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Bornes du Temps de Cycle et Comportements Asymptotiques
des Graphes d'Evénements Stochastiques

Nathalie SAUER et Xiaolan XIE®

RESUME

Dans ce papier, nous nous intéressons a l'évaluation des performances et a I'analyse
des comportements asymptotiques des graphes d'événements stochastiques. Les temps
de franchissement des transitions sont générés par des variables aléatoires de
distribution quelconque. Nous proposons d'abord de nouvelles bornes supérieures du
temps de cycle a 'aide de la théorie des grandes déviations. A partir de ces bornes et des
résultats existants, nous étudions les comportements asymptotiques en fonction de la
structure du graphe d'événements, des temps de franchissement ainsi que du
marquage initial. En particulier, des conditions suffisantes pour que le temps de cycle
converge vers une valeur finie lorsque le nombre de transitions croit sont mises en
évidence. Nous montrons que le temps de cycle converge vers celui du graphe
d'événements déterministe lorsque les variances des temps de franchissement
décroissent. Nous montrons également qu'en ajoutant suffisamment de jetons dans
chaque place, il est possible d'approcher d'aussi prés que l'on veut un temps de cycle
minimal égal a la valeur maximale des temps moyens de franchissement. Nous
présentons finalement l'application de ces résultats aux systémes de production. En
particulier, nous démontrons que la productivité d'une ligne de transfert décroit vers
une valeur strictement positive lorsque le nombre de machines augumente.

MOTS-CLES : Graphes d'Evénements Stochastiques, Bornes, Comportements
Asymptotiques
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New Performance Bounds and Asymptotic Properties
of Stochastic Timed Event Graphs

Nathalie SAUER and Xiaolan XIE’

ABSTRACT

This paper addresses the performance evaluation and asymptotic properties of
stochastic timed event graphs. The transition firing times are generated by random
variables with general distribution. New upper bounds of the average cycle time are
obtained by applying large deviation theory. Asymptotic properties with respect to the
net structure, the transition firing times and the initial marking are then established
on the basis of these new bounds and the existing ones. We propose in particular
sufficient conditions under which the average cycle time tends to a finite positive
value as the number of transitions tends to infinity. The convergence of the average
cycle time, when the variances of the firing times decrease, is established. We also
prove that, by putting enough tokens in all places, it is always possible to approach as
close as possible to the minimum average cycle time which is equal to the maximum
of the average transition firing times. Applications to manufacturing systems are
presented. We prove in particular a conjecture which claims that the throughput rate
of a transfer line decreases to a positive value when the number of machines
increases.

KEYWORDS: Stochastic Timed Event Graphs, Performance Bounds, Asymptotic
Properties
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1. INTRODUCTION

Thanks to their modeling power and the large body of mathematic tools for property
checking, Petri nets have been recognized as a powerful tool for modeling and
analyzing large dynamic systems. Espedially, Petri nets provide a unified language for
system modeling, property checking and performance evaluation for dynamic systems
with synchronization, concurrency and common resources. Successful application
areas include communication, computer, manufacturing systems, etc. Excellent
surveys of Petri net theory and applications can be found in [14, 20].

In this paper we restrict ourselves to stochastic timed event graphs in which the firing
times are generated by random variables. An event graph also called marked graph is a
Petri net in which each place has exactly one input transition and one output
transition. A strongly connected event graph has some important properties,
specifically: (i) the number of tokens in any elementary circuit remains constant
whatever the transition firings, and (ii) the system is deadlock free if and only if (or iff
for short) each elementary circuit contains at least one token (see for instance [8, 9, 12]).

In the deterministic case, it was proven [8, 17] that: (i) the cycle time of an elementary
circuit is given by the ratio of the sum of the firing times of the transitions of the
circuit to the number of tokens in the circuit; (ii) the cycle time of a strongly connected
event graph is equal to the greatest cycle time among the ones of all the elementary
circuits. Furthermore, a specified cycle time being given, algorithms have been
proposed in [13] to find an initial marking leading to a cycle time smaller than the
specified cycle time while minimizing a linear criterion function of the initial
marking.

In the stochastic case, it is impossible to take advantage of the elementary circuits to
evaluate the behaviour of the event graph and to reach a given performance. Previous
work mainly focused on ergodicity conditions and performance bounds. Ergodicity
conditions have been obtained for timed event graphs [1], stochastic timed Petri nets
(11] and max-plus algebra models of stochastic discrete event systems [18].

For a strongly connected stochastic imed event graph, it was proven that an average
cycle time exists under some fairly weak conditions (see Section 2). Both upper and
lower bounds have been proposed (see [2, 3, 7, 15, 16, 22]). In particular, tight upper and
lower bounds were obtained by using stochastic comparison properties (see [3}),
superposition properties (see (22]) and large deviation theory (see (2]).

The marking optimization problem for strongly connected stochastic timed event
graphs, which consists in obtaining a specified cycle time while minimizing a linear
criterion depending on the initial marking, was addressed in [15, 16, 19]. Important
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properties of optimal solutions can be found in [19]. Especially, it was proven that any
cycle time greater than the maximal mean transition firing time can be reached
provided that enough tokens are available. Heuristic algorithms for solving the
stochastic marking optimization problem have been proposed.

The purpose of this paper is to provide new performance bounds and to address the
asymptotic behaviour of stochastic timed event graphs. To this end, notations and
assumptions are presented in Section 2 while Section 3 is a survey of the existing
results.

In Section 4, upper bounds of the average cycle time are derived by using large
deviation theory. These bounds are similar to but tighter than the bounds proposed in
(21

Based on these new bounds, Section 5 presents asymptotic properties with respect to
the net structure. We propose in particular sufficient conditions under which the
average cycle time tends to a finite positive value as the number of transitions tends to
infinity.

Section 6 addresses the asymptotic behaviour of the average cycle time with respect to
the transition firing times. Remind that it was proven in {3, 7] that the average cycle
time reaches its minimum when the firing times become deterministic. This section
establishes the convergence of the average cycle time to this minimum, the necessary
and sufficient conditions under which this minimum is obtained, and the
convergence of the average cycle time to the one of another timed event graph.

Section 7 is related to the asymptotic properties with respect to the initial marking. We
prove that, by putting enough tokens in each place, it is always possible to approach as
close as possible to the minimum average cycle time equal to the maximum of the
average transition firing times. A necessary and sufficient condition under which this
minimum is reachable is proposed. This section also establishes the limit value of the
average cycle time when the number of tokens in a given place increases.

Section 8 presents applications to manufacturing systems. We prove in particular that
when the capacity of a buffer in a transfer line increases, the throughput rate tends to
the minimum of the throughput rates of two shorter transfer lines obtained by
removing this buffer. We also prove the conjecture presented in (10] which claims that
the throughput rate of a transfer line decreases to a positive value when the number
of machines increases.



2. NOTATIONS AND ASSUMPTIONS

Let N = (2, T, F) be the strongly connected event graph considered. Pis the set of places,
T is the set of transitions, and F C (Px T) L (T x B) is the set of directed arcs connecting
places to transitions and transitions to places. We denote by My the initial marking of
N.

We assume that no transition can be fired by more than one token at any time (i.e.
recycled transitions). This implies that there is a self-loop place with one token related
to each transition, i.e. (t, t) € Pand Mp((t,t)) =1, V te T where (t, s) indicates the place
connecting transition t to transition s. We further assume that, when a transition fires,
the related tokens remain in the input places until the firing process ends. They then
disappear and one new token appears in each output place of the transition.

As a result, the set of places P can be written as 2= P U Pt where Pt denotes the set of
self-loop places and P the other places, i.e. Pt = {(t, t), Vte T} and P n Pt = Q.
Furthermore, since there is always exactly one token in each place belonging to Pt,
only the marking of the places belonging to P will be considered in the following.

Since N is an event graph, each place has exactly one input transition and one output
transition. Without loss of generality, we assume that there exists at most one place
between any two transitions. The following notations will be used :

°t (resp. t*) : set of input (resp. output) places of transition t

°p (resp. p°®) : unique input (resp. output) transition of place p

in(t) : set of transitions immediately preceding transition t, i.e.
int) ={se T/3pe P, *p=sand p°® =t}

out(t) : set of transitions immediately following transition t, i.e.
out(t) ={se T/3pe P,°p=tand p°® =5}

(t, s) : place connecting transition t to transition s

I": set of elementary drcuits of N

My: initial marking of the places belonging to P

Mo(y): total number of tokens contained initially in ye I

R(Mp) : the set of markings reachable from Mg

The following notations related to the transition firing times are used throughout this
paper :
Xi(k) : non-negative random variable generating the time required for the

k-th firing of transition t
Si(k): instant of the k-th firing initiation of transition t
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By convention, Xi(k) =0, V k <0 and Sy(k) =0, V k £ 0. As shown in [8], the transition
firing initiation instants can be determined by the following recursive equations :
Si(k)= Max {S.k—-Mul(7,t)))+ X ik -Mu((7,t
t(K)= Max {S¢(k=ao((=,1))) + Xe{k - 3t0((=. 1))} M

We assume that for each transition t, the sequence of its firing times {Xy(kK)},_, is a

sequence of independent identically distributed (i.i.d.) integrable random variables and

that {Xt(k)}:=1 for all t e T are mutually independent sequences.

It was proven in [1] that, under the foregoing assumptions, there exists a positive

constant t(Mg) such that:

lim S¢(k)/ k= klim E[Sy(k)]/k=n(Mp), as.VteT )
—>00

k—oo

nt (M) is the average cycle time of the event graph.

Since {X¢(k)},_, are sequences of i.i.d. random variables, the index k is often omitted

and we use X; to denote the firing time of transition t whenever k is not necessary.
We further assume that the first and second moments of X; exist and denote by m its

mean value and o, its standard deviation, i.e. my = E [X{] and of =E[(X; —mt)Z].

Since any stochastic timed event graph is completely characterized by its net structure,

its initial marking and the set of transition firing time sequences, it can be denoted by
the triplet (N, Mg, {X¢(k)}).

