for some
L,L>0.

Then

(0) Ay < 0
If A > A, then:

N
(i) Zn ~ 1 ,and myy ~—=NS'(1), N = o0
iz L= TN
. } B
where in fact S(z) = —Alnz — [In(1 — 2r)dI(r), and hence its domain of
0

definition comprises a neighbourhood of z = 1.

(22) m; n are uniformly bounded in N and 1,2 <1 < N,

)



T

(122) if for some z, 1 > 2 3r; = A}im ri N, then m; y — ,N = 00
—00

-1

If A < A, then asymptotics of Theorem 1 hold true.

3 Auxiliary results.

Note that r; #0,2 =1,..., N.
Lemma 1. For any NN > 1, any j,1 < j < N Pyn{é # 0} >

Pu{¢; # 0}
Proof. We will prove that Pryyi{¢; = 0} < Pm{& = 0}. Without loss

of generality we will assume j = 1.

Denote
R
zZkPf= Y I, L<R K>0n>0,L<i<R
R k=L
Z =K
=L
Then
vl
PM{EI = 0} = Zl’N
M
Let N = 2. In this case we have simple explicit formula:
1
PM{EI = 0} =M
> ()
ny=0

and this probability decreases with M.
Let N > 2 and assume by induction in N that for all M, M =0,1,2,...

2,N-1 2,N-1
Z}\’l'f'l Z/W

ILN-1 LN_1
Z.'\'I+l Z)\l

(8)



But we have

1\1 172,N-1 M ~2,N-1 2,N-1 2,N 2,N-1
ZA1+1= +Z +TNZ1 +"'+ZM+1 =TNZM +ZM+1

M+l 1,N- l M 71,N=-1 IL.N-1 _ 1,N 1,N-1
Zpi = Z" T AN LT e+ 2y = rndy + 2y

and then the condition

ZM+1 < ZlN, M>0
ZM+1 M

is equivalent to the condition

2,N-1
_
PM+1,N-1 = Zl,N_l
M+1
2,N 2,N-1 -1 2,N—1 2,N-1
zyy Mz M 7 .+ 24

Z}lv,lN_ leNl Mllel+ +Z1Nl’

20 (9)

But due to (8) ZFN™' > Z2N i Nvo, 0 < L < M, ie. the fraction
of the corresponding terms in the nominator and the denominator in (9) is
greater than par41,n-1, hence the whole fraction is also greater than paryy n-1,
i.e. the inequality in (9) holds. m

Lemma 2. Forany M,\M > 0,any NN >1,73,1 <3< N
M;M,N

Proof. For M = 0 or N = 1 the inequality is trivial. Let M > 0 and
N > 1.

Note that

m; M+1,N >

Pru{& =16 #0} = Pu{;=1-1}, 1<I<M+1 (10)
Indeed, for [,1 << M +1

Pl =10¢
Prs{& = U # 0} = M+Pf\f+1{f‘r;éo};é . -

',:]2

Prpi{€ =1} nitoany=M+1,n =l 20, 18N i=1

Prp{€ #0} b -

-]



N n;
L _ Puf§=1-1}

.
J
ni4..4nny=M, n,=l-1, n; >0, 1<k<N i=1
b* !

b

M+41
where b and b are some constants, but Y, Py {& = (& # 0} =1,
=1

hence b* = 1 and (10) is true.

Now we can write:
M+1
mimaN= 3 IPup{é=1}=
=1
M+1

Prryi{& # 0} Y IPua{& = U|€; # 0} =
=1

M
Prrs{& # 03D (1 + 1)Pu{& = 1} = Py {&; # 0} (mjmn + 1) (11)
=0

As N and j are fixed, let’s denote mp := mjm n and Py := Py {&; # 0}.
From (11) we can then see that the condition mps4y > mys is equivalent

to p
M+1

my < ——— ‘ 12

T~ Puo, (12)

Let’s check (12) for M = 1. Indeed, m; = P, and l—f’zfg > P> P =m,,

where the second inequality is due to Lemma 1.
Let {(12) holds for M, M > 1. Then
_ Pum+1 _
myer = Pyyi(mp +1) < Pup(r——5—+1) =
1 — Pyy

Phl+l PM+2

1= Pyyr 1= Puyya

where the latest inequality is again due to Lemma 1. Therefore, (12)
holds for M’ = M + 1, too. m

For every fixed N we consider the grand partition function

o]

