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On the key equation for n-dimensional cyclic codes.
Applications to decoding.

Sur I’équation clé d’un code multicyclique.
Applications au décodage.

Hervé CHABANNE ! Graham H. NORTON ?2

Abstract. We introduce the key equation of a multidimensional code. This equation
exhibits the error-locator polynomial as product of univariate polynomials and the error-
evaluator polynomial as a multivariate polynomial.

Then we reinterpret these polynomials in a multidimensional linear recurring sequence
context. In particular, using the concept of section [8], we reduce the solution of the decoding
problem to a succession of application of the Berlekamp-Massey algorithm.

However, it must be noted that multidimensional codes which are usefull for applications
and which are decodable by our algorithm are left to be found.

Résumé. Nous introduisons ’équation clé d’un code multidimensionel. Cette équation
fait intervenir le polynome localisateur comme un produit de polynémes en une indéterminée
et le polynome évaluateur comme un polynome en plusieurs indéterminées.

Ensuite nous réinterprétons ces polynomes dans un contexte de suites récurrentes linéaires
multidimensionelles. En particulier, nous servant du concept de section [8], nous donnons une
solution au probléme du décodage en le réduisant a des utilisations successives de I’algorithme
de Berlekamp-Massey.

Néanmoins, il faut noter que des codes multidimensionels ayant une utilité pratique et
pouvant étre décodés par notre algorithme restent a trouver.

'INRIA, projet CODES, Domaine de Voluceau, Rocquencourt, B.P. 105 78153 Le Chesnay Cedex,
FRANCE.

2Centre for Communications Research, Faculty of Engineering, University of Bristol, Bristol BS8 1TR
UNITED KINGDOM (Research supported by Science and Engineering Research Council grant GR/H15141).
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1 Introduction and notation.

Let R = K[Xy,..., Xa]/(X{" = 1,..., XN — 1) be a multivariate residue class ring over a
finite field K whose characteristic does not divide Nj...N,,.

Ideals in R are known as n-dimensional cyclic codes or abelian codes {1]-[3].

Let F be the smallest extension of K containing an N!* primitive root of unity a, for
v=1,..,n.

Let e = e(X4, ..., X,) € F[X1,..., X;] be a non-zero polynomial.

We consider the series

T:(X7h W X7 = S Y elar e ™)X X € FIIXTY L X M)

1<0  in<0

We first introduce univariate polynomials o, € F[X,), o,(X,) (X —1),v=1,...,n and
a multivariate polynomial w € F[X{,..., X,] such that

01(X1) e on(Xo)Te( X7 0 XY = X Xaw( X1y eny Xn)
ged(w, 0y...05) =1
Thus, we show that the spectral behaviour of ¢ = 0,...0, and w allows us to recover e.

In the second part, we reinterpret the polynomials ¢ and w, regarding I'; as the generating
function of the n-dimensional linear recurring sequence

5 — _il —in
€= (e(al reen O ))i,<0 in<0

In this manner, we show how to obtain o,, v = 1,...,n from partial knowledge of é.

Hence, applying our previous results, we deduce a new method for decoding n-dimensional
cyclic codes [2], [10]. We give one example in the case n = 2 for an easier understanding. A
different approach to decoding 2D cyclic codes is given in [10].
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2 The key equation.

Let e(X) = Zicoupp(e) ;X! € F[X] be a non-zero polynomial. We abbreviate e(a}, ..., air
to e(al). Our goal is to show how the series I's = T'e(X~1) = 3 e(a~H)X} € F[[X~1]] may

i<0
be written as a quotient of two relatively prime polynomials.
Following Pedersen [9], we introduce the set of grid-points of e,
n

= (77 (m.(supp(e))) = {i € N* : i, € m,(supp(e)),v € [1,n]}. Clearly =, is the
smallest cartesian product which contains supp(e).

We begin by recalling a simple lemma, which is easily proved by induction on n.

Lemma 1 Forv € [1,n] and B, € F(( ), Y B B..Bir =TI - B)?
i>0 v=1
Proof : Omitted. O
Proposition 1 [ = Y i .
i€supp( )H(l — an )
v=1
Proof : Te=3 e(ad)X =% ( 3 ei(aj)i) X
j>0 J>0 \i€supp(e)
= > & (JZ(aiX‘l)j) = > = & by the lemma. a
iesupp(e) j>0 i€supp(e) H(l — aLVX;l)
v=1

We can now introduce n-dimensional analogues of the error-locator and error-evaluator
polynomials.

Definition 1 For v € [1,n], define the error-locator X, -polynomial o, € F[X,] by
= Uv(Xv) = H (X — aiv)
tyEmy(supp(e))
We call 0 = o( H o,(Xy) the error-locator product polynomial of €.