Before leaving this section, we introduce some notions related to random variables
which will be needed in the following. First, we need some stochastic ordering

relations introduced by Stoyen [21]. In particular, the convex ordering relation and the
strong ordering relation will be used. Let <;., denote the convex ordering and <, the

strong ordering relation. Two random variables X and Y are said to satisfy the strong
ordering relation (resp. the convex ordering relation), i.e. X <5; Y (resp. X Sjex Y) if the
following inequality

E[f(X)] <E[f(V)]

holds for all monotone nondecreasing (resp. convex monotone non-decreasing)
function f : IR — IR provided that the expectations exist.

We say that two random variables X and Y are equivalent in law, denoted as X =, Y, iff
they have the same probability distribution, i.e.



P{X <s} =P{Y<s}, Vse IR

We also need the notion of association of random variables (see [4, 5]). A set of
random variables {x;, x3, ..., Xp} is said to be associated if the following relation

cov(f(xq, Xa, ..., Xn), g(x1, X2, ..., Xp)) 20

holds for all non-decreasing functions h, g : [IR® = IR provided that the covariance
exists.

3. BASIC PROPERTIES

This section recalls some basic properties of the average cycle time of stochastic timed
event graph. These properties includes some properties with respect to the initial
marking, the stochastic comparison properties, the superposition properties. Some
upper bounds obtained by using superposition properties and large deviation theory
are also presented.

3.1. Properties with respect to the initial marking

Property 1. ([9])

An initial marking My is a live marking iff each elementary circuit contains at least
one token, i.e. My(y) 21, Vye I

Property 2. ([22])
Let M and My be two markings with identical positive drcuit counts, i.e. M(y) = M(y) 2
1, Vye I'. Then,

(a) Mp and M are mutually reachable;

(b) (M) = r(My).

Property 3. ([19))

Let M; and M; be two initial markings such that M{(y) < My(y), Vye I". Then,
(a) 3IM e R(M1), M < M,, i.e. M(p) < M»(p), Vp e P;
(b) n(M1) = T(M,).

Property 2 claims that if the initial marking is any marking reachable from My by
transition firings instead of M, the average cycle time remains the same. Property 3 is
a generalization of the monotonicity property of the average cycle time with respect to
the initial marking given in [3].

3.2. Stochastic comparison properties
Property 4.([3])
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Consider two stochastic timed event graphs with the same net structure and the same
initial marking STEG1 = (N, My, (X{(k)}) and STEG2 = (N, Mg, (Y(k)}). Let x1(My) (resp.
n2(Mp)) be the the average cycle time of STEG1 (resp. STEG2). If

Xt Siex Yv Vte T,
then

ﬂl(Mo) < nz(Mo).

Since the strong ordering < implies convex ordering <., the property still holds if
the <., ordering is replaced by the < ordering.

Property 4 claims that the average cycle time is non-decreasing in transition firing
times under stochastic comparison relations.

Since E[X] <jcx X for any random variable X, Property 4 implies that the minimal
average cycle time is obtained in the deterministic case as indicated in the following

property.

Corollary 1.
t(Mg) 2 tD(M)

where tP(M() denotes the average cycle time of the deterministic timed event graph
(N, MO, {Yt(k)}) Wlth Yt(k) = mt, i.e.

0 (Mo) = Max 3)

3.3. Superposition properties and upper bounds

The superposition properties in [22] are particularly useful in deriving upper bounds
of the average cycle time. In particular, the main superposition property claims that
the average cycle time is sub-additive when the transition firing times are generated by
the superposition of two sets of sequences of random variables.

Main superposition property.
Assuming that Xt=X:+Xt2, VteT where X} and X‘:‘ are non-negative random

variables, let ®1(Mg) (resp. t2(My)) be the average cycle time of the stochastic timed
event graph (N, M, {X}(k)}) (resp. (N, Mg, (th(k)}))- Then it holds that :

(Mp) < nl(Mp) + t2(Mp)

Using this property, the following upper bound can be easily derived.



Property 6.

z
#(Mp) S inf { Max Liey®t | (Mg, Z)
Z20| yeI' My(7) 4)
where Z denotes the vector of constants (21, z, ..., z; ;)T and ©2(Mg, Z) denotes the

average cycle time of the stochastic timed event graph (N, M, {Xg'(k)}) with
Xe (k)= (Xe(k)-2)",

Combining this upper bound and the upper bound presented in [7], the following:
property can be shown.

Property 7.
D . S
(v < 2°(045)+ yin| 5 B, -] 5
where

z, < 12 (Mg)M(7),Vye F}

£ {z/zt 2m;,VteTand } .,

This bound shows that the firing time randomness of transitions belonging to non-
critical elementary circuits has little effect on the average cycle time of the whole
system. The effect of their randomness can almost be completely canceled by taking
large values for z;.

By taking z, = m,, Vt e T and by using arguments similar to those in [22], the following
upper bound can be derived.

Corollary 2.

w(Mg) s 7°(Mg) + X 0 ©)
teT

We also consider a special case in which the initial marking is a multiple of another
live marking. By using the main superposition property, the following tighter upper
bound can be derived (see [19]).

Property 8.

n(nMg) < zrD(MO)+ inf{ Y E{(l ixt(k)—th :l}

ZeE|teT |\ Mk=1

where € is the set of vectors defined in Property 6.
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From this property, we can prove the following corollary which shows that
multiplying the number of tokens can reduce the variance of the transition firing
times.

Corollary 3.
n(nMo) < 7P (M) + 3. <+ ®
teT VI

3.4. Upper bounds based on large deviation theory

Without loss of generality, let us assume that there is at most one token in each place,
i.e. Mg(p) €1,V pe P. Whenever this assumption is violated, an equivalent net in
which there is at most one token in each place can be obtained by adding extra places
and immediate transitions, as shown in [1].

To present the upper bounds given in [2], we need introduce new notations and
rewrite the evolution equation (1).

Consider the set of elementary paths connecting any two transitions (tgpit1pa2...Puty)
such that only the first place p; contains one token and the other places are empty, i.e.
Mp(p1) =1 and My(py =0 fori =2, ..., u. Let ¥ denote this set of elementary paths.

We also need the following notations :

p~ : the first transition ty of a path p e ¥

pt : the last transition t, of a pathp e ¥

p" : the set of internal transitions of a path p € ¥, i.e.

p*={tep/tzp-andt=p*)

9-(t) : the set of transitions which can be connected to t via a pathin ¥, i.e.
¥ (t)=(se T/Ipe ¥,p-=sand p* =t

¥+(t) : the set of transitions which can be reached from t via a path in ¥, i.e.
3t =(se T/3Ipe ¥,pt=sandp =t}

W(t, s) : the set of paths in ¥ connecting transition t to transition s, i.e.

Y(t,s)={pe ¥/p =tand p* =5}

Since all the transitions are recycled, the self loop (tpt) with p® = ®p = t belongs to the
set W(t, t). Thus, t € 9%(t) and t € 97(t) for all transition t.

As shown in (3], the evolution equation (1) can be rewritten as follows :

Se(k)= Max {Sc(k-1)+Ag(k)}
7€ (1) 9

where
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Ar,t(k)= Max {#(P k}

pe¥(z.t) (10)
and
ulpk)=X _(k=1)+% . Xs(k)
p SEp (11)
By convention, A; (k) = -0 if T & 97(t). Thus,
Xk-1)+ Max «Xo(k)i, ifTe 97(t);
Ag(k)= k) pe¥(r, ‘){zsep o )} © (12)
—oo, otherwise.

By using the large deviation theory, the following upper bound has been established
in [2].

Property 9.
Assume that there exists a random variable x such that
AT,t(l) Sst x, VT, te T (13)
Then,
n(Mp) <y
where
= inf{x 2 E[x] / h(x) > log(W)} (14)
W = Max{card{ 8" (t)
tap{one( o) -
h(x x0 - log|E{exp(x6
(x) = sup{x6 - log(E[exp(x6)] | i

h(x) is commonly called the Cramér-Legendre transform of x. It is well known that
h(x) is a convex and nonnegative function, and it reaches its minimum at E[y] with

h(E[x]) =0.

4. NEW UPPER BOUNDS OF THE AVERAGE CYCLE TIME

The purpose of this section is to derive upper bounds tighter than the one proposed in
[2] by using large deviation theory. More precisely, we intend to establish the following
result :

Property 10.
Assume that there exists a random variable y such that

A S 2, VT, te T (17)
Then,

R(Mo) < Y (18)
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where vis defined by equation (14).

Since the strong ordering < implies the convex ordering <., this property allows to
derive upper bounds tighter than the upper bound proposed in [2]. In particular,

constant transition firing times can be easily taken into account in this new upper
bound. '

The proof of this property is based on the following four preliminary results, i.e.
Lemmas 1 - 4.

To establish this result, we need introduce the following notations :

- -]

. {ar,t(k)}k=0 for all 7, t e T are mutually independent sequences of independent
identically distributed random variables with a¢ (1) =g Ag (1)
¢ Vi(k) witht € T and k > 0 are random variables defined as follows :

Vi(k) = Max {V,(k-—l)+am(k)}
7€ (t) (19

Lemma 1.
Si(k) <5 Vi(k), Vte Tand V k>0

This property was established in [2]. Its proof is based on two facts : (i) the random

variables [ A;(k), Sy(k) for all 7, t € T and k 2 0} are assodiated; (ii) For any sequence of

transitions (tgtyts...), {Afn’fn+1(n)} is a sequence of mutually independent random

variables (see equation (12)).

We also consider the following random variables :

. {br,t(k)}k=0 for all t, t e T are mutually independent sequences of independent

identically distributed random variables with b, (1) =¢; %
* Hi(k) with t € T and k > 0 are random variables defined as follows :

Hy(k)= Max {Hr(k‘l)‘*'br,t(k)}
el (t) (20)

Lemma 2.
Vi(k) Siex Hi(k), Vte Tand Vk >0

Proof :

Let us prove this property by induction. First, since ar (1) and b (1) for all t,te T are
mutually independent random variables and since
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ag (1) =g¢ Ag (1) Sjex X =5t br (1),

from Proposition 3.3.i in {4],

V()= Max f{ag (1)} six Max {bg (1)} =Hy(1)
ted (t) e (t)

Assume that the property is true for all k < K which implies that :
Consider that non-decreasing convex mapping f,(X, Y) defined as follows

f(X,Y)= Max {X;+Y,}
€l (V)
Since the random variables V(K), af(K+1), H(K) and b, (K+1) for all 1, te T are
mutually independent, Proposition 3.3.i in [4] and the definitions of a;(K+1) and
by «(K+1) imply that :

V(K +1) = f(V(K),a(K +1)) Siex fr(H(K), (K +1)) = H (K +1)
QED.

