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State-space representation of rational matrices
in Vlab

Ramine Nikoukhah and Frangois Delebecque

Abstract State-space descriptions have been proven to be effective means for manipulat-
ing proper rational matrices. In many systems and control applications, however, rational
matrices representing system transfer functions are not necessarily proper. ¥lab uses a
state-space description for both proper and improper rational matrices. In this report, we
describe this state-space description and the corresponding basic algebraic manipulations.

Représentation d’état des matrices rationelles
dans Vlab

Résumé La manipulation de matrices de fractions rationelles peut s’effectuer de maniére
efficace en utilisant leur représentation sous forme de variables d’état. Dans les applica-
tions pratiques cependant, on rencontre souvent des probléemes conduisant & des matrices
rationelles non nécessairement propres. On décrit ici la représentation en variables d’état
pour les matrices rationelles non propres qui est implémentée dans ¥lab ainsi que les
" principaux algorithmes permettant leur manipulation.



1 Introduction

The facilities for manipulating rational matrices (transfer functions) are the most basic
elements of every scientific software package designed for systems, control or signal pro-
cessing applications. It has been known for many years now that basic operations such as
concatenation, addition, multiplication, inversion and linear fractional transformations on
system transfer functions are much more easier to implement in state-space domain. That
is because there exist explicit expressions for the state-space description of the results of
these basic operations in terms of the state-space descriptions of their arguments, guar-
antying “generic” minimality (for example, the order of the state-space description of a
product of two state-space descriptions should be equal to or less than the sum of orders
of the two state-space descriptions).

State-space descriptions, however, can only realize proper transfer functions (i.e. ratio-
nal matrices bounded at infinity) and, in many applications, improper transfer functions
need to be considered. In this paper, we develop algorithms for performing basic alge-
braic operations on state-space descriptions of general (polynomial or rational) transfer
functions.

There are two ways of representing improper systems in state-space form: one is using
descriptor systems [5], i.e., coding the improper transfer function X(s) into (E, A, B, C)
such that

£(s) = C(sE - A)7'B,

and second, using state-space descriptions (A, B,C, D) allowing D to be a polynomial
matrix [4, 11], i.e.,
E(s) = C(sI — A)"'B + D(s).

We will refer to this latter description as the polynomial state-space description (PSSD)
to insist on the polynomial nature of the D matrix. -

There has been considerable amount of research on descriptor systems in the past (for
a survey see [6]). Descriptor systems are very important because they come up naturally
in the time-domain formulation of physical systems [10, 2]; the descriptor nature being
due to algebraic constraints that often exist in complex models. As a mean of representing
improper transfer functions, however, descriptor systems have not been very successful.

In the descriptor formulation of improper systems the polynomial part of the transfer
function is coded into a backward nilpotent subsystem which is put in parallel with the
standard realization of the proper part (see [10, 7] for realization algorithms). There are a
number of difficulties with this formulation. First, the size of the system is larger than the
PSSD since all the infinite modes (polynomial part) are coded into the system matrices.
Second, this formulation puts together finite and infinite modes which can cause numerical
difficulties (in some cases, it is difficult to distinguish a large mode from an infinite mode).
To illustrate this point, consider the following (minimal) realization of the polynomial s:

E:(S _01),A=((1) 2),3:(?),0:(1 0).

Suppose that due to change of basis and inevitable numerical round-off errors, the matrix
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E is perturbed as follows:

e=(5 )

The perturbed transfer function is (1_—"?:75 which for ¢ # 0 is a proper system and, in many

ways, very different from s. This type of perturbation does not affect so drastically the

finite modes of the system. For example ;%, after perturbation, may become ﬁf;‘j, which
1

is not so different from rvuy provided € and ¢ are small. In short, even though, theoretically
it is useful to treat infinite modes as any other mode, in practice, special care must be taken
in handling them. Finally, for converting a descriptor system description into a standard
state-space description, to our knowledge, there are no robust algorithms especially if the
pencil in question is of high index [2]. And, high index descriptor systems realizing proper
systems do come up often as a result of basic operations on minimal descriptor systems. Let
us consider multiplying the descriptor realization of s with a minimal descriptor realization
of a strictly proper system. The result would be a descriptor system of index 2, realizing
a proper system. This means that constructing the correct proper transfer function from
its realization is possible only if the non-minimality of this realization can be detected
and the realization be reduced to a minimal realization, something which is known to be
difficult. This shows again that infinite modes do play a special role and should be treated
in a special way.