Finally, we call

n

w:w(X)=' Z €; H H (Xo —al)
ienm@ | € m,(supple))
v

the error-evaluator polynomial of e.



We note that, as in the one-dimensional case,

a(X)= 3 I1 (X, - )
tyEmy(supp(e)) j€E nv(supp(e))

J# ity
and
o(oy) = II (afy —al) # 0, if i € supp(e).
J € my(supp(e))
J#

Also 6,0 = 6,0, = |r,(supp(e))|, éw = b0 — 1 and o is monic.

Our reason for calling w the error evaluator polynomial of e will become clear from
Proposition 2 below. We are now ready to state the key equation.

Theorem 1 In F((X™1)), we have
UF@ = Xw.

Proof : From Proposition 1, we have
oK)= T ejo (X)

n
i€supp(e) H (1 — ai/" Xu—l )

v=1

n i ; n Xu
= Z €i H Hiuefv(suPP(e))(AL' - a‘Uv )] [H —i}—'—_—]

iesupp(e) Lv=1

n

=XZ eiHH

ey |em1 € Tulsupp(e))

J# b

The spectral behaviour of w in the next result justifies our use of the term “ error evaluator
polynomial ” :

(X, — )| = Xw(X). O

Proposition 2 _
wa') = ¢ [ oy(ey) #0 if i€ supp(e)
v€[l,n)
=0 if1€Z.\ supp(e)



Proof : Ifi € supp(e), then
w(al) = & ] I1 (ay — o)

v=1 | € 7 (supp(e))
141,
+ 2 el I1 (o} - o)
k € supp(e) *7' 1€ my(supp(e))
k#1 l#k,
=€ H ol (a'*) # 0 since we may choose a v so that all other products cancel.
vé[l,n]
Ifi € =.\supp(e), theni > 0 and ¢, € 7, (supp(e)) for all v € {1, n], but for all j € supp(e)
there is a v € [1,n] with 1, # j,. Therefore

wid)= Y &I I1 (o} ~a}) =0
esupp(e) V=1 | € n (supp(e))

L# jo
since we may take [ = 7, in the product. 0

Remark : We can see Theorem 1 as generalization of the key equation for BCH codes to
n-dimensional cyclic codes. As for the cyclic case, the spectral behaviour of w and o allow
us to recover e with Proposition 2 and

o(dd) = & [] ol(al)#0 ifi¢g=.
v€[l,n]
=0 ifiez,

We conclude this section by showing that ¢ and w are relatively prime.
Corollary 1
ged(o,w) =1

Proof : Since o is a product of factors X, — o, for | € 7 (supp(e)), (o,w) # 1 implies that
a factor X, — o) divides w. In particular, if i € supp(e) and i, = I, then w(a') = 0, which
contradicts Proposition 2. ]



3 The linear recurring sequence context.

In this section, we reinterpret the polynomials ¢ and w, regarding I'; as the generating
function of an n-dimensional linear recurring sequence €.

As in [8], we let S%y(F) denote the commutative F-algebra of (—N)"-indexed sequences
s:(—=N)* = F. -

The action of f € F[X] on s € S%,(F) given by

(f08)5=(( > fixi)OS) = Y fisj-i,
J

i€supp(f) i€supp(f)

where j X 0, (i.e. via right shifting) makes S%o(F) into F[X] module. The generating
function of s is [';(X~1) = ZsiXi.

i<0

Definition 2 If s € S%y(F), Ann(s) = {f € F{X] : fos =0} is called the characteristic
ideal of s. B

We say that s is a linear recurring sequence if Ann(s) contains a non-zero (characteristic)
polynomial. Recall that a sequence s is n-periodic if XP*—1 € Ann(s), p, > 0and v € [1,n].
In section 2 we studied the sequence é € S%,(F) given by & = e(a~!), where e € F[X] is
non-zero. -

Proposition 3 ¢ is n-periodic.

Proof : This is a simple consequence of the fact that a, is an N** root of unity, v € [1,n).
O

In particular, é is a linear recurring sequence.

Definition 3 [8] We say that a linear recurring sequence s € S%y(F) is ultimately rectilinear
if for allv € [1,n], Ann(s) N F[X,] contains a polynomial of positive degree. If s is ultimately
rectilinear, the monic positive of minimal (positive) degree in Ann(s)\F[X,)] is called the
minimal X,-polynomial of s, written p,(s), or u, if s is understood.

Clearly € is ultimately rectilinear. Our goal is to show that u,(é) = o,, v € [1,n].

Proposition 4
f € Ann(s) & Vig (—N)",coeff(Xi,fF,) =0.