Let us observe that Hy(k) is the k-th firing time of transition t of a stochastic FIFO
event graph which can be defined as follows. The set of transitions is T. There exists a
place connecting transition t to t iff t € ¥-(t). Initially, each place contains exactly one
token. A token arrived in any place (t,t) remains unavailable for a random amount of
time by (k). The firing times of the transitions are null. According to (1], the following

property holds :

Lemma 3.
There exists a positive constant n*(Mp) such that:

lim Hy(k)/k = lim E[H,&K)]/k=7 (My), as.VteT 1)
k—)°° k—00

Lemma 4.
*(Mp) <.

Proof :
Consider the following probability P{H\(k) < xk} for any real number x. From Lemma
3, this property is equivalent to :

lim P{H,(k)<xk}=1, Vx> y

Let us prove relation (22) in the following.
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Consider the set of sequences of transitions (tgty...ty) which satisfy the following

relations :
tk =t and ;. e 9°(t), Vi=1,2, ..,k

Let us denote this set as Cy(k). From the recursive equation (20), we have :

Hy(k)= M B(toty...t
2 g ey g (0011 23

where

k
B(tOtl' - tk) =2 bti_1ti (1)
i=1 (24)

Since b; (k) are mutually independent, Lemma 3.1. in {4] implies that the random
variables B(tgt,...ty) for all sequences of transitions (tgty...t}) € C(k) are associated.
From Proposition 3.5. in [4],

H,(k) < M B(tot...t
t(k) Sse (totl...tka))éct(k){'(()l k)}

where B(tot;...t ) for all (tgt;...t,) € Ci(k) are the independent version of the random
variables Bltgt;...ty), i.e. the random variables B(tgty...ty ) for all {tgty...tx) € Cy(k) are

mutually independent and B(tgty...ty ) =g Bltgty.--tw)-
From the property of strong ordering,

P{H,(k) < xk} 2 P{(totl..l.\tdka)):sct(k) {B(toty.--tx )} < xk}

= I P{B(tot;...ty ) S xk}
(toty..-ti )eCr(k) -

Since E(totl--‘tk) =gt B(totl...tk),

P{H;(k) s xk} 2 I1 P{B(toty...tx) < xk}
(toty...ti )eCye (k) ' (25)

From equation (24) and since b, (k) are i.i.d. random variables, Chernoff's theorem
implies that :

P{B(tgt;...tx ) S xk} = 1= P{B(toty...ty ) 2 xk} = 1 - exp(~h(x)k +o(k))

Combining relations (25),
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P{H, (k) < xk} > ecar(Ct (k) log(1-exp(-h(x)k+o(k)))
— o~card(Cy(k))exp(~h(x)k)(1+o(D)

From this relation, if

card(C (k))exp(-h(x)k) = 0,as k = oo

then

lim P{H,(k)<xk}=1,  Vx>y
k—oo

Since it is obvious that
card(Cy(k)) < (card(T)) Wk,

we have
card(Cy(k))exp(~h(x)k) < card(T)exp(k(~h(x) + log(W)))

Since h(x) is non-decreasing function, from the definition of y, then
- h(x) + log(W) <0,V x>y

which implies that

card(C,(k))exp(~h(x)k) = 0,as k — o

Proof of Property 10 :

From Lemmas 1 and 2, we have

E[S(k)] < E[V(k)] < E[H((k)], Vte T and VYk>0
From relations (2) and (21),

7 (Mg) = lim E[S¢(k)]/ k < lim E[H&)]/ k=7 (Mg)
koo k=00

Combining the above relation with Lemma 4,

rMp) <y

Similarly, the following upper bounds can be established.

QED.

Q.E.D.
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Property 11.
n(Mp) < inf{x 2 E[x] / h(x) > log(W")
where

W'= I\é%.x{card( 0'(t))}

Property 12.

(Mg <inf{x 2 E[x] / h(x) > log(W™)}
where W" is the Perron-Frobenius eigen-value of the 0-1 matrix [L;,J with [, =1ifte
9(t); otherwise Ly, = 0.

The proof of these properties is similar to that of Property 10 by using the following
relations : '

Cy(k) < (W)k

log(Ci(k)) = W" k + o(k)

By using slightly different arguments, the following property can be proven.

Property 13.
Assume that there exists a random variable ¥ such that
wp, 1 Sixx, Vpe ¥
Then,
(Mg) S
where
u(p, 1) is defined in equation (11)
Y = inf{x 2 E[x] / h(x) > log(W)}
h(x)= %gg{xe — log(E[exp( xe)])}

W= Max{ Y card(¥(z, t))}

5. ASYMPTOTIC PROPERTIES WITH RESPECT TO THE NET STRUCTURE

- The purpose of this section is to investigate the asymptotic behaviours of stochastic
timed event graph as the number of transitions tends to infinity. More precisely, we
present sufficient conditions under which the average cycle time tends to a finite
positive value as the number of transitions tends to infinity.

First of all, let us consider a sequences of strongly connected stochastic timed event
graphs {STEG(n) for n > 0} defined as follows :

STEG(n) = (N, M3, {x} (x)})
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where N is the net structure of STEG(n) defined by the set of transitions T and the set
of places P? (not including the self loop places).

We make the following assumptions :
Al : The event graph N™ is a sub-graph of N*+1 for all n > 0, i.e.
Tn g T+ and P ¢ P+l
A2 : The marking is identical for any commun places of two STEGs, i.e.
MB(p)=M§"'(p), VpeP",vn>0
A3 : The firing times are identical for any commun transition of two STEGs, i.e.
XPMk)=XMl(k), VteT",vnk>0

Thanks to assumption A2 and A3, the super indices for the initial marking and the
transition firing times can be omitted. We denote by Mg the initial marking and by

X¢(k) the transition firing times. Of course, M{ is the restriction of Mg on P™ and X} (k)
is the restriction of X (k) on T™.

Let tf(Mg) be the average cycle time of STEG(n). From the monotonicity property with
respect to the net structure presented in (3],

7'(Mp) s 72(Mg) s 73 (Mp) <.

As a result, the average cycle time converges to either a finite positive value or
infinity. In the view of Property 13, the following sufficient condition under which the
average cycle time converges to a finite positive value can be established.

Property 14.
Assume that the following three assumptions A4 and AS hold :

A4. There exists a finite random variable % such that
up, 1) Six X, Vpe ¥rand Y n >0
AS. There exists a positive integer number W such that
w2 Y card(‘{‘“(r,t)), VteT",Vn>0
7eTh
Then,
™My €7, Vn>0
where v is defined by equation (14), ¥™ and ¥"(«, t) are the same as ¥ and ¥(1, t)
defined in section 3.4. with the stochastic timed event graph (N, My, {X(k}) replaced by

STEG(n).

Unfortunately, it is generally difficult to check the assumptions A4 and AS. In the
following, we establish more restrictive but easily checkable sufficient conditions.



17

Let us assume that all the transition firing times are bounded by a finite random
variable a in the sense of convex ordering, i.e.

X(1) S @, Yt e UTH

A sufficient condition for A4 to hold is that all the paths in W™ are bounded in length.
Furthermore, if each transition is connected to a finite number of places, then the
assumption A5 holds.

Property 15.
Assume that the following three assumptions A6, A7 and A8 hold :
Ab. Each transition has at most K; input places, i.e.
card(in(t)) £ K;, Vte Ttand V n>0
A7. There exists a finite random variable a such that
X1 §jex @, Vte UTT
A8. There exists a positive integer number K, such that
L(p) <K, +1,¥Vpe ¥Yrand Vn>0
Then,
(Mp) < inf{x 2 K;E[a] / h(x) > K; log(Kp}, vV n>0
where
L(p) : the number of transitions in path p;

h(x) = sgtég{xe -K> log(E[eXP(ae)])}

Proof :
Let

X =0p+ 0 + . 0K, (26)
where aq, oy, ..., ok, are independent and identically distributed (i.i.d.) random

variables with a; =4 o.. From equation (11), for any path p € '¥0,
#(p'l) = xp— (0) + Zsep' Xs(l) (27)

From assumptions A7 and A8 and the mutual independence of random variables
appeared on the right-hand side of relation (27),
1(p.1) Siex X
From assumptions A6 and A8,
P card(‘{’“(r, t)) <(Ky)
Finally, Property 14 implies that
(Mg <inf{x 2 E[x] / h(x) > K; log(K})}
where
Elx] =K; Ela]
h(x) = %gg{xo - log(E[exp( xO)])} = segg{xe -K, log(E[exp(ae)])}

K2 vteT",vn>0
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QED.

As can be noticed, assumption A8 depends strongly on the initial marking Mg and the
value of K; may be reduced if the initial marking is replaced by M which is reachable
from M. Based on this idea, the following property generalizes Property 15 and
presents some easily checkable sufficient conditions under which the average cycle
time remains bounded as the number of transitions tends to infinity.

Property 16.
Assume that the following assumption A8' holds as well as A6 and A7.
A8'. There exists a positive integer number K, such that

L(Y) / Mgy £K;,Vye IMand V>0
Then
(M) <inf{x 2 K>E[a] / h(x) > K; log(Ky)}, Vn >0
where ' denotes the set of elementary circuits of STEG(n) and L(y) denotes the
number of transitions in y.

Proof :
Let us consider STEG(n). From assumption A8' and Lemma 5 hereafter, there exists a
marking M' reachable from Mg such that

L(p) £K; +1,Vp e ¥(M)

Let us consider another marking M" with M"(p) = Min{M'(p), 1}. Obviously, M" is a 0-
1 marking and all the three assumptions A6, A7 and A8 hold in the stochastic timed
event graph (N?, M", {Xi(k)}). Let n'(M") and n"(M") be the average cycle times of the
stochastic timed event graphs (N?, M, {X(k)}) and (N?, M", {X,(k)}) respectively.