In the PSSD, the polynomial part of the system is coded into the D matrix and the
corresponding algebraic operations are in part strict state-space operations and in part
polynomial, the polynomial part corresponding to the infinite modes. We shall see that,
as a consequence, infinite modes can be handled much easier since they remain separate
from the other modes of the system. Moreover, the realization algorithm for converting
an improper transfer function into PSSD is a trivial extension of the standard state-space
realization algorithm [4]. '

We present numerically robust algorithms for performing the basic algebraic manip-
ulations on PSSD’s. In particular, in addition to the concatenation and the addition
operations which are obtained as trivial extensions of standard state-space operations, we
present algorithms for system multiplication, system inversion, and feedback operation.

We start in Section 2 by presenting the concatenation, addition and multiplication
operations. In Section 3, we present the inversion and feedback operations and in Section
4, we illustrate the use of these basic operations in ¥lab via a number of examples. We
conclude with discussion of the potential applications and future developments in Section
5.

2 Concatenation, addition and multiplication

Let ¥, = (A1, By,Cy, Dy(s))and £; = (Ag, B,,C,, Dé(s)) be respectively PSSD’s realizing
T1(s) and E3(s). The concatenation operations consist of constructing the PSSD’s,

z,é[zl 22]

realizing
Ze(s) = [ Sus) Ta(s) |



and

realizing
_ 1 Zi(s)

L) = [ £(s) ] .

These realizations can easily be constructed as follows:
(4 o B, 0 Di(s)
z,(s>—([ 0 A,H 5 Bz],[cl Cz],[DQ(S)D-
— Al 0 B] C1 0
so=([4 2] [2]]5 &] 120 vao))

For the addition operation, assuming that £; and ¥, have compatible dimensions, a
realization of

and

Za(8) = X1(s) + a(s)
. is given by

2,=([’t‘ 22].[’;;},[0, C2 |+ [ Da(s) + Da(s) ])

We denote the PSSD addition operation simply with a plus, i.e. £, = £; + ;.

Unlike the two previous cases, the results of standard state-space descriptions cannot
trivially be extended to the case of PSSD’s as far as system multiplication is concerned,
i.e when we like to construct the PSSD T realizing

£(s) = T1(s)Za(s).
We denote the PSSD multiplication operation with a star:
Y= El * 22.

"Theorem 2.1 Let & = X, xX;. Then a PSSD of £, (A, B,C, D(s)), can be constructed
as follows:

_ A, Bng _ -
A—[ o A ] B=Y, C=T,

and

D(s)=[ €1 Di(s)C: | X(s) + Z(s)Y + Di(s)Da(s)

where the polynomial matriz X (s) and the constant matriz Y satisfy

[ B 1;:(3) ] = (sl - AX(8)+Y

and where the polynomial matriz Z(s) and the constant matriz T satisfy

[C1 Di(s)Ca | = Z(s)(sI - A) + T



The proof of existence and a method of construction for the matrices Y, T', X(s) and Z(s)
are given in Lemma 2.1,

Proof It is straightforward to show that

-1
5(s)=[ & Dl(s)Cg](sI-[-‘:)l B:*?D [Blg:(s)JJrDl(s)Dz(s).

which implies that

-1
2(s)= [ Dis)Ca | (31 - [ " B;f’ ]) ((sI = A)X(s)+ Y) + D1(s)Dx(s)

which gives

A BG |\
2(8) = [ Cy D](S)Cg ] (3[— [ ol /1122 ]) Y+[ Cy D1(8)02 ]X(8)+D1(8)D2(-9)

which in turn implies
B(s) = T(sl = A)'Y + Z()Y + [ C1 Dy(8)C; | X(s) + D1(s)Ds(s)
which proves the theorem. a