= Z ZMZM,N =

=n(2):
M=0



S Y Iav=3 ¥ M

M=0 n+nz+.. =M i=1 =0n;+nz2+..4ny=Mi=1
N N 1
> JIzrin)™ =] ———,when |z| < 1 (13)
NN, NN t=1 i=1 L—zryn

In accordance with the Cauchy formula on residues Zy ny = ﬁ f %ﬁzdz,

Y
where v is a circle of radius less than 1 around the point z =0, i.e

1 1
MmN = / dz
MN= 55 ] ZM+% H 1 —2zrin
Note that the integrand is a meromorphic function with poles z; 5y =
>1,i1=1,...,N.
Y+ N
Hence.
1 1
Zy = 9—/: p(NSn(z))dz (14)
2mi )
- l Iy N 1
7'1',]\4'—‘&—5’_2 ,;’ 2w f l—zr; N sz(l"'!N)'*l '.I:Il l—zr; n dz
m; N = e = —
: ZN Zn
e [ e exp(NSy(2)ds
. 15
o (15)
For the joint distributions we have
r;“Nr;,zN' 7‘I\KNZK K
M—Z n,,N
PJ\'{é-l :7111622712!"'361\' :Tl]\"} = =1
Zn
where
N

N _ n,
Zpn = > II v
nppr1+npg2+. . Fny=Li=k+1

We can again consider the characteristic function of the sequence:

N

L et —\ 1
{Z{,,/V}Lzo : N Z LZLN - H 1_—’|Z| <1

i=K+1 + T 2TiN



Again, we can derive, that

1 1 1
ZIIJ{.N:Q'/ L+1.H .dz
ad

Therefore,

Pn{&i =n,6a=ny, ..., ¢k = nk} =
rINTO N - TRy / 1 1’_V[ 1

; - —_—dz =
Amiln J ZM—Z.I;INH'X k41 1 —zrin “
K
1 1 DU —emlenm)™ 1
e z =
Zn 2mi J M+l k41 1 — 2TiN
K
1 1 'H1(1 —zriN)(zri N)™
— [ = NS d 16
prT / - exp(NS(2))dz (16)
Lemma 3. All roots of the equation
dSn(z)
=0 17
0z (17)
are real and positive. The least of the roots zg n < 1.
Proof.
Rewriting (17) we obtain:
OSN(z) /\(1 +CN) 1 Ts N
0= =— -y — 18
0z z +N,-§1—zri,1v (18)

Let = = rexp(i¢),r > 0. Then for the imaginary part of (18) we get the
necessary condition:

A(l + en) ersin¢

=0
: 2
— 2r; N7 COS @ + ¥ N1

1N
sin ¢ + N ; 7
which cannot hold true if sin¢ # 0. Hence, the roots of (18) are real.

But both terms of the sum in (18) become positive if z < 0, which proves
that the roots are positive.

10



Let’s now look how %—aNz(ﬂ behaves when z lies on the positive part of the
real axis.
.y . . as
At the critical points (the simple poles of —a"z(ﬂ) z = 0,-1- L

PrN’T T PN N
there are vertical asymptotes for a—s—g’—zm,z € R,. Its number is greater by 1
than the number of different {r; v}, = 1,..., N. In the intervals between
any neighbouring asymptotes the expression in (18) is strictly monotone as
all its addends are strictly monotone, and it has limits of different signs when
z approaches the bounds of an interval. Hence, the derivative has only one
zero in any of these intervals. It is easy to see that it has no zeroes to the
right of these intervals.
Let us denote 2o the least of the roots of (17). Then obviously 0 <
zon <1 dueto (2). m

Lemma 4. For any fixed A, A > 0 there exists ]\}im 20,N =: 29 = 20(A) >
—00

0. It has the following properties:
(2) If A < A, then zo() is the root of the equation

29(A) is strictly monotone and 0 < zp(A) < 1.
(12) lim =zo(A) = 1.
A \ep—
(122) If A > A, then 20 = 1.
Proof. a) A < A,. Note that zh(z) is strictly monotone on [0,1).

Since A < lil}l h(z) = 1_1’r1n zh(z), the equation (19) obviously has a unique
21— 71—

solution zg = 29(A) € (0,1), strictly monotone in A. Hence, there exists
lim zg(A). It is easy to see that it equals 1.
/\—iz\o—

Let us show that lim zon = 2.
N-oo

For any N let gn(2) := 85—3"2(51, it is a monotonically increasing (see (18))
continuous function on (0,1); g(2) := h(z)—% is also a monotonically increas-
ing function on the same set of z, and Vz,z € (0,1) gn(z) — g(2), N — oo.