From Property 15,
' (M") < inf{x 2 KyE[a] / h(x) > K; log(K})}
From Property 3,
T(M) < '(M")
Finally, from Property 2,
(M) = t(M")
which implies that

(M) < inf{x 2 K;E[a] / h(x) > K; log(Ky)}, V n >0
Q.ED.
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Lemma 5.
For any strongly connected event graph (N, My}, the following two statements are
equivalent.
(1) There exists a marking M € R(Mp) and a positive integer number K such that
L(p) K +1, Vp € ¥(M)
(ii) There exists a positive integer number K such that
Ly / Myg(y) sK,Vye T
where W(M) denotes the set of elementary paths connecting any two transitions
(top1t1P2---Puty) such that only the first place p; contains tokens and the other places are
empty, i.e. M(p1) 21 and M(p;) =0fori=2,..., u. -

The proof of Lemma 5 is given in appendix A.
In the view of assumption A8', the question naturally arises as to whether it can be
relaxed and replaced by the following assumption :

Ztey my/ Mp(y) <K, Vye T ‘ (28)

The answer is negative. A counter-example is given in figure 1. In the example, there
are n immediate transitions {ty, ty, ..., t,} and n timed transitions {sy, sy, ..., Sp}-

=) / O«

n

A |k %1

Figure 1: A counter-example

Let Xj(k) be the time needed for the k-th firing of transition s; and S;(k) the instant of
the k-th firing initiation of transition t;. Assume that X;(k) for all i and k are i.i.d.
random variables and that they are unbounded.

The assumptions A6, A7 and (28) hold. However, assumption A8 does not hold and
we show in the following that the average cycle time tends to infinity as n increases.

First, the following evolution equations can be easily established :
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S1(k) = Max{Sq(k-1) + X;(k-1), Sp(k-1)} (29)
Si(k) = Max({S;(k-1) + X;(k-1), S;.;(k)}, Vi > 1 (30)

From relation (30), it can be shown that

Spk) 2S,.1(k) 2 ... 2Sy(k) (31)
Again from relation (30),
S;(k) 2 S;(k-1) + X;(k-1) 2 S1(k-1) + X;(k-1) (32)

From relations (31) and (33),
Sn(k) 2 Sl(k) 2 Sl(k-l) + Xi(k-l)

which implies that

Sa(k) 2 Sy(k-1) + Max, . X;(k-1) (33)

<n

From relations (29) and (33),

S$1(2k+2) 2 Sp(2k +1) 2 S(2k) + Max,_, _ X;(2k)
or : .
S1(2k +2)2 % Max {xi(2i)}
By letting k — oo,
7" (Mp) = lim 51_(221%2_) 2 lim 51;21 Max {xi(2j)} = O.SE[ Max {xi}]

Since the random variables X; are unbounded random variables,

lim ﬂ'n(Mo) = oo
N-—jco

6. ASYMPTOTIC PROPERTIES WITH RESPECT TO FIRING TIMES

As shown in Corollary 1, the average cycle time reaches its minimum value when the
transition firing times become deterministic, i.e. tP(My) (see relation (3)). This section
addresses three issues related to this property : (i) the convergence of the average cycle
time to its minimum value tD(My); (ii) the convergence of the average cycle time to
the one of another stochastic timed event graph; (iii) the necessary and sufficient
condition under which the average cycle time remains minimal, i.e. tP(My).

Now consider the convergence of the average cycle time when the firing times tend to
being deterministic. The following property shows that the average cycle time
converges to a minimal value as the firing times converges to constants in first
moment. ’

Property 17.

lim (M) = z° (M)
y—0

where
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y= X E(X, 'mt)+]
teT

Proof :
From Property 7 with z; = m,,

#(Mo) < °(Mo) + T, E[(X, ~m,)"|= 7P (M) +y
teT

From Corollary 1,
7(Mg) 2 = (Mp)
Combining the above two relations, we obtain :

lim 7(Mg) = 7P (M)
-0

QED.

Similar to the proof of Property 17, by using Corollary 2, it can easily be shown that the
average cycle time tends to its minimum as the standard deviations of the firing times
decrease.

Corollary 4.
lim #(Mo) = 72 (Mo)

z—0

where z= 3%, 10,

Consider also two different stochastic timed event graphs. It was shown in [22] that
their average cycle times tend to being identical as their transition firing times
converge one to each other in first moment.

Property 18.

- Consider two stochastic timed event graphs (N, My, {X%(k)}) and (N, M, {th (k)}). Let
rl(Mg) and n2(My) be their respective average cycle times. Then it holds that

)llijfb(”l(Mo)—”z(Mo)Fo

where

=2 Elxt -

In the remainder of this Section, we establish the following property which provides
necessary and sufficient conditions under which the average cycle time remains
minimal, i.e. is equal to TD(My).

Property 19.
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The average cycle time remains minimal, i.e. ®(Mg) = tD(M,), iff there exists an
elementary circuit y* e I for which the following two assumptions hold :
X X
BL. P{Z‘GY' > Ltey ‘}:1, Vyel
Mo(7*) ~ Mo(7)
B2. The firing times of the transitions belonging to y* are deterministic if y*

contains more than one token, i.e.
MO(Y‘) 22 = Xt =gt My, Vte Y‘

The proof of this property is given in Appendix B.

As can be noticed, assumption B1 implies that the firing times of any transition which

does not belong to y* should be upper bounded and

”D - Ztey’mt
(Mo) Mo(7 %)

Assumption B2 implies that in order to keep the average cycle time minimal, random
firing times are not allowed in any critical elementary circuit containing more than
one token. Furthermore, we prove the following result which claims that the average
cycle times of the critical circuits should always be identical in the case of multiple
critical circuits.

Corollary 5.
Assume that the average cycle time remains minimal, i.e. ©(Mg) = tP(Mg). Then, for

any two elementary drcuits ¥ and y* such that
Ztey'mt _ ztey"mt _.D
- Mo =T (Mo)
o(7) o(r") (34)
it holds that :
P{zterxt _ Ztey"xt}_
Mo(7)  Mo(7")

(35)

Proof :
Since t(Mg) = tD(My), from Property 19, there exists an elementary circuit y* € T such

that :
P{z‘e"'xt > Z‘EY'xt}ﬂ
Mo(77) ~ Mo(7) o6

To prove relation (35), it is sufficient to prove that it holds for y* and y'. From

assumption (34),

Ztey’xt}_ [zteyxt:| {ztey‘xt_zteyxtJ
E[Mo(r') = M) | Mo(r) ” Mo(7)

or:
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E{———ztey‘xt } = 2P (Mg) + E{z'e"’xt - ZieyXt }

Mo(7*)  Mp(7) (37)

Assume now that

Ztey'xt > ztey'xt}>
P{Mo(i”’) Mo(7) | °

which implies that there exists A > 0 and € 2 0 such that

P{Ztey.xt 2 Ztey'xt +A}= £
Mo(r*)  Mo(r)

From relations (36), (37) and (39),

S e X
E[#(Yy;)'-]z 70 (Mg)+Ae

This is in contradiction with the definition of nP(Mg) which concludes that

(38)

(39

assumption (38) does not hold. Then,

P{Ztey’ xt _ Ztey'xt } =1

Mo(7*) ~ Mg(7)
QED.

It was also proven in [7] that the lower bound provided by Corollary 1 cannot be
improved by using only the first and second moments of the transition firing times,
i.e. my and o,. We present this property and provide a simple proof below.

Property 20.
Consider an event graph N with initial marking M. Forany my>20and 5,20 forte T
and for any € > 0, there exists a stochastic time event graph (N, Mg, {X;(k)}) with E[X,] =
m, and Var(X,) = (6,)2 whose average cycle time is smaller than tD(Mg) + ¢, i.e. ®(Mg) <
D(My) + &

Proof :
Consider the following random variables,
(I-a)my, with probability p,;
X, =
m, + (o*t)2 / (cem,), with probability 1-py;
with

(Cft)2

(01)° +(am,)?

Pt=

It is easy to check that E[X,] = m; and Var(X,) = (oy)2. From Property 7 with z, = my, we
have : :
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w(Mo) < z°(Mo) + ETE[(Xt - mt)+]

mt(o't)z

= ﬂ'D +
Mol & 2 o+ (ame)?

<xP(Mg)+a I m,
teT
Hence, it holds that for any a <& /Z _m,,
r(Mp) < tP(My) +¢
QED.

7. ASYMPTOTIC PROPERTIES WITH RESPECT TO THE INITIAL MARKING

This subsection is devoted to the asymptotic properties of the average cycle time with
respect to the initial marking. We restrict ourselves to two issues including : (i) the
reachability of a given cycle time by starting from finite initial marking, and (ii) the
convergence of the average cycle time with respect to the number of tokens in a given
place. We prove that any cycle time C which is strictly greater than the maximal
average transition firing time can be reached (see Property 22), while any C which is
strictly smaller than the maximal transition firing time cannot be reached (see
Property 21). A necessary and sufficient condition for the reachability of a given cycle
time C equal to the maximal average transition firing time is also given (see Property
23). We also prove that when the number of tokens in place p* increases, the average
cycle time converges to the maximum of the average cycle times of the strongly
connected components obtained by removing p*.

Let C* be the maximal average transition firing time, i.e.

C’ = MaX{mt} (40)
teT
Property 21.

(Mg = C*, VM,

Proof :
From Corollary 1,
m
(M) 2 2°(Mg) = Maxg't's"—t
rel Mo(7)
where T is the set of elementary circuits. Since each transition is involved in a self
loop (tpt) with one token, then
die,m
7°(Mg) 2 Max =7 > Maxm, =C*
yel' My(7) teT
Q.E.D.
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Property 22.
Let Mg=n1p, where 1,p; is a vector with all its components equal to 1. Then,
7(Mp) <C + Z (41)
teT
Proof :
From Corollary 3,
(Mo)Sﬂ (1|P|)+ Z T—C + z

teT
Q.E.D.