Proof : Let f(X) = }: ijj. Then coeff(Xi,st) = Z f:isi—j = (f o0 $)j =i
J€supp(f) J€supp(f)

Proposition 5 Let s € SZo(F) be ultimately rectilinear and f, € Ann(s)NF[X,], é.f, >
1, v € 1,n]. Then X~Y(J] /)T, € F[X].
v=1



Proof : Let p= (J]f,)Ts € F((X™1)). For i <0, we have

v=1
coef f(X:,p) = coef f(X:, f,T's) = 0 by Proposition 4. This is true for v € [1,n], so p € F[X]
and X divides p. a

If sis ultxmately rectilinear and fU Ann(s)NF([X,], 6ufu > 1, v € [1,n], we will write

Hfu Ty = Xp( Hf,,, where p Hf,,,s) is a well-defined polynomial in X.

For v € [l,n], there is a sequence s € SLO(F[[:\’\U]]) given by sgv) = Y sijj(\v'l,
} JE(-N)"
where 1,j € (—N)" denotes the index which projects onto i and onto j (7,(1,5) =i, 7,(i,7) =

7)-
Lemma 2

Ann(s™) = Ann(s)(F[X.].

Proof : Let f, € F[X,]. A simple verification shows that I'; . (X;!) = T,0s(X7H),
whence the result. O

Theorem 2 For v € [1,n],0, = p,(€).
Proof : From the previous lemma, o,, g, € Ann(&")) and 6,4, is the minimal degree in

Ann(é(”)) ; otherwise y, cannot be the minimal X,-polynomial of é. Thus é,u, < é,0,.
On the other hand,

. _X¢§mé)
Il I #
v=1

e
I
—

and so (H My)w = (H o.)p H#u, Now ¢ and w are relatively prime (Corollary 1) and

S0 o, d1v1des Hoy- Smce Oy thy < 6 »0y and g, is monic, we must have g, = o,. O

We conclude this section by recalling how g,, the minimal X,-polynomial of €, may be
computed. First, we need to define the sections of a sequence.
Definition 4 [8] Let n > 2 and let v € [1,n]. Fori € (=N)"*"! define the i-section of s,
53¢) € SL,(F) by
(3 =51, j € =N
where T,(k) =1 and (k) = ;.

Notice that each An7z(si§(v)) is principal ideal.



Lemma3 1. Ann(s)NF[X,]= () Ann(s§(v)).

2.

ig(-N)n-1

n

If f, € Ann(s)NF[X,], 8.fu 2 1, v € [1,n]. Putdy = §( H fu). Then

u=1l,u#v

N Ann(si§(v))= N Ann(si§(")).

ie(-N)n-1 0<i<dv-1

Proof :

1.

Let g € F[X,] and j € —N. Then

vg

(go s§( N = ng(s§( ok = ngs i—ki = (90 8)ji

Thus g € Ann(s; 8)) for all i if and only if (g o s§‘ )); = 0 for all i, if and only if
g € Ann(s).

. It suffices to show that if g € F[X,] satisfies go si§(u) for 0 <i=<dy, then go s?(v) =0

for all i. Let v = 1 and j € —N. Without loss of generality, we can assume that
each f, is monic, u € {1,n]. Suppose first that i = (8,f2,63f3 — 1,...,6.fn — 1). Since

f2 € Ann(s),
622

0=(fr08);_ki= Z(f?)lsj—k.l,i”

=0
8212
where I = (63f3 — 1,....,6nfn — 1) and so s;_x; = —Z(fg)[Sj_k_I‘il. Now

62f2 62f2
(gosi™); = (gos), zgks] k,=—z ) (ng%kn')~ Zum gosi); = 0

since 0 < I,i’ < dy — 1. Thus for i = (622, 63fs — 1,0, 6ufn — 1) , g0 53 = 0. The
argument is similar for i = (15,83f3 — 1,...,6,fn — 1), 72 > 62f2. Suppose inductively
that the result is true for (2, ..., 2k-1, 6k fky---, 6nfn — 1) and 1 = (22,..., 2k, Skt1 fit1 —
1,560 fn — 1), tx > 6fc. An analogous argument also shows that g o si§(v) = 0 by
induction for all i. It is clear that the same argument applies to any v, 1 < v < n and
this completes the proof.

O

n

Theorem 8 Let f, € Ann(é)NF[X,], é.f, = 1, for v € [1,n]. Put dy = §( H fu).

Then

u=1l,ufv

o, =lem{g : (g;) = Ann(sig(v)),o <i=<dy -1}

10



§(U)) is

Proof : This follows immediately from Theorem 2 and Lemma 3 since each Ann(s}
principal, and their finite intersection is generated by their lcm. w]

Remarks :
1. Once o3, ...,0,-1 have been computed, we can replace f, by o, forv € [I,n—1], n > 2.
2. We have proved Theorem 2 without using the initial polynomial of o and €

So—-1 bo .
to,€) = Z (JZ Ujéi_j+1) X!

i=0 =i+1

as defined in [8]. Of course, p(J[ pv, €) = ¢(]] #v- €) and it follows that w = (] 04, ).
v=1 v=1

v=1

Thus by [8] Theorem 6.2, 6.3, we know that Ann(é) is the ideal quotient (> (0,) : w).

v=1

O

11



4 Decoding Algorithm.

In this section we propose an algorithmic solution to the following problem :

(A) Given a non-zero e € K[X] and “ enough ” terms of the series ['s(X~1), find
w,o € F[X] such that

r«(X-1') = i?g?
ged(w,0) = 1
o monac.