Take any small interval around zo: (29 — €,20 + €). Then g(z) will be
separated from zero at the end points of that interval, and will have different
signs. But for NV large gnv(z) will have the same signs at the respective points.
Hence, the interval will contain 2 v.

b) Let A > Ao

11



It is obvious that 11m sup zo.n <1 (since zon < , 1<

'N

<N
For arbitrary € > 0 sufﬁc1ent1y small ¢g(1 —¢) < llm g9(z) < 0. For N
<1-

sufficiently large, gn(1 — €) will also be negative for 2, 0 <z €, i.e.

~0,N€(1_6 ].)

Lemma 5. ReSn(rexp(i¢)) monotonically decreases when ¢ € (0,7)
and monotonically increases when ¢ € (w,27), r > 0.
Proof. Indeed,

1 N 1

exp(N ReSn(z)) = IZIN/\(I-HN) H 1 — 2r; N

(20)

The first factor in the r.h. side of (20) has constant value on the curve
rexp(i¢). Let dy(¢) = |1 —rrinexp(id)]>. Then dy(¢) = 2rr;nsing,
so the denominators in (20) increase when 0 < ¢ < 7 and decrease when
T<¢<2r. m

4 Proof. The Regular Case.

We will prove first a slightly more general theorem, from which Theorem 1
will follow.

In the sequel, we shall denote by U(v) := {2 € C: |z — v| < d}.

Let v = {z € C: |z]| = 2o(N)}.

Theorem 4. Assume

I) A< Aers

IT) f(8,z),0 € © is a family of functions, holomorphic in the ring {z €
C : 20(A) — 0o < |2| < z0(A) + g9} for some a¢ > 0, and uniformly bounded
in that ring, and such that for a given ¢ sufficiently small, ¢ > O there exists
such o,,0, > 0, that lﬂi—l - 1| < € z € Uy, (20), 8 € O for some constant

Ju
fue R fu #0.
Then there exists such N, that for any NNN > N, § € ©

()m/f(() Jezp(NSn(2))dz =



SHI S —=—=exp(NSn(20n))(1 + (n), (v € R, |(n] < 25¢
v/ 2m NS"(20)

Proof. Essentially, we will apply to the integral along v the techniques
of the "saddle point” method. But the way Sny(z) depends on N produces
certain specific features in the application of this method, and we were not
able to find a suitable result in the literature.

Proposition 1. For any o,0 > 0, there exists such N’ : for any N, N >
Nl Ug(ZO_N) C UQU(ZO).

Proof obviously follows from the convergence of zo n to 2o (see Lemma
4).

Lemma 6. For any given ¢, ¢ > 0 sufficiently small and any given 0,0, >
0 there exist such N’ and o,, o, > o, > 0 that the following seven properties
hold true for N > N’, and for = € U, (zo,n), where applicable:

a) Sy(z) can be expanded into a power series in U, (2zon):

2
Sw(z) = Swizow) + Z2N) g0 0 (1 + Ron(2))
where
2 Syl(z st
Ran(z) = = (2 — zon) =2 (_ ,O’N) + (2 — 20,1\/)2N—('Zoi\l-2 + ...
O \1(30‘}\’) 3! 4!
b) Sy(zon) > F for some constant F, F > 0;
c) 35:51,(:0) —-1ll<¢g
Sn(z)
d) [Ryn(2)] < €
e) (= = zon) Ry (2)] < 6
. ImR, N(2) -
f) ’a.lcta.n 1+Re§:~(z) T

g) son t 0, < 29+ 00,208 — 0 > T

Proof. We can prove separately each of the properties a)-g), with appro-

. vt pt . .
priate N ,..., N and o,,...,0,. Then by choosing o, = min(o,,...,0,) and

N’ = max(N_,..., N;) we will ensure that they hold true simultaneously.
To ensure a) in U,,(20,n) it is sufficient to require that 0 < o, < l—;—’“,
for A < A, implies zg < 1. Then any Sny(z) can be expanded into the power

series when z € U, (20.n) :

13



(2 — ZoN) SN(ZON)-i-( 32.0N) S;\I;(zON)'*'

Sn(z) = Sn(zoN) + 51

all S (20,8) € R, S§(2) = (=1)"(n— 112N 4 (o 1)1t S E—
=1

Remark. It is easy to see, that there exists such N,, that 2oy € Usza(20)

for N > N, and the above expansions become valid in Usa (zo)

Note that
wakﬁﬂwa=

y/_—L—am (21)

S(")(z) =(-1)*(n - 1)!% + (

uniformly on every compact outside [1, +00), and hence for z U%a( 29).