We remind that a similar property has also been shown in [16] by means of a so-called
N-POM constrained operating mode.

The following property presents the necessary and sufficient condition for the
reachability of C* proposed in [15]. A simple proof is provided hereafter.

Property 23.
C* is reachable by using finite initial marking iff the following assumption C1 holds :
C1. There exists t* € T such that

P[X » = Max X :] 1
teT

Furthermore,
(a) If this condition holds, n(n 1,p;) =C*, Vn2>1.
(b) If it does not hold, n(My) > C*, VM,

Proof :
First, let us assume that C1 holds. In this case, for My = n 1,p,, the number of tokens in

any elementary circuit is greater than the number of transitions in it, i.e. Mg(y) 2 L(y).
This implies that
X 3. X
P| X,» > Max ZierXe > P| X > Max =7~ P[Xt--MaxX] 1
yer Mo(7) rer  L(7) teT

From Property 19,
7t( n1|p|) =7ID(I'1 1[p|) =C*

We now prove that n(My) = C* implies that C1 holds. From the definition of C*, there
exists a transition t' such that

E[Xy] =C* ,
From Property 21 and Corollary 1, n(Mgp) = C* implies that

(M) =nP(My) = C*
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Combining this relation with Corollary 5 and Property 19, it holds that for the self loop
containing t' :

F ZEYX‘}:l

P Xt"2 MaX
rel' Mo(7)

which implies that

P Xt' = MaxXt]=l
teT

QED

We now consider the asymptotic behaviours with respect to the number of tokens in a
give place. Consider a given place p* and a sequence of initial markings M,, defined as

follows :

Mp(p*) = Mg(p") +n and My (p) = Mg(p), Vp = p*

Consider the sequence of stochastic timed event graphs STEG(n) = (N, M, {X\(k)}). Let
n(M;) be the average cycle time of STEG(n). From Property 3,

Tt(Mo) 2 R(Ml) 2 R(Mz) 2.

The following property provides the limiting value of these average cycle times.

Property 24.
lim 7(Mp)= Max 4;(M)
n—oo I<i<vy

where A;(Mg) is the isolated average cycle time of the i-th strongly connected

component obtained by removing p*.

The proof of this property is given in Appendix C. From this property, the following
decomposition property given in [3] can easily be proved.

Property 25.

Consider a stochastic timed event graph (N, My, {X(k)}) where N is connected and is
composed of v strongly connected components. Let A;(Mg) be the isolated average cycle
time of the i-th strongly connected component. Then,

Max{ lim S, (k /k}:M A (M
] lim S1(8)/ = M 34(Mo)

Proof :
First, according to [1], there exists a positive constant p;(My) for each strongly

connected component N; such that
lim Sy(k)/ k = lim E[Sy(k)]/ k =u;(Mp), a.s. ¥V tof N;
k—)w k—)o-a
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According to the monotonicity property of the average cycle time with respect to the
net structure,
Max{ lim Sy(k)/ k} = Max u;(Mp) 2 Max 4;(My)

teT lk—oo 1<i<v 1<igv

Let us consider a strongly connected event graph N* obtained from N by adding
additional places. Consider the stochastic timed event graph (N*, M*, {X,(k)}) where
M*(p) = My(p) if p belongs to both N and N*; otherwise M*(p) = n. Let n*(n) be its
average cycle time. '

From the monotonicity property of the average cycle time with respect to the net

structure,
7 *(n) 2 Maxpu;(Mg), ¥n
1<iv

By letting n — oo, Property 24 implies that :
Maxu;(Mg) € lim z*(n)=MaxA1;(Mg)
1<iv n—oo 1siv

which yields that :
Max{ lim St(k)/k}= Max ;(Mg) = Max A (Mo)

teT Lk—oee 1<isv 1€igv

QED.

8. STOCHASTIC TRANSFER LINES

Consider a transfer line consisting of a series of K machines (2, 26,, ..., M) separated
by K-1 buffers (By, By, ..., Bk.1). The buffer capacities are respectively Cy, C,, ..., Cx_;-
The processing times are generated by a set of random variable sequences {X;(k)} where
Xi(k) denotes the processing time of the k-th part on machine ;.

M, B, M, B, M,
X4 ¢ X, C, X3

Figure 2: A three-machine transfer line

~ The behaviour of the system can be described as follows. A part is loaded from outside
the system on the first machine #M7. After being processed by My, it is unloaded from
M7 and queues in the first buffer By if By is not full, i.e. contains at most C; - 1 parts.
Otherwise, it stays on M; and M7 is blocked. This blocking situation persists until a part
has been removed from the buffer B;. Then, the part is unloaded from #f; and queues
in By. It goes on in this manner through all machines and leaves the system after
being processed by the last machine.
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The Petri net model of the transfer line is illustrated in Figure 3 (see [23] for more

detail).
O% G\

[ [ [

1 2 3
® © @

|
t3W

O
L, O , U

3 3

=O==0 OO0 O
t, 0, t W, 0

W, U Q L t, U, Q, L3

-

1

Figure 3: The Petri net model of a 3-machine transfer line

In this Petri net model, only the K transitions t; are timed transitions and the

transition firing times {Xt(k)};:;1 for all t e T are defined as follows :

XL, (k) = Xy,(k) =0 Vi=1,2,..,Kand Vk
Xy (k) = X;(k) Vi=1,2,..,Kand Vk

Finally, we denote such a Petri net model by the triplet (N, Mg, {X;(k)}). It is a strongly
connected event graph (also called marked graph). There are 2K-1 elementary circuits.
We denote by y(2f;) the elementary circuit modeling the state evolution of machine
M; and by y(B;_.;) the elementary circuit modeling the storage space constraint of
machine Mi and buffer Bi-1, i.e. y(;) = (;L;0;t;W;U;l;) and y(Bj.1) = (Fi.1U;.1Qi-
1LiOtiW U F;.1). Of course, y(M;) contains one token and y(B;.;) contains C;y + 1
tokens. In the following, the circuits Y(;) are called machine circuits and the circuits
¥(B;.1) storage circuits.

From Property 24, it holds that :

Property 26.
lim (M) =Max{A1(My),A2(Mo)}

Ci—1—ee
where A1(Mp) is the average cycle time of the transfer line composed of (M, M, ..., M;_
1) and A»(Mj) that of the transfer line composed of (M, M4, ..., My).

Property 27.
Let us assume there exists a finite random variable a such that
Xi(1) Sjex @, Vi
Then,
(Mg <inf(x 2 2E{a] / h(x) > log(3)}
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where
h(x) = sogg{xe - 210g(E[eXP(a9)])}

Proof :
By the monotonicity property with respect to the buffer capacity in [23], we only need
to consider the zero buffer case.

Remark that when the buffer capacities are reduced to zero, an equivalent Petri net
model can be obtained as shown in Figure 4.

I I, I

3

1

L, O

1 1 1 LZ 02 tZ W2 L3 03 t3 W3 U3

Figure 4: The Petri net model of a 3-machine transfer line without buffers

Consider the following initial marking :

My(Izp-1) = 1, M(O54) = 1 and My(p) = 0 for all other place p
For this marking,

Ar (1) S ap +ap, VT, te T
where a1, ap are independent and o] =5 oy =5, @. We can notice that in this timed
event graph, all the self loops related to the transitions can be removed since each
elementary circuit contains exactly one token. Thus,

W= l\tdeaTx{card(ﬁ‘(t))} =3

From Property 11,
(Mp) <inf{x 2 2E[a] / h(x) > log(3)}
' QED.

Remark that this property proves the conjectures presented in [10] which claims that
the productivity of a production line tends to a positive value as the number of
machines increases.

Remark that similar results can be obtained in the case of assembly/disassembly
systems and kanban systems.

9. CONCLUSION
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This paper addresses the performance evaluation and the analysis of asymptotic
properties of stochastic timed event graphs. First, upper bounds of the average cycle
time are derived by applying large deviation theory. These bounds are similar to but
tighter than the bounds proposed in [2].

Based on these new bounds, some asymptotic properties with respect to the net
structure are established. We propose in particular sufficient conditions under which
the average cycle time tends to a finite positive value as the number of transitions
tends to infinity.

We also address the asymptotic behaviour of the average cycle time with respect to the
transition firing times. It was proven in [3, 7] that the average cycle time reaches its
minimum when the firing times become deterministic. We establish the convergence
of the average cycle time to this minimum, the necessary and sufficient conditions
under which this minimum is obtained, and the mutual convergence of the average
cycle times of any two stochastic timed event graphs.

Another issue addressed is the asymptotic behaviour with respect to the initial
marking. We prove that, by putting enough tokens in each place, it is always possible
to approach as close as possible to the minimum average cycle time equal to the
maximum value of the average transition firing times. A necessary and sufficient
condition under which this minimum is reachable is proposed. We also provide the
limiting value of the average cycle time when the number of tokens in a given place

increases.

Applications to manufacturing systems have been presented. We prove in particular
that when the capacity of a buffer in a transfer line increases, the throughput rate tends
to the minimum value of the throughput rates of two shorter transfer lines obtained
by removing this buffer. We also prove the conjecture presented in [10] which claims
that the throughput rate of a transfer line decreases to a positive value when the
number of machines increases.
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APPENDIX A. Proof of Lemma 5
Lemma 5.
For any strongly connected event graph (N, My}, the following two statements are
equivalent.
(i) There exists a marking M € R(Mg) and a positive integer number K such that
L(p) <K +1, Vp e ¥(M)
(ii) There exists a positive integer number K such that
L(Y) / Mgly) <K, Vye T
where W(M) denotes the set of elementary paths connecting any two transitions
(top1tiP2.--Puty) such that only the first place p; contains tokens and the other places are
empty, i.e. M(py) 21 and M(p) =0fori=2, ..., u

In the proof of this Lemma, we need the periodic operating mode of deterministic
timed event graphs (see [13]). This operating mode is defined by the first firing
initiation instant of each transition Sy(1) and a cycle time «. The other firing initiation

instants are determined as follows :

S(k) = S¢(1) + a k, Vte T and Vk20

Proof :
i— il
Since there exists a marking M e R(Mp) and a positive integer number K such that
L(p) <K +1, Vp e ¥(M)
As a result, there are at least f L(y)/ K] marked places in any elementary circuit y in
marking M which implies that
Mo(y) = M) 2[L(y)/ K] 2Ly /K
or:
L&) / Mp(y) sK
it = 1.
Let us consider a deterministic timed event graph (N, My, X,(k)} with Xy(k) = 1. Since

S L(y) | _ Liey!
K22 1\74;;{ Mo()’)}_ lﬁ‘é‘é‘{mom}'

Lemma A presented hereafter implies that there exists a periodic operating mode
{Sy(1)} with cycle time K where S(1) for all t € T are integers.