Lemma 2.1 Let M(s) be a polynomial matriz of degree n and A a square constant matriz.
Then, if M(s) and A have equal number of rows, there ezist a polynomial matriz N(s) of
degree n — 1 and a constant matriz J such that

M(s) = (sl - A)N(s) + J. (2.1)
Proof Let .
M(s) = Z M;s'
=0
and let N;, ¢ = 0,...,n— 1 be obtained from the following recursion

Nn-l = M,
Ny = M +ANg, k=n-1,n-2,..,1

then it is straightforward to see that

J = Mo + AN,,
and )
N(s) = Z N,'si
=0
satisfy (2.1). o

We can of course trivially modify the proof to show that M(s) can also be expressed
as N(s)(s.I ~A)+J for a polynomial matrix N(s) and a constant matrix J (in general,
N(s) # N(s) and J # J). Note that this is just a simple Euclidan division. Also note
that the constructive proof given for Lemma 2,1 can be used as the basis for an algorithm.
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3 System inversion and feedback

There exists an explicit expression for the inverse of state-space-descriptions realizing
proper transfer functions with proper inverses, i.e. state-space-description’s with invertible
D matrix or equivalently having no poles or zeros at infinity. For inverting PSSD’s, we
do take advantage of this expression, by first regularizing the PSSD to be inverted by
multiplying it with a “regularizer” PSSD, “cancelling” its poles and zeros at infinity. We
then apply the explicit expression to the regularized PSSD and re-multiply the result
with the regularizer PSSD. Even though this procedure may seem simple, there are subtle
points that need to be addressed for its successful implementation. One is to prevent the
duplication of poles in the process of regularization and de-regularization. And, second,
is the a posteriori simplification of the artificial modes introduced by the regularization
process. The first problem is solved thanks to the use of the multiplication algorithm
presented in the previous section and the second, with an isolation and projection operation
presented in Section 3.2.

3.1 Regularization

Definition 3.1 Let X = (A, B,C, D(s)) have a full (normal) rank transfer function Z(s).
Then T is called regular if D(8) is constant and has full rank.

This means that a regular PSSD has no poles or zeros at oo.

Theorem 3.1 Let ¥ = (A, B,C,D(s)) have a full column (resp. row) rank transfer
function X(s). Then there ezists a square PSSD, T', such that

. =X (resp. TxX)
is regular.

In a sense, I regularizes ¥ by shifting its infinite poles and zeros to other locations in the
complex plane, i.e., removing the poles and zeros at infinity (we shall see later that we can
- choose arbitrarily the location of these shifted poles). We say that T is a ¥-regularizer.

Proof Without loss of generality, we shall only consider the case where T(s) is full
column rank. The proof is constructive and can be used as an algorithm for constructing
the regularizer T.

The regularization process is divided into two stages: first, a PSSD TI'; is constructed

in such a way that
Ec,l =Y x Pl

is proper (i.e., it removes all the poles at infinity), second, a I'; is constructed removing
all the zeros at infinity of £, (i.e., X1 # T, ha,vmg no zeros at mﬁmty) The regularizing

matrix is then given by
r= I‘l *I";;



We start by letting
=1

and
O = (4@ BO O DOg)) =T

with
o0
DOs) =S DO,

k=0

If dg = 0 (i.e., (9 is proper), we are done and
r=r®=1 %,=5
If do # 0, find a matrix W) which column compre;sses Dfig), i.e.,
DPW® = ( x© o)
where X(9 is full column rank and update I'; as follows
(Y = 1O . WO 4 A© (3.2)

where .

A(o)—_-(o,(g)’(f 0)’(8 (I)))

is a PSSD realization of (
(0)( ¢} — 1/s)I 0
ATy = ( 0 I

where the size of the (1,1)-block of A®)(s) equals the number of columns of X(©). And
update X, ;:

T = B« WO 4 A0, (3.3)
We can now repeat this procedure until we obtain a proper X.; as follows: at stage 1,
£ = (49, B9, ¢, Dl)(s))

with .
DU)(s) = Z Dg)s".

k=1

If d; = 0 (i.e., £0) is proper), we are done and
r, =1
is what removes all the poles at infinity and -

1 = .