Hence,
Yn3 lim 5"5\7)(20';\/) = S (2)
N-ooc
and
5 (z0) >0 (219

This obviously implies b).
Using uniform convergence of Sy (z) in Uzn(ZQ) N — oo and of (21')

S (z
can choose g, to be small enough, so that % — 1’ 5, 2 € Uis.(20).
From Proposition 1 it follows that there exists N, such that c) is also true

: |SN(Z)| <M,z = Zo,N +

if N> N
From (21) it follows that 3N, IM, M > 0
, (),
pexp(ip),d € [0,27), for some small u, N > N,. Then "—gAL(;‘O—N) < ;‘A—z Let
|z — zonv] £ 0 < p. Then
S//I
N(3' )(: - 30,N)3 +..4<
A{( _~0N) + (;’—-Zo_N)4 + )< MU_3 1
p pil-=




and

MU

3 l——

) — 0,0 =0
Sl

This entails that in the expansion

2
S(z) = Sw(zom) + 228 (20 )1+ Ron(2))

we have

|[Ron(2)] = 0if |2 — 208 = 0 (22)

uniformly for all N > N, which yields d).

To ensure €) we can just evaluate:

(= — zon) Ron(2)] =

"

2 Sn(zon) | 2 S (z0.N)
z — 2z _— 2(z — z — ... <
ISN 20N \ ( o) 3! +2( o) 4! * -
)A/[ o 3 '
s (~+ ~) +...),]z2—2n| <o <pu,N>N,
|5N 20N|/\2( ( ) (/\) - o] g ’

and by choosing appropriate N, > N, and appropriate small o, we can
provide e).

Property f) follows from d), with some oy, N}.

It is obvious that the property g) can be easily satisfied too, with some

’

g, N,.

g
So Lemma 5 is proved.

Now we proceed to the proof of the theorem. From now on, we shall refer
to the properties formulated in Lemma 5 simply by a)-g), the conditions of
Lemma 5 evidently following from the conditions of the theorem.

First, we deform the integration contour 5 into the new integration con-
tour yn, depending on N, in the following way. There are two level curves of
the function ImSn(z), which pass through zo nv: ImSn(z) = ImSn(zen) =



0. We choose the one orthogonal to the real axis of the z-plane. As the only
finite singularity points of Sn(z) are 0, —*~,1 < ¢ < N, this level curve goes

out of U,(zon), crossing its boundary at two points, symmetrical with re-
spect to the real axis. We denote the intersection of this curve with Uy (2o,n)
by vs.n, and by z; n, 22, v we denote the ends of 4, n. Then we connect z; y
and zon by an arc with the center at z = 0, which is located outside of
U,(zon), thus obtaining the integration curve qx. Since qy lies inside of the
domain of analiticity of the integrands by g) and by the conditions of the
theorem, it would give the same integral values as those counted along «.

Now we will evaluate the integral along the part of yn outside of U, (zon).
But z; 5 — zon = oexp(io;), 7 = 1,2 and Im((z; — zon)*(1 + Ran(z;))) =
0, 7 = 1,2, which yields tan(2¢,) = lfn—}%% From b) and (22) and
f) we can derive that 3C, C > 0 such that VNN > N’ ReSn(zjn) <
ReSn(zon)—C, 7=1,2.

If we ta.l\e into account the uniform boundedness of {f(0,z)},.o, we can
obtain:

] ' exp(NSn(20.n))
5= [ 10.2)eap(NSu(2))dz| < G oo O (23)

YN \'70,N

for some C > 0,G >0 and any N > N/, 6 € O.

Now we proceed to evaluation of the main part (along v, n) of the integral.

