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SYSTEMES DE DIMENSION INFINIE