7



If d; # 0, find a matrix W) which column compresses D&?, ie.,
p{w = ( xO o)
where X (9 is full column rank and update T as follows

ng-f-l) = rg-‘) * W & A
where
(1) 01 (21)
is a PSSD realization of '
ao = (091 9)

where the size of the (1,1)-block of A()(s) equals the number of columns of X(}. And
update X :

~ o

ESTI) = E(C'l * W)« AG),
Clearly, this recursion ends in a finite number of iterations, because, at each iteration

the degree d; of the polynomial part of ES; decreases by one.
Now that we have constructed X.; and I'y, we can start the construction of X. and
I';. We proceed as in the previous case by initializing

I‘go) =1

and
2‘(:0) = (A(°),B(°),C(°),D(°)) =21

If D s full rank, we are done and
r,=IP=1, £ =3,.
i not, find a matrix W(® which column compresses D), i.e.,

DOWO - ( x© o )

where X (9 is full column rank and update I'; as follows

T = TP« WO 4 AO)

o= (1 3)

where the size of the (1,1)-block of A(%(s) equals the number of columns of X(®. And
update Z.:

where

S = £ w® » A,

8



We can now repeat this procedure until we obtain a X, with no zeros at infinity as follows:
at stage ¢, '

=) = (A, B, ) pt),
If DO is full rank, we are done and
r, =T
is what removes all zeros at infinity and
e =z,
If not, find a matrix W) which column compresses D(*), i.e.,
DEW = ( X o )
where X (9 is full column rank and update I'; as follows

r{*) = 1l . w4 A6) (3.4)

=1 4)

where the size of the (1,1)-block of Al)(s) equals the number of columns of X}, And
update X.:

where

29“) = zgi) *WE L A0, (3.5)

This second stage of the algorithm is nothing but Silverman’s structure algorithm [9].!
The algorithm converges in less than n steps where n denotes the order of £.;. This
completes the proof. 0

Remarks:

1- All the operations involved in the regularization algorithm are performed in the
state-space domain, in particular (3.2), (3.3), (3.4), and (3.5). Note that the result
of (3.3) should be a reduction in the degree of the polynomial part of ¥.;. Due to
numerical round-off errors, however, we may end up with a result having the same
polynomial degree as the previous L., the coefficient of the highest degree of its
polynomial part being very small. This coefficient should be set to zero otherwise
the first stage of the algorithm may never end.

2- For the sake of numerical robustness, in the actual implementation of the algorithm,
all the column compression can be performed using orthogonal matrices.

3- We can alter the second stage of the regularization algorithm in such a way as to
construct I directly (instead of I';) by taking as initial condition r(20) =I;.

1Note that the PSSD multiplication has allowed us to write this algorithm in a simpler fashion.



4- All the finite poles and the zeros of I'(s) as constructed in the above algorithm are
at zero. They can however easily be arbitrarily assigned to a. In order to construct
a regularizer for ¥ having its finite poles and zeros at a, find a regularizer ', for

La=({(A+al),B,C,D(3))
having finite poles and zeros at zero. Then
I'(s) =Ty(s — a)
is a regularizer for £ having its finite poles and zeros at a.
The algorithm presented here can be used to study the pole-zero structure at infinity of

.

3.2 System inversion

The inversion algorithm for PSSD is somewhat similar to the inversion algorithm presented
in [9], at least in the case where the system to be inverted is proper; the main difference
is that the result of the inversion operation is put in PSSD form. The two main features
of the proposed algorithm are numerical robustness and generic minimality of the result
(no duplication or addition of poles). '

Definition 3.2 Let X be a square PSSD with invertible transfer function $(s). Then the
PSSD, %;, is called the inverse of ¥ if

L(8)Ei(s) =1
where T;(s) is the transfer function of L;.