Since the transition firing times are equal to 1, this periodic operating mode can be
described by a discrete time model. Each transition starts to fire at the beginning of
some elementary time periods t and ends the firing by the end of the same elementary
periods T.
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The state of the system (or marking) becomes periodic after the last transition has

started its firings, i.e. T2 1t = Max{S¢(1), Vt € T}. Thus,
M =Mk VT2 19

where M; is the marking at the beginning of period t. From this instant on, each
transition fires exactly once in any time interval of K periods, i.e. [t, t + K- 1].

In the following, we prove by contradiction that
L(p) <K +1,Vp e ¥(Mqy)

Assume that there exists a path (t;pytsps ... ty) with n > K +1 such that only the first
place pq contains tokens and the other places are empty, i.e. Mq,(py) 21 and My, (p;) =0

fori=2,...,n-1.

Since the places p; ... p,.1 are empty at instant 1, the time needed to fire the transitions
t2 ... ty is equal to the sum of their transition firing times, i.e. (n - 1) > K. This implies
that at least one of the transitions t; ... t; cannot fire in the time interval [tg, Tg + K - 1]
which is in contradiction with the fact that each transition fires exactly once in the
time interval [ty 19 + K - 1].

\tl pl 2 p2 t3 p3 t4 pd

Figure 5: An elementary path
QED.

Lemma A.
Consider a deterministic timed event graph (N, My, X{(k)} with X\(k) = m,. Assume
that the transition firing times are integer number. For any integer number a such

that
. Max{z_fn}
rel | Mo(7) (al)

there exists a feasible periodic operating mode {S;(1)} with cycle time a where S(1) for
all t € T are integers.

In the proof of this Lemma, we use a generalization of Farkas-Minkowski theorem on
the compatibility of linear systems given in [6].
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Theorem Al.

One and only one of the two following systems has a solution :
u20

S;:Ax2b S, duTA=0
uTb>0

where the elements of A, u, b and x are integers.

Proof of Lemma A :
As shown in [17], {S(1)} is a feasible periodic operating mode with cycle time « iff the
following relations hold :
Sep(1) + mMep SSpe(1) + @ Mg(p), Vpe P
or:
Spe(1) - Sep(1) 2 mep-a Mg(p), Vpe P (a2)

This linear system can be rewritten in the following matrix form :
-Cx2b (a3)
In relation (a3), x is a integer vector with x, = S,(1) fort € T, b is also an integer vector
with bp = m.p- @ Mg(p) for p e P, Cis the inddence matrix of the event graph defined
as follows :
-1, iftep’andte’p
Cpt=11 ifte"pandtep’
0, otherwise

Consider also the following linear system :
u0
—u'C=0
u'b>0 (ad)

As can be noticed, any solution u which satisfies the first two relations of system A4 is
a p-invariant. In the case of event graphs, it is well known that the set of minimal p-
invariants corresponds to the set of elementary circuits.

Consider the minimal p-invariant related to an elementary circuit ye I, ie. up=1ifp
€ yand u, = 0 otherwise. For this p-invariant,

u'b= 3 (m.p—aM(p))= Tm - aMy(7) <0
pey tey
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Since any p-invariant is a linear combination of the minimal p-invariants, the system
(a4) does not have any solution.

Thus, theorem Al implies that the linear system (a3) has at least one integer solution.
QED.

APPENDIX B. Proof of Property 19
Property 19.
The average cycle time remains minimal, i.e. t(Mg) = tD(My), iff there exists an
elementary circuit y* € I" for which the following two assumptions hold :
BL P{Z‘e’”x‘ 5 ZterXt } =1, Vyel
Mo(r*) — My(7)
B2. The firing times of the transitions belonging to ¥* are deterministic if y*

contains more than one token, i.e.
Mo(¥) 22 = X;=gm,, Vte v*
Proof :
In the following, we prove this property by showing the following four claims :

Claim 1. If there exists y* € I such that assumption Bl and the following assumption
hold :

(1) Xy =gy My, Vte v*
then n(Mg) = tP(My).

Claim 2. If there exists y* € I' such that assumption B1 holds and M(y*) = 1, then n(Mg)
= tP(Myp).

Claim 3. If there exists y* € I" such that the following assumptions hold :
() P(Mo) = T, _.. my/MEr)
(i) M(y*) 22

(iii) Assumption B2 does not hold
then nt(Mg) > tD(My).

Claim 4. If there exists Y* € I" such that the following assumptions hold :
(i) tDMy) = Zter m,/ M(y*)
(i) M(y") =1
(iii) Assumption B1 does not hold
then nt(Mg) > tP(Mp).
QED.
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The following notations are needed in the proofs :
Yt =(p(1{1]p(2}t(2] ... plult{u])
uip) = Ztep X where p is an elementary path

Hp, K = T, ) Xy(k)

Proving the claims requires the following result.

Lemma B.
For two non-negative random variables X and Y (independent or not) such that P{X >
Y} > 0, there exists A> 0, & >0, &y > 0 and €, > 0 such that:
@) P(X2Y + A} =&
() P{lY<aand X2a + A} =€
Proof of Lemma B :
Let us first prove (i). Let us observe that the event {X > Y} can be expressed as follows :
{X>Y}=U{X2Y+1/n}
n=1
Since the right-hand side term is the union of monotone events, we have
im P{X2Y+1/n}=P{X>Y}>0
Nn—oo

which implies that A > 0, €; > 0 such that:

PX2Y + Al =g
We now prove (ii) by contradiction. For this purpose, assume that for any real value a
> 0, the following relation holds :

PlY<aand X2a +A/2} =0 (b1)
Notice that the probability P(X 2 Y + A} can be expressed as follows :

P{X2Y+A} = % P{X2Y+A /n%sY<(n+l)%}
n=0

n=0
From assumption (b1), we have:

P{xz(n+1)-‘23+i;- /n%sy<(n+1)i;-}=o, vn

= A A A A
s ZP{Xz(n+127+E /nESY<(n+1)E}

which implies that
PIX=2Y+A}=0
This contradicts the fact that P{X > Y + A} =¢; > 0. As a result,
PflY<aand X2a +A/2}>0
QED.

Proof of Claim 1 :
From assumption Bl,

(M) = ):te " m,/M(y*)
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Combining with assumptions B1 and (i),

P{f:D(MO) 2 %&} =1, Vyel
o(?) (b2)
Since the random variables X; for all t € T are mutually independent, relation (b2)
implies that all the random variables X; are upper bounded, i.e. X; < by with by = m,, V't
€ y*. Furthermore,
> Zteybt
Mo(7)

As a result, tP(My) is equal to the average cycle time of the deterministic timed event .
graph (N, Mg, {Y(k)}) with Y(k) = b,. From Property 4, we have:

m(Mp) < rD(Mp)
which together with Corollary 1 implies that

K(Mo) = RD(MQ)

z°(Mg) , Vyel

QE.D.

Proof of Claim 2 :
From assumption B1, we have:

D =

rP(My) = Zter m

Since the random variables X, for all t € T are mutually independent, assumption Bl
implies that the random variables X, for all t ¢ y* are upper bounded, i.e. X; < b; and
the random variables X, for all t € y* are lower bounded X, i.e. X; 2 a;. Furthermore,

.b + +a
ztey\y : zteyhy ! ,VyelCandy=7y*

Mo(7) (b3)

Tt = Zte)’.at 2

Consider a second stochastic timed event graph STEG' = (N, My, {Y(k)}) with Y(k) =
b, Vt € v* and Y (k) = X\(k), Vt € y*. Let ©(M) be its average cycle time. From Property
4, we have:

(Mp)< ®'(Mp) (bd)
In the following, we prove that ©t'(My) = tD(My) which together with Corollary 1 and
relation (b4) implies that ©(Mg) = nD(M).

Consider the deterministic timed event graph DTEG = (N, My, {Z,(k)}) with Z\(k) = b,,
Vte v*and Z(k) = a,, Vt € y*. Its average cycle time is equal to «".

As in the proof of Lemma 5 in appendix A, we make use of a periodic operating mode
of DTEG {S(1)} with cycle time n*, i.e.
St(k) = St(l) + (k‘l) TC’, Yte T
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Consider the first transition of y*, i.e. t{1] and consider a firing initiation instant in
steady state, i.e. instant s = Sy1j(k) such that s 2 Max,_ .. 5;(1). Let M" be the marking at

this instant. Clearly,
M (pl1]) = 1.

Let T" be the set of transitions (not including t[1]) that are enabled by marking M" and
r(t) the remaining firing time of transition t for all te T".