Let us introduce

¥n(z) = (2 — 20.N) \/SN (20,n) \/1 + Ry n(2), 2 € Uy, (20,n),

where the positive branch of the square root is used. It is obvious that

Un(zon) = /Sn(20n) and that —ipn(2) € R,z € yon.
From d) it follows that ¥n(z) in U,(zo n) has only one zero at zo n, and
that # f %ﬁ%d., =1, where v, = {2 : z = zon + Fexp(i¢),0 < ¢ < 27}
Let 5 = inf |¥n(z)|. Note that § > 0 due to ¢). And let

I -z N |=15 N>N'

mf ,sup{o’ : o'exp(id) € P5'(Us(0)),0 < ¢ < 27}) Note also

¢7>0

o = min(%,

that o > 0.
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Then for any 2’ € Uy(zon) )

2," f mdz = 1, which, due to the
Argument Principle, implies that there are no other points z” € U,(zo,n)

Yn(z") = ¥n(2').

Hence, ¥n(z) performs analytical isomorphism of U,(20,n), N > N’ into
some neighbourhood of zero.

Put 2 = Y5 (w), w € YN (Us(20n))
Then

1 w? dw
61'}7( 20N f '(/)N )C:Bp( ) _ — _
o wN({N) 2 '/’N('l/)Nl(w))
2
.)iefvp(NSN(zo,N)) / _ Nu® | f(6, 2n(u))du

exp(
m

— i (Yo, ) > Vi(an(u)

where w = iu and zy(u) := ¥§'(iu). Note again that u € R.
L TR~ (on (w)
But o0 = 7= Gy 708
EalEN Sylzo N1+ R2 n{zn(u))+ R, y(zn(v)]

From c).d),e) together with the condition II) of the theorem it follows,
that  [eexltl)l — Lo (1 4 ¢ v(u)), G n(u) € C, |G (w)] < 10¢, iu €

Un(an(u)) /5" (20)
Yn(Us(zon)), 6 € O (as € is small).

So, for N > N', 8 € O

/ e.rp(—Nu2 f(8,zn(u))

)= du =
2
YN (vo.N) IpN(zN(u))
| et (14 G, G € €, ol <15
Trp u 2,N)sC2,N s IG2,N €
=Y N (Yo, N) 2 5" (ZO)

But —iw}v(zj,N) = (Zj'N - zo_N)\/S;(zo’N)\/l + RQ'N(ijN), ] = 1,2, and
due to ¢), d) and f), for small € and for N > N’

0 2
5 S (Zo) <

Yn(z;N)
;

< 20 S"(Zo), ] = 1,2
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and therefore

N~}

Nu? Nu? Nu?
exp(— 2u Jdu < / exp(— 2u )du < / exp(— 2u )du
-0 YN g, N) -2¢D

where D = /5"(20).
But both of the bounding integrals above ~ ,/zﬁ", N — o0, hence there
exists N’ N” > N’ such that for any NN > N”

Nu? [2m ) .
/ exp(— 5 ydu = TV’(I +GN)LGNER, (Gl <e, N>N

4

~1Yn{(Vo.N)

and therefore

_Nu? f(8,zn(u)) L
/ expl 2 d)}v(zN(u))dl B

~1Yn{vo.N)

27 —t g - o i " |
VN ,f (1 4+Can),Gan €C, ICan]| <20, N> N €0
N \J8"(z0)

From this estimate together with (23) it follows that the integrals along
Y~ \7o,n are exponentially small w.r.t. those along v, v, i.e. Theorem 4 is
proved. m

Now we will prove the statements of Theorem 1.

By letting f(0,2) = f(z) = 1. fu = ;‘5 we can see that for any small
€, € > 0 we can find such small o, 0, > 0, that the condition 1I) of Theorem
4 is satisfied.

Therefore, for any ¢ sufficiently small, e > 0 dN, : VN, N > N,

1 1 " . . -
Zn =~ — exp( N Sx(08)) (L + Cv), [N | < 256, N > N,

2 NS" () %0



which means that the statement (i) of Theorem 1 holds true.

To prove (it) we fix some small ¢,¢ > 0 and assume f(0,z) = é+l_;029, 6 €
0 =[0,1], A>0, fu=%.Then Ajou—’zl—l=52‘1+l—z_%%. By letting o, = §

and A = (11_-6;3§ we can ensure the condition II) of Theorem 4.