Lemma 3.1 Let ¥ be a square PSSD with invertible transfer function X(s) and T its
regularizer (i.e., X %" regular). Then, %;, the inverse of L, can be constructed as follows:

T, =CxA (3.6)

where A s the inverse of T+ T'.

Proof Let A(s), £;(s) and I'(s) denote respectively the transfer functions associated with

A, X; and . Then
Ti(8) = (T(s)A(s))!

which thanks to
A(s) = (S(s)T(s)7!

implies
Zi(s) = B(s)7!

and the lemma is proved. 0

10



Note that all the finite poles and zeros of the regularizer T' should be cancelled out
by the poles and zeros of A in (3.6). Pole-zero cancellations are in general very diffi-
cult numerical problems. If we multiply two PSSD’s having poles at a using the PSSD
multiplication algorithm, we end up with a PSSD with poles at a. If o poles should theo-
retically cancel out by zeros, this realization would be non-minimal (@ poles would either
be uncontrollable or unobservable). Constructing minimal realizations from non-minimal
realizations can be a very difficult numerical problem.

In this case, however, by taking advantage of the fact that we know, a priori, what
cancellations should be performed, we can easily overcome this problem. Let us say that
all the finite poles and zeros of I" are at zero, and that I' x A should not contain any poles
at zero. In that case, we can isolate the nilpotent subsystem of the result and eliminate it
(since we know a priori that it cannot contribute to the result). Of course, to apply this
method to the inversion problem, we should make sure that A has no other poles at zero
beside those that are destined to be cancelled? by T.

This result suggests the following inversion algorithm for a PSSD ¥ = (A, B,C, D(s)):

1- Pick an a making sure it is not (and is far from) a zero of . This can be done by
examining the full rankedness of the system matrix of ¥ evaluated at a:

-af+A B
C D(a)

which can be done by computing its singular values.

2- Construct the regularizer I', having finite poles and zeros at zero for
Lo =({(A-al),B,C,D(s+ a))
and the corresponding regularized system

Y. =EaxT,.

3- Construct, A, the inverse of the regular system I. = (A, B, C., D.) as follows
A = ((Ac - B.D;C.), B.D;*,~D;'C,, D;1),

and compute
za," = ra *A-

4- Eliminate the poles at zero of
Lo, = (Aayi, Bayis Cais Do i(8))

as follows:

?More specifically those that come from the inverse of T,

11
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E

Put A, ; into ordered Schur form:

T, p_ [ 4 Al2
UA,,,,,U_( ; A%)

where Ay, is upper triangular with zeros on the diagonal and A%, is upper
quasi-triangular with non-zero entries on the diagonal. Let { be the matrix
made of the & first columns of U where k is the size of Ag,.

Put A, ; into ordered Schur form:

v v
T4 V- 00 12
VAl = ( 0 A3 )

where A, is upper quasi-triangular with now non-zeros entries on the diagonal
and A%, is upper triangular with zero entries on the diagonal (clearly the size
of Ay, = k). Let M be the matrix made of the k last rows of V7.

Let E = MQ and compute
N=ME™,

The reduced PSSD Z, i r = (Aa,i,rs Bayiyrs Cairs Dajir(8)) is given by:
Aair = NALQ,
Boir = NBq i,
Caiir = Ca i@,

and
Da,i,r(s) = Da,i(s)'

5- Finally, the inverse of ¥ = (A, B;, C;, Di(s)) is obtained as follows:

and

Ai = Aa,i,r + OI,
Bx' = Ba,i,ra
Ci = Ca.i,r,

Di(8) = Do ir(s - a).

3.3 Feedback

The inversion operation presented in the previous section can be used in the construction
of generically minimal realizations for feedback systems. Consider the following feedback

system:

12



Figure 1: Feedback operation

We like to construct a generically minimal PSSD of the closed-loop transfer function
depicted in Figure 1, i.e. a PSSD X of the transfer function:

Z(s) = T1(s)(I - Z3(s)Ea(s))™!
where £; ‘and ¥; are appropriately dimensioned PSSD’s.