Let us consider the set ‘¥ of elementary paths (t;ptypa...ty-1Puty) with M(p;) =0 for 1< i
<v-1. Forany pathpe ¥, letp~=t, p* =t,, p*={tp, ..., ty.1}, n{p) = M"(p) and :

2seprZss fp~eT"
Alp)=
r(p‘)+ ZSEP.ZS, fp eT
Let us consider the following two sets of elementary paths :
W(t)={pe¥/p e T, p*=tand p'ny =}
¥Y'(t)=(pe ¥/ pe¥,pt=tand p'ny =}

From the definition of the periodic operating mode, in the time interval [s, s + n*], any

transition t € T" should fire once, and any transition t € T" should starts a new firing

and its remaining firing time reaches r(t) at instant s + n*. As a result, for any t e T and
for any path p € W'(t),

A(p)+Z . ~rlpT)<n*, ifpTeT andn(p)=1

(P)+Z . ~1{p") p (0) )

Alp)+Z . <=*, ifpTeT"
(P)+Z ¢ p ©6)

. . . . i-1
Furthermore, let us observe that transition t[i] starts to fire at instant Zj:lat[j]. Thus,

for any t € T and for any path p € ¥"(t),

i . BN (S . e o+ . -
Ej:lathl +l(p)+Zp+ r(p )S n*, if p* €eT"and n(p)=1 o7
agg+Ap)+Z , <7, if p* e T"
21y + (p)+ ot =T rp € 8)
For any t{i] € v*,
Mp) < Tithan, VP ¥ (Hi]) with p~ = t{Kk] ©9)
1 o

Notice that for any p e W"(t[i]) with p~ = t(k], it holds that k < i. Otherwise,
t{klplk+1]t{k+1]p(k+2] ... pli]t[ilp forms an elementary circuit without token.

Let us consider now a third stochastic timed event graph STEG" = (N, M", {Y(k)]).

Initially, the transitions of T" are under firing with the remaining firing time equal to
r(t). Let x'(M") be the average cycle time of STEG". From Property 2,



T (Mg)= 7"(M") (b11)

In the following, we prove that n"(M") = xD(Mg) which concludes that n'(Mg)=rP(My).
To this end, we consider the following constrained cyclic operating mode. First, the
transitions of T" continue their firing initiated previously and the other transitions
start to fire as soon as they are enabled. When a transition t of T" with t=t[1] is enabled
again, it starts to fire until the remaining firing time is equal to r(t). At this moment,

this transition is frozen until the instant
V(l) = Ztey’xt(l)

In the following, we prove that transition t[i] of y* starts to fire at instant
i-1

Hyij(1) = Z Xy;(1)
=1 (b12)
and that the system returns to the initial state. As a result, the second cycle can begins
at instant V(1). This constrained operating mode is a renewal process and its average
cycle time n¢(M") satisfies the following two relations :

xc¢(M") 2 ="(M") (b13)
and

rM”") = E[V()] = xD(M) (b14)

Relations (b13) and (b14) together with Corollary 1 imply that t'(M") = aD(Mj).

We now need to prove that transition t[i] of y* starts to fire at instant Hy(;;(1) and

i-1
Hein(1) = Z Xyg0(1)

=1 (b15)
and that the system returns to the initial state at instant V(1).

We now prove relation (b15) by induction. Since Hy1j(1) = 0 from the definition of the
constrained operating mode, the relation (b15) is true for i = 1.

Assume that relation (b15) is true up to i-1. Clearly,
Hy;)(1) = MaX{ Max u(p), Max {H -(M+X - (1)+u(p)}}

pe¥'(tli]) ,pe‘{‘"(t[i]) p
From relation (b10),

i-1 i-1
H(p)s Tag € IXy(),  Vpe¥ (L)
= =

From relation (b9), for all p € ¥"(t{i]) such that p~ = t[k], since k < i,

k-1 i-1 i-1
Hp_ (1)+Xp_ (1)+/J.(p)$ EXq(1)+Xk(1)+ h ag < qu(l)
=1 =k+1 i=1

Combining the above three relations,
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i~1
Hyi)(1) s Z.lxt[j](l)
]:‘

Since there is only one token in y*,
i-1
Hyi)(1)2 X Xy;(1)
=1 ‘
which implies that relation (b15) is true for i. Hence it is for all 1 <i < u by induction.

Let Hy(1) > 0 be the instant a firing of transition t can be initiated. To prove that the
system returns to the initial state at instant V(1), we need to show that.: (i) any
transition t ¢ T"\p* has completed one firing by V(1), i.e. H(1) < V(1) - by, (ii) any
transition t € T" can start a new firing by instant V(1) - r(t), i.e. H(1) < V(1) -r(t). These
claims are proven in the following. '

For transition t ¢ T", it holds that
H,(1) = Max{ Max ,Max{H_l+X_l+ }
(=M g o), M (1,010t
From relation (b6),
ulp)sx -b, SV(-b,, VpeW¥(t)
and from relation (b8), for all p € ¥"(t) such that p~ = t[k],

k-1 u o
H _(1)+X _(D+u(p)s TXgp(D)+ XD+ T ayjj—be <V(1)-by
P P j=1 Fk+1

These three relations imply that :
H,(1)sV()-by, VteT'uyr*

For transitions t € T,

Ht(l)=Max{r(t)'pev%%mm#(p )’pe‘P"I(\;I)%(p)Sl{HP- (l)+xp’ )+ ule )} }
From relation (b5), for all p € ¥'(t) such that n(p) <1,

u(p) S 7 ~(be ~r(t)) S VD~ (b, ~£(8)
From relation (b7), for all p ek‘{‘"(t) such that n(p) <1 and p~ = t[k],

H _(1)+X _()+plp)< let[j](1)+xt[k](1)+ i ayj) — (by — r(t)) < V(1) = (by — (1))

P p j=1 =k+1
~ These three relations imply that :
H,(1) < V(1) - (by —r(t))
QED.

Proof of Claim 3 :
In this proof, we first consider the case where the event graph is an elementary circuit,
i.e. N = v*. The general case is then considered.



Case1:N =vy*.
First, we remind that any marking M such that M(y*) = n is reachable from the
following initial marking :
Mo(p[1]) = n, My(plil) = 0 for 2<i<u
Thanks to Property 2, we only need to consider this initial marking. From the

evolution equation (1), we have :
St (k)= Max{Stm(k -1+ Xtm(k - 1),St[u](k -n)+ Xt(u](k - n)}

(b16)
and
St[i](k) = Max{St[i](k -1+ Xtm(k -1), st[i—l](k) + Xt[i_u(k)}, Viz2 b17)
Combining these two relations, it can be shown that :
Stni(k) 2 Sy (k - 1), Vi20 (b18)
i-1
St[l](k +1 n) 2 St[u(k) + .Zy(y’,k +j n), Vi20
=0 (b19)
Combining the above two relations,
i=-2
Syni(k+in) 2 Syyy(k+(i-1)n+1)2Syqy(k) + Tu(r* k+jn+1)
=0 (b20)

From relations (b20) and (b19),
i-1 i-2 i-1
Syrp(k +in)—Syyy(k) 2 .Zbu(y’,k +jn)+ Max{O, .Z'bu(y’,k +jn+1)- .Zou(y”,k +j n)}
= j= F
By taking expectation,
E[Stm(k +i n) - St[l](k)] > innD(Mo) + W(i)
with
i-2 i-1
W(i)=E Max{0, Y u(y*.k+jn+1)- Y u(y* k+jn)
j=0 j=0
From this relation, we have
E[Syn(k i n+1)] 2 E[Syy((k - 1)i n +1)] +i na® (Mg) + W(i)
2.2 k(i nftD(Mo)+ W(i))
which implies that

(M) = lim E[Syu(k i n)]

D :
Jim ——="— 2r°(Mg)+W/(in)

In the following, we prove that there exists i such that W(i) is strictly positive which
concludes that t(Mg) > tP(M,).

Since assumption B2 does not hold, p(y*, k) #5 E[n(y*, k)] = ntP(My) which implies
that there exists A > 0, €; > 0 and &, > 0 such that
P{u(y*, jn + k + 1) 2 neD(Mp) + A} = g

and



41

Plu(y*, jn + k) s netP(Mp)} = €3

Let V be the following event :
u(y*, in+k+1) 2 nrP(Mp) + A, V0< i< i-2 and p(y*, jn + k) < ntP(My), V0 <j <i-1
Since the random variables u(y*, jn+k+1) V0< j< i-2 and p(y*, jn + k) VO §j <i-1

mutually independent,
P{V} = g;11g,l

are

and

W2 P{V}E{Max{o,ig'#(y*,k +jn+1)- iil#(y*,k +]j n)} / V]

j=0 j=0

> p{v}Max{o,(i - 1)(n7zD(M0) + A) -1i nzrD(Mo)}

2(i - (8 +nz°(Mo)))(er) (o)

which yields that W > 0, Vi > 1 + ntP(Mg)/A.

Case 2 : General case..
Consider a new stochastic timed event graph (N*, My, {X(k)}) uniquely composed of
places and transitions of y* and let n'(Mg) be its average cycle time. From the
monotonicity property with respect to the net structure in [3],

(Mg 2 n'(Mg)
From Case 1,

K(Mo) 2 R'(Mo) > TtD(Mo)

QE.D.

Proof of Claim 4 :

In the following, we first consider two special cases in which assumption B1 does not
hold. Then, we conclude the proof by showing that the general case can be reduced to
one of these special cases.

Case 1. The event graph is composed of the elementary circuit y* and an additional
elementary path (t[klplu+1]t{u+1]...plu+v]tiu+v]lplu+v+1]t[1]). There is a second
elementary circuit y = (t(1]p[2] ... t{k]plu+1jtfu+1] ... plu+v]tlu+vlplu+v+1]t[1]). We
assume that Mg(y) = v and

P{u(y*)<u(r)/ v}>0 (b21)
Without loss of generality, let us assume that My(p(1]) = 1 and My(p[u+v+1]) = v. By
similar arguments as in the proof of Claim 3,

Sy1)(k + v) = Sypqy(k) 2 Max{ Zou(y Jk+1),u(y k)}

By taking expectation, we have :
E[Sy1)(k + ) - Sy (k)] 2 vaP(Mp)+ W
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where
v-1
W =E|Max{0,u(7,k)= Y u(y* k+i)
i=0
Using similar arguments as in Claim 3, we only need to show that W > 0. From

Lemma B and assumption (b21), there exists a > 0, € > 0 such that
P{u(y.k)/ vz a+Aand u(y*,k)<a}=¢
Consider the event V defined as follows :
u(y,k) 2a+A,u(ytk)<aand u(y*, k+i)<aVio<i<v
The probabxlity of V can be determined as follows

P(V]= {“(y’k)>a+A and u(y* k)<a} [TP{u(r* k+i) < o}
i=1

v—
= e [IP{u(r* k+i) < a}
i=1
Since u(y*, k+i) for all i 2 0 are i.i.d. random variables, we have:
k
P{u(y* k+i) < a} =P{u(y* k)< a} 2 P{ H(y.k) > a+Aand u(ytk) < a}= £

which yields that

P{V}2>ev
Finally,
v-1
W2 E[Max{o,u(y,k) - Yu(ytk+ 1)} / VJP{V} 2e%vA>0
i=0

Case 2. The event graph is composed of two separate elementary circuits y* and y =
(plu+1itfu+1] ... plu+u’]t{fu+u’]plu+1]) connected together by means of two additional
places p’ and p” where p’ (resp. p") connects transition t{u+1] to t[1] (resp. t(1] to t[u+1)).
We assume that

P{# y<u(r)/ U} >0 (b22)

with v = My(y).