It is well known that when n = 1, this problem may be solved using the Berlekamp
Massey algorithm or equivalently the extended Euclidean algorithm ; see [4] for example. If
we know d — 1 consecutive terms of [';(X~!), then we can solve (4) for unique w and o such

d-1
that degw <7 —1,dego < 7, where 7 = — |

We illustrate by means of an example how to decode an abelian code [1].

Example :

We take K = GF(2), Ny = N, =5,a; =a =a = 6% where §* + 0+ 1 =0 € GF(2).
Thus F = GF(16). Let C be the abelian code in K[X]/(X; — 1,X3 — 1) defined by its
non-zeroes {(1,1), (e, a?),(a? a?), (a4, a?),(a a)}. 1t is a [25,5,5)] binary code [1].

Suppose we wish to decode the e(X) = X2 + X; X3.

The values e(a’, o’) are given by

j/1|0 1 2 3 4
4 |a®+a®|0 a’+a'[l+4+a® {a+a®
3 a+ a? 1+ a 0 a*+alata°
2 fat+a? [?+at|a®+a* |0 1+at
1 [?+3 a4+’ [14a® [a?+a |0
0 |0 14+« 14a® [14c® [14af

We may represent the decoding problem graphically as

4

G

N
A\

®

: supp(e)

Z.: ®uUO




? . unknown position of I's(X~1)

We begin by decoding the first row. That is, we calculate the minimal X;-polynomial of

ég(l) using the extended Euclidean algorithm.

We obtain X2 + (1 + a)X; + a = (X1 + 1)(X; + a).

The other rows are decoded in the same way ; decoding is always possible since for each
row the numbers of errors may not exceed 2 and we know d — 1 = 4 consecutive terms. We
obtain the same minimal polynomial for each row, and by Theorem 3, o, = (X; +1)(X1+ a).
We obtain the unknown positions in I'; from these polynomials. Column by column decoding
yields 09(X2) = X2 + (o® + a®) Xy + 1 = (X) + a?)( X3 + a?).

Theorem 1 now implies that w = oT:/X. We find w(X) = (e®* +a?) + (a?+®) X; + (1 +
a)X,. We have decoded correctly since w vanishes on the positions () but does not vanish
on the positions . o

Remarks :

1. The errors e(X) + X3, e(X) + X;X2 and e(X) + X1 X? + X3 can be decoded in the

same way

2. In (10], the author defines an “ error-locator ideal ” I, for certain 2D cyclic codes and
decodes them by finding a Greebner basis for I.. For our example, this method requires
that some values of é are known. If these values are not known, some trials Greebner
bases of I, have to be tested.

13



More generally we have

Algorithm 1
1. From the known terms of éig(") find

o gi§(u) such that (g?‘v)) = Ann(éi§(")) (used in point 2),
e the missing terms of éi§(") (used in point 3).

(In order to perform this task, one can use the Fuclidean extended algorithm, the
Berlekamp Massey algorithm with or without erasures [2] or try each factor of XN» —1

in turn. If no algorithm is available, put g-§(u)

3 =1 for convenience.)

2. Forv € [1,n], calculate 0, = lcm(gs(v)) (Theorem 3), and o = [] o

1
v=1

3. Calculate w = oI';/X (Theorem 1)

4. By testing the values of w and o, find the error

Applying Algorithm 1 to the code in previous Example will always correct all errors e
for which =, is included in a rectangle with at two most two points per side. Algorithm 1
allows some errors of weight greater than half the minimum distance to be corrected, but
does not a priori correct all errors with weight less than half the minimum distance.

An important criterion for the success of Algorithm 1 is the determination of I'; from the
known positions. In fact when we have recovered I'; using o, we can use the second remark
at the end of Section 3 to compute w = (0, €). In the same way, if we can write Ts(X™) as

rax) = — A% __
(1 =X = X37)
| | Xw(X)
(XY= — TV
it suffices to remove common factors to obtain T's(X™") (X002 (X2)"

The Berlekamp Massey step can be computed in O(length?) operations, so if we restrict

ourselves to such algorithms in step 1, Algorithm 1 admits a complexity of m[?x]O(NS’).
vEll,n
8

Moreover, notice that the search for g; *) can be performed simultaneously for each v € [1,n].
So, Algorithm 1 seems to be practicable.

14
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