Theorem 3.2 The PSSD of the closed-loop transfer function ¥ can be expressed as fol-

lows:
' E:(I 0)*\11*((})

I -z
=¥ I '

The proof is straightforward and is omitted. ,
This idea can be used to construct fractional compositions for PSSD s as well. In
particular, consider the following system:

where V¥ is the inverse of

R R L R 2
, Iz '
' )
! 0
T r————— B} 2 > '
] . . 1
1
: PO ' P :
[]
yo——1 2 !
] 1
1 ]
] 1
] ]
Lemcccccccccecececesccccercrenmemreee_e————- 4

Figure 2: Fractional composition ¥ = 04%,
where, using the same notations as in [1], we denote the transfer function from u to y as:

Y= 210/22.

13



Theorem 8.3 The cascade composiiion Y. can be ezxpressed as follows:

0
0
E:(O 07 0)*lll* 0
I
where ¥ is the inverse of

-1 0

[-8‘] 0 -I

0 -1 0 X,

I o 0 0

We can also extend this approach to the case of general cascade compositions:

fremecm—n- F e e e m e e e 5
) ‘
:l '
—_— 1 2 o1 o b2t
)
E ) E; .
]
1 ]
1 2| 1 2l
11 2
] (]
' 1
[} )
." ---------------------------------------- 4

Figure 3: General fractional composition £ = £,0,Z,

Theorem 3.4 The general cascade composition

E:E,o,)lg.
can be expressed as follows:
00
00
0 00 0O 0 0
-“:"(oo 100 o)*‘l'* 0 0
I 0
07
where ¥ is the inverse of
e | 0 O
[2.‘] 0 0 -I0
0 -1 0 0
0 0 -I0 [22]
I0 00 00
00 00 0 I



4 VYlab examples

In ¥lab, linear systems can be represented both in state-space domain and in frequency
domain. In frequency domain, the representation is a rational matrix representation; it
does not care whether the system is proper or not. In state-space domain, linear systems
are represented as a list which include matrices A, B, C and D where D is polynomial
when the system is not proper. ss2tf converts state-space representations into frequency
domain representations and t£28s does the opposite. Basic operations on linear systems
can be performed in hoth representations.

4.1 Example1l

In this example, we show how the inv operation can be used for inverting an improper
system in state-space representation.

-->81={8"3/(8"2+1),1/8°2;8/(8+5)"3,1/(s8+9)]
sl =

! 126 + 758 + 188 + 8 9+38 |

-->gls=tf2ss(sl)

sls =
sls>1
1ss
8ls>2
columns 1to &

! - 0.4873365 0.0413218

0.1235074 - 0.8634475 0. !

! - 0.6793348 - 4.5133291 - 4.3974687 0. 0. !
- 10.071282 - 14.382389 18.24199 !
4.484158 0.1458653 1.3035887 2.5469642 - 2.6110217 !

]
]
| - 21.587479 - 2.713133
[]
[]

2.5583579 - 0.0917428

0.5846735 1.8743176 - 2.4278863 !

15



0.9806236
1.8361147
141.48577

columns

.0710749
.0618404
.1080259
.0203185
.3460646

O OO OO O0OO0OO

sls>3

.0764506
.0504134
.7017691
.2841575
.2007232
.0773034
.1391978
1.088242

- O 0O O O +=» OO0

sls>4

13.080338
0.0849451

8l1s>5

s 0

- o eem

(ol o RN el o BN o]

0.1276371
0.553016

=+ 0.2210021
1.0661388

- 0.7425117

1.1680004

10.546508 -~ 35.261487 - 97.133595

6 to 8

o OO0 O

0.0037520
0.9890481
0.1077599
0.6540799

0.

7.7629441
7.9089505
0,8483263
0.9410664
0.0475738
0.0864830
1.2530747

0.
0.1288171

0,
00
0.
0.
- 0.0615932
0.
- 0,0165151 !
~ 9.0473967 !
0. ©
0. ©

16
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0.87900561 !
1.4210677 !
121.77543 !
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-->sli=inv(sls);

8ls>7

0

-->8li

sli

1ss

sli>1l

8li>2

columns

5169212
0697923

4.
0.
0.
0.
0
0
o
0

columns

108.29098
51.965891
4.9885685
15.277895
1.5571008
0.3461348
0.