Without loss of generality, let us assume that My(p[1]) = 1, My(plu+2]) = v, My(p") = v
and My(p) = 0 for all other places.

By similar arguments as in the proof of Claim 3, for n 2 ny and ngv 2 v,

nv-1
Syp(k +nv) 2 Syyp(k)+ Zu(r* k+i)
i=0

(b23)
n-1
Sy1)(k +nv) 2 Sy q)(k + 1) 2 Sy (k +ngv) + ' S u(y, k+iv)
1=n( (b24)
St[u+ll(k +ng v) 2 St[u+l](k +v)2 St[l](k) b25)

Combining the above relations,
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nu-1 n-1
Ser1j(k +nv) = Sypqy(k) 2 Max{ Tu(yrk+i), Tu(r.k+ iv)}
i=0 i=ng

By taking expectation, we have :
E[Stm(k +nv)- Stm(k)] > nurl (Mg) + W(n)
where
n-1 nu-1
W(n)=E|Max<0, ¥ u(y k+iv)— Ju(y*k+i)
i=ng i=0
By similar arguments as in Claim 2, we only need to show that W(n) > 0 for some n.

From Lemma B and assumption (b22), there exists a > 0, € > 0 such that
Plu(r.k)2a+A}l=g, VK

Plu(r*k)sa}=¢, vk
Consider the event V defined as follows :
u(r.k+iv)

2a+A Vng<si<nand u(y*k+i)<aV0<i<nv
v

The probability of V can be determined as follows :
PVI=(e1)" "0 (en)™"
Finally,
n-1 nv-1 .
W(n)2P[VIE|Max{0, Yu(y,k+iv)- ¥ u(y ,k+i) /V
i=ng i=0
2 (&))" (£ )" (nvA - ngu(a + 4))
which implies that:

W(n)>0, Vn> ny(a+d)

VA

Case 3. General case.
Since assumption B1 does not hold, there exists y e I" such that

P{u(y®) < uy)/Mp()) >0 (b26)
In the following, we distinguish two cases according to whether y* and y are connected.

Case 3.1. yand y* are not connected.
In this case, let us express y as (p{u+1]t{u+1] ... plu+v]t{u+v]p{u+1]). Let us introduce
two implicit places p' and p" connecting t{u+1] to t[1] and t[1] to t{u+1] respectively.
Since N is an event graph, we can take My(p") (resp. Mp(p")) as being equal to the token
distance from t{u+1] to t[1] (resp. t(1] to tlu+1]). Let (N', Mg, {X{(k)}) be this new timed
even graph and let n'(My) be its average cycle time. Clearly,

' (M) = n(My) (b27)
Let us consider a third timed event graph (N", My, {X\(k)}) obtained from (N', My,
{X¢(k)}) by removing all places and transitions except y, Y* and {p’, p"}. Let n"(Mj) be its
average cycle time. From the monotonicity properties in [3], we have:



"(Mp) < t'(Mp) (b28)
According to Case 2,
n"(Mo) > ED(M())

Case 3.2. yand y* are connected.
Without loss of generality, let us express yas 6,p102p5...0npn Where 61, 05, ..., 6, are sub-
paths of y* whose extremities are transitions, and pq, p, ..., pn are paths whose

extremities are places, and

piNY =9 :
Let t[b(i)] and t[e(i)] be the first and last transitions of o; respectively. Without loss of

generality, assume that

t{b(1)] = t{1] and My(p(1]) =1
We can observe that each path p; corresponds to an elementary circuit y; = &;p; where
g; is the subpath of y* connecting transition t[b(i+1)] to t[e(i)]. In the following, we
prove that at least one of these circuits does not satisfy assumption B1. To this end, we
only need to prove that whenever

p(y) / Mo(y;) S u(y®), v1sisn (b29)
it holds that

w(y)/ Mo(y) < u(y*)

First, for all y; such that b(i+1) > e(i),
1y = upy + u(o;) and Mo(vy) = Mo(py) + 1
Meanwthile, for all y; such that b(i+1) < b(i) < e(i),
w1 = ulpp) + 1(g;) and Mo(yy) = Mg(py)
Relation (b29) thus becomes :
1ipy) + w(3;) - uy*) < Mo(py) u(y*), if b(i+1) > e(i) (b30)
ripy + W(F;) S Mylpy 1y, if b(i+1) < e(i) ®31)
By summing all relations of (b30) and (b31), we obtain

Sulpi)+ 2a(o) Su(r) Moo

which implies that

u(y)/ Mp(y) < u(y?)
We still need to prove that the sum of the second terms on the left-hand side of
relations (b30) and (b31) is equal to Xu(o;). For this purpose, let us consider the

counting process defined by the following algorithm.

Algorithm.
Stepl. Set NO(t) = N1(t) = N2(t) = O forallte T
Step2.Fori=1ton
2.1. For t* = t[b(1)] to tle(i)], set NO(t*) := NO(t*) +1;
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2.2.if b(i+1) > b(i),
For t* = tle(i) +1] to t[b(i+1) - 1], set N1{t*) := N1(t*) + 1;
else
For t* = tle(i)] to t[b(i+1)], set N2(t*) := N2(t*) + 1;

Clearly, the sum of the left-hand side terms of relations (b30) and (b31) is equal to :
n
5. 4(p;) + Zyer(N2() - NIOIX,
i=1

We notice that in this counting process, the pointer t* draws a circuit along y* which
implies that

N2(t) = N1() + NO(t), Vte y*
Obviously, NO(t) = 1 for all t belonging to some o;; otherwise NO(t) = 0. That is :

n
1, Vte UO’i

N2(t) - N1(t) = =
0, Vte UO’i

i=1
and the proof is thus completed.
QE.D.

APPENDIX C. Proof of Property 24
Consider the sequence of stochastic timed event graphs STEG(n) = (N, M, {X\(k)})

where the initial marking is defined as follows :

Mn(p*) = Mp(p*) + n and My(p) = Mo(p), Vp = p*

Let =(M,,) be the average cycle time of STEG(n). From Property 2,

©(Mg) 2 (M) 2 n(My) 2 ...

Property 24.
lim z(Mp)= Max 4;(Mp)

N—3oo 1<isv
where A;(Mj) is the isolated average cycle time of the i-th strongly connected

component obtained by removing p*.

Proof :
Consider the strongly connected stochastic timed event graph related to the i-th
strongly connected component obtained by removing p* and let us denote it as

Let



*= Max 4;(M
w" = Max 4;(Mo) 1)

From the monotonicity property of the average cycle time with respect to the net
structure in [3],

E(Mn)Zli(Mo), Vi,Vn
which implies that

lim #{M,)=>x*
Nn—»oo ( f\) (Cz)

In the following, we intend to show that :

lim #(M,)<z*+e
n—ee (c3)

for all € > 0. Thus, relations (c2) and (c3) imply that :

lim #(Mp)=n*
n-—yoo

To prove relation (c2), let us notice that the strongly connected components can be
denoted in such a way that any component N;j has not input places from component
Nj with j > i, i.e. there do not exist any place belonging to P - {p*} which connects N; to
N;.

It can be proven that there exists a marking M',, reachable from the initial marking
My, such that :

v

Mo (p) = an(p)' Vpe 'UlNi
i=

Let us consider a new stochastic timed event graph (N, M',,, {X{(k)}) and let its average
cycle time be n(M'y,,). From Property 2,
M’y = ®(Mp) ‘ (c4)

Consider also the following constrained operating mode of (N, M'p,, {Xy(k)}). From the
definition of M'y,, each transition of any strongly connected component SCSTEG(i)
can fire n times, whatever the firing of transitions belonging to other components. Let
Hi(n) be the instant at which the last transition of component N;j finishes its n-th

firing. Thus, at instant
H(n) = Max H;(n),

1<i<v
each transition of the net has completed its n-th firing. We assume that the transitions
completes its n-th firing before instant H(n) are frozen until H(n). As a result, the
initial marking M',, is again reached at instant H(n) and we restart the system in

exactly the same way.
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Obviously, the constrained operating mode is a renewal process and its average

transition firing cycle time n¢(M',,)) can be determined as follows :

”C(M'nv)z EHn)

n

Furthermore, we have :
t(M') S T¢(M'0)

From the definition of A;(Mg) and relation (2), it can easily be shown that :

lim Hi(n) _ lim HHiw] 2;(Mg)., as.

n—ee N n—yo0 n

As aresult, for all €1 > 0,

lim E[Max{ rf“) Ai(Mg) + eﬂ: (M)

N—poo
Since
Hi(n :Max{Hi(n),ﬂ.i(Mo)+8l}+(Hi(n)—l,‘(Mo)-é‘l) ,
n n n
then

n-—oo n

lim EIZ(M-M(MO)—& ”: 0

which implies that for all €5 > 0, there exists n; > 0 such that for all n 2 n;,

E[(Ei—rfn—)‘li(Mo)—ely} <&

From the definition of H;(n),

<) =5 {0

Ssx*+6 +E 15151){ H‘ —n’—el) H
(

sn*++E M

From relation (c8), for all n2 Max(nl, ny, ..., Ny},
7¢(M'ny) S n*+61 + V€
which implies that

Hm 7(M'py )< mr+e1+ 08, Ve >0,Ve >0
n—o0
By choosing €; = €5 = €/(1+n),

lim z(M'p,)S*+e, Ve>0
n—oo

(c5)

(c6)

(c7)

(c8)
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