Then we obtain that 3N.: VN, N> N, € O

1 A 0
ari | G + 7)o (NSn(2))dz =
vy

! ﬁexp(NSN(zovN))(l +(n), (v € R, |(nv] < 25¢

\/2m N S"(20) %0

le.
o [ 25 exp(NSn(z))dz
‘Y —
A+ Zn =

1 %exp(NSN(ZO,N))

A v/ 2rNS" (20)
Zn

(l+(n), N>N, 60€0

Applying the statement (z) to the r.h. side of this equality, we can obtain
that 3N, : YVN,N > N,

= .{ %5 exp(NSn(z))dz

Aa = A1 + () [¢v] < 30
ZN
But
2 | fin(z) exp(NSn(2))dz
. fd Y
miN VAY,
where f; n(2) = 1:;rN~

Since r; v € [0,1], A+ fin(z) pertains to our family of {f(8, 2)},ce With
0 = ri n, and the above evaluation implies the following evaluation:

|min| < 304, N> N,, 1 <i<N

Hence, the statement (:7) is also proved.
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To prove (iv) we can assume for some fixed ¢

f(8,2) = f(N,2) = — | f, = 2

1 — ZT,"N 1 — 20T

Then for any ¢, € > 0 sufficiently small we can obviously find such N?
and such o,, o, > 0, that for ® = {N?, N® +1,...} the condition II) of
Theorem 4 is satisfied.

Then we obtain:

0Zn ] 1
()7‘{,1\" 1 — oty 27TNS“(20) exp( N(zO,N))( (N)

I(nv] < 25¢, N > max(NCO,N()

GZM
Applying (7), we can see, that —'—— = 1oy N = 00, And as rin —
ri, N — 0o, we obtain in a st1a1ghtfo1ward manner the wanted result.

The statement (227) can obviously be proved in exactly the same manner.

5 Proof. The Condensation Case.

Proof of Theorem 2.

Note that by Lemma 4 the value z° (/\) is strictly and infinitely in-
creasing when A 7 ... Hence, for any m,m > 0 we can choose such
A = M(m) < Ay, that l—f";%\% =m+ 1.

Note, that instead of tracking the varying index i(NV) of the node, where
riN).~ = 1, we can assume, without loss of generality, that i(N) = 1, i.e
r1.~ = 1. Indeed, the value of the expression for m; y does not depend on 1z,
but only on the value of r; y.

With M'(N) = [NN] ([...] denotes the integer part of (...)) the as-

sumptions of Theorem 1 hold true, and therefore exists N' : VN > N’
29 (N

My MI(N)N 2 T_“OZOL(/\)T) -1l=m
But % —= A > A, > XN, hence AN” : YN, N > N’ M(N) = NA(1 +
en) > M'(N). Therefore, by Lemma 2, VNN > max(N',N") m;y =

My M(N).N 2 T AN > T
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As m is arbitrary, Theorem 2 is proved. =

Proof of Theorem 3.

It is easy to see that under the assumptions of the theorem the measure
I{r) will be concentrated on the segment [0, B], and h(z) will have finite limit
at the point 1 because B < 1. Thus, (0) holds true.

The case of A < A, was treated in Theorem 1.

Proceeding to the case of A > A.., we can note that under the assumptions
of the theorem it represents just one of the possibilities for the general case
of zp = L. which appears to be more difficult to study, than the regular one,
due to unknown rate of convergence of the network parameters. But in this
particular situation we can try to evaluate the integral for Zy by taking into
account the residue at z = 1, the new integration curve crossing the real axis
to the right of that point. Indeed, the equation (19) is not satisfied with
2 <1if A > A,.and 1 is separated from other singularity points.

Let us rewrite:

1 1 . 1 1 1 .
Zn = 7o —exp(.NSx(2))dz = 3 / S1o zeacp(NSN(z))dz (24)
A ¥
where N
- , 1
Syv(z)= -1 +6N)lnz—NZIn(1 — 2TiN) (25)
=2

Let z; x5 be the leftmost point, where

95%(2)

0z =

Note that Vn S;](")(:) o

Oz

B
(=Alnz— [In(1 —2r)dI(r)), N = oo uni-
0

formly on every compact set outside [é, +00).