0.

1 to

11.283991
6.079043
0.

0O O OO0 O

6 to

21.442289
13.249324
0.6739682
1.5304189
0.4188838
0.7116219
0.5177216
0.

» 79.322447

39.865564
4.3650138

(=]

o 0O OO0

107.61912
£2.602478
4.9440812
10.262526
0.0641202
0.17818610
0.3214769
0.

17

16.961653

- £.3997879

0.8910101

= 0.6066003

0.
0.
0.
0.

- 5.4619968

1.7675075

- 0.1462628

3.9063726

- 0.2972781

0.2153890
0.
0.



OO OCOmw OOOo

O OO0 OO0 0O O0OO0O

81i>3

.0885572
.2277712
.1008194
.4066255 -~
.1005046
.0646787
.133385

8li>4

columns

.0007106 ~
.0811034 -

columns

.0165375
.5643911

81i>S

0.3832993
1.2641279
3,726401

0.1564590
0.2881162
5.8606293
0.6623888
8.6944484

1 to S
0.0046932 ~ 0.0787692
0.2995485 0.47455286

6 to 8

0.0523414 =~ 0,0267899 !

1 0.2195947 . 0.5555815 !

18

- 0.6987777
- 0,0917369

0.0710056 !
0.0151296 !



c

-->ss2tf(sli)
ans =
column i
2 3 4 6 6
1258 + 758 + 1408 + 768 + 168 + 8
2 3 4 3 6 7

-9 -8~-98 ~8 + 1258 ¢« 7658 ¢ 158 ¢ 8

2 3 4 5
-98 -8 ~98 -8
Lt et bl Dbttt b B A b Lt bl 2t !
2 3 4 5 6 7
-9 -8-98~8+ 12568 ¢+ 758 + 168 ¢+ 8 |

een var e sEn 4w cen o o

column i
2 3 4 5 ¢
- 1125 - 8008 - 13368 - 8248 ~ 2118 - 248 ~ 8
2 3 4 5 6 7 8

- 98 ~8 -98 -8 ¢+ 1258 ¢+ 758 + 158 ¢+ &8

4 ) 6 7 8
11258 + 8008 + 2108 ¢ 248 + 8

- - - - - . D " P -y

-9 -~58-9s -8+ 12558 + 758 + {68 + 8

~<>pr=slis*sl;
-->882tf(pr)

ans =

! 1 o !
! e=-  ~==
! 1 1!
! '
U ¢) 1
1 == ===
! 1 1!
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Next, we consider the fractional composition of improper system sl with the improper
system k(s) = 1+ s (in state-space), using the ¥lab’s 1ft macro,

~->k=tf2ss8(1+s)

k =
k>1
1ss
k>2
0
k>3
0
k>4
a
k>5
1+s
k>6
0
k>7
c
-->1£t(P,K)
ans =
ans>1
1ss
ans>2

20



columns
- 5.0000996

0

0.

0.

0

0

0

columns

.0992976
.2674607
.2850521
.0757833
.0731413
.030D-08

]
O NOOONMNO®

ans>3

- 10.302351
.4909124
.5868213
.2207404
.0209483
.0112575
.271D-10

N O O O O W

ans>4

columnsg

1 to 5

10.292244
~ 4,9996798
- 1,911D-09
0.

o O ©

6 to 7

2,6536981
- 1.3125047
0.0957825
0.1107244
0.0139845
- 1.0063274
2.030D-08

1 to

- e e B > W

- 94,6974566  43.930472
42.166643 - 19,064711
- §.0002208  2.3858452

0. - 0.5964716
0, » 0,4791401
Q. 0.
9, 0,

- 0.0013913 =~ 0.0083138 =~ 0,021587¢ -~ 4.8418823

columns

6 to 7

21

- 88.55467
40.703338
- 4.2939111
2.8296072
0.5964716
0.
0.

3.7642574 !



! 0.0432993 0.0478583 !

ans>5
s
ans>6
! 0. !
! 0. !
[} 0. [}
[] 0. {
! 0. !
' 0. !
' 0. !
ans>7
c
-->ss2tf(ans)
ans =

2 3 4 () 6 7
1.125 + 1.2558 + 1.253 + 1.268 + 125,1258 + 758 + 158 + s

1258 + 758 + 1408 + 768 + 158 + 8

4.2 Example 2

In this example we use the inv operation to compute the inverse of SE — A where E, A
is 20 x 20 pencil of index 5 generated randomly. To do this, we construct a linear system
(using syslin) in which A, B, and C have dimension 0 and D equals sSE — A. The
inv operation in this case, performs as well as an existing specialized routine in ¥lab
(generalized Leverrier’s algorithm) both in speed and in accuracy.

-->E=0%*ones(20,20) ;for i=1:11, E(i,i+1)=1;end
-->E(5,6)=0;E(8,9)=0;E(10,11)=0}
-->E(16:20,16:20)=aye(5,5);

-->A=zeros(20,20);A(1:15,1:15)=eye(15,15);
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-->A22=rand(5,5);

-->A(16:20,16:20)=A22;
-->X=rand(20,20) ; Y=rand (20,20) ; E=X*E*Y; A=X*A%Y;
-->sl=syslin(’c’,[1,[],[2,s*E-4);
-->8li=inv(sl);

-->spec(s81i(2))
ans =

! - 1,9808745 !
! 2.6325485 §
! 1.0533088 + 1.1373242i !
! 1.0533088 1.13732421 !
! 0.0551886 !

-->spec(A22)
ans =

! 2.6325485

! 1.0533088 + 1.1373242i
! 1.0533088 - 1.1373242i
!
!

0.0551886
- 1.9808745

-=>w=inv(sli);
-->w-sl
ans =
ans>1
1ss
ans>2
{]

ans>3
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(
ans>4
Q

ans>5

columns
.152D-07 -
.671D-08 -
.538D-07 +
.082D-07 +
.0000025 -
.794D-08 +
.0000022 -
.0000011 -
.0000016 -
.0000011 -
.676D-07 +
.916D-07 -
.0000019 +
.507D-07 +
.024D-07 +
.0000010 +

.0000015 +

1 to

.283D-08s
.593D-08s
.682D-08s
.657D-08s
.990D-078
.574D-08s
.613D-07s
.330D-07s
.569D-07s
.062D-07s
.628D-08s
.026D-07s
.221D-078
.383D-07s
.243D-07s
.215D-07s

.612D-07s

2

1,779D-07

6.019D-08

1.586D-07 4

9,532D-08

0.0000015

1,051D-07 4

0.0000014
6.443D-07
8,740D-07
7.207D-07
1,051D-07
1,578D-07
0.0000012
4.384D-07
2.366D-07
6.189D-07

8.868D-07

24

8.006D-08s

3.924D-08s

7.564D-08s

1.109D-08s

6.617D~07s

4.199D-08s

5,706D-07s

2.299D-07s

2.964D-07s

3.112D-07s

5.010D-08s

2.905D-08s

4.487D-07s

1.845D-07s

8.728D-08s

2.313D-07s

3.188D-07s

TER  JEB ER SED CER CER YER CER G ED CER SR JER PER ER 4EP CEN JER cER CED SER ER ED oE s v cem cus cED cuw s car emm s



8.698D-07 - 3.168D-07s 5.768D-07 - 2.464D-07s

]
!
0.0000011 - 3.565D-07s 6.587D-07 - 2.440D-07s !
t
[}

- 3.649D-07 + 1.236D-07s8 - 2.421D-07 + 9.221D-08s

------

------

ans>7

5 Conclusion

In this paper, we have presented the alternative state-space description to descriptor sys-
tems for representing improper transfer functions used in ¥lab and the algorithms for
the corresponding basic algebraic manipulations. The algorithms have been successfully
tested on large systems.

This formulation has many applications in control systems engineering and signal pro-
cessing (construction of standard plant in Ho, control framework and, singular H, and
H,, problems (3, 8], inner-outer factorization, spectral factorization...).
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