It is clear that exists \}im z1n =: 21 2 1. But z; is a root of the equation:
N =00

l —zr

B
A
~S+ [Tl =0
< 0

.)1

<



Suppose that z; = 25 = 1. Then 0 = z_lirqr)x_ 5*(z) < 25901_ S'(z) <0 -

contradiction. Hence,
21> 20,5%(21) < §*(20), S* (20) < 0 (26)

Note also that z; < & since the measure [(r) density is positive near B.
Now we divide the integral for Zy into a couple of them:

1 1 1 1 1 1
In=—— [ = NS} d -—,/-
N 2miJ z1 —z2ry czp(NSy(2))dz + 2me J 21—z
5! ! 'y;:l

exp(NSy(z))dz

(27)
where 4’ is a small circle around zp = 1, and vy embraces 0 and zp and
goes through z; n.
The second integral can be evaluated in the same way as in Theorem 1,
and we have:

1 1 1 const
I - *{> > o~ *(= 7
i) 1= exp(NSx(2))d= 7N exp(NS}(z1n))y N > 00 (28)

N
The first term, due to the residue formula, yields:

1 1 1

2miJ 21— z2r,
,YI

exp(NSi())dz = exp(NSi () (29)

From (26) it follows that the r.h. in (28) is exponentially small with
respect to (29), and the asymptotics for Zy is therefore proved.

Let : = 1. We will differentiate the representation (27), taking into
account (29):

dZy 0 L1 1 1 2z 1 .
or, Brlemp(NSN(rl )+ 2m / zl—2zr 1l —2r exp(NSi(2))dz (30)
TN

The second integral can be again evaluated as in Theorem 1, and it is

equivalent to % exp(NSy(z1.n)).

o~
o



The first term of (30) yields:

) ~ E(—S'(l))exp(NS;,(U), N = oo

1
™ (B

9 .
seap(NS(

The second term of (30) is again exponentially small w.r.t. the first one,
and therefore

(&)

3Zn

T '
my N = .IZE:l ~—-NS§(1), N > o0

Hence, the statement (z) of the theorem is proved.

Recall that

. 1 1 . )
ZN=6$P(NSN(1))+%[;1_zemp(NSN(z))dé (31)
In
Ifi:#1
= © A o1 7 ~(2))d
orin eTp(NSN(l))l —TiN * 2mJ 21—zl —2rn exp( NSy (2))dz
IN
(32)

By the reasoning, analogous to that of the proof of Theorem 1, it can
be shown that the ratio of the second term in (32) and the second term in
(31) is uniformly bounded when N — oo, 0 < r; y < B. Since the second
term in (31) is exponentially small w.r.t. the first one, we can see, firstly,

24
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riN . . ..
that m; y = 7 Y. are uniformly bounded in ¢,7 > 1 and N, and, secondly,
that m; y — T, N > oo,if yn—=r,, N=oo, 1>1.

Therefore, Theorem 3 is completely proved. m

6 Remarks and examples.

The natural question arises: which measures Iy are possible? First, give
trivial remarks:

1. For any Jn, Pnv we can choose p;(N) so that multiplication on y;(V)
gives any Iy we like; so any limiting measure can apear on [0, 1].
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2. Even if p;(N) are fixed, e.g. pu;(N) = 1, then for any positive vector
pn there exists a stochastic routing matrix Py such that py Py = pn holds.
It is sufficient to define

Pij.N= N' ,i,jzl,...,N
2 PkN
k=1

3. We can get the same results as in 2. even for much more restricted
class of topologies and interactions. An example for the circle topology is:
Lemma 7. Let N be odd and the vector py be given such that

PN SpaNn S .S pNN S 201N,

then there exists a stochastic routing matrix Py satisfying py Py = px and
also:

(1) pizv = 0 for all z;

(ii) pijNn = 0if [t — 7] > L(mod N).

We skip the proof.

4. If there exists a symmetry group Gy acting transitively and one-to-one
on Jy so that

Pi; = Pg(i)a(5)
for all 1 <i,5 < N and g € Gy then all p are equal and Iy is the point

measure at 1. Examples: lattice on the torus with translation invariant
probabilities, completely symmetric networks.

At the end we indicate one problem. It could be natural to define an
"infinite” closed Jackson network in the following way. Let us take a count-
able Markov chain L with the state space S and transition probabilities p;;.
For any finite A C S define the finite Markov chain S by truncating the
stochastic matrix in some way, e.g. put

[),‘j, Z,]GA,Z#]

A _ . .

Pi; =\ pi+ X pijy, t=17
JES\A

And suppose that for any ¢« € S the service rate y; is given. Then we
define a closed Jackson network J, with routing probabilities pf‘j, rates u;

and M, = [A]A]).

24
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One of the questions is what limiting measures I can appear for various
sequences

AMCAC...CANC...
such that I/\N| =N, UAN = S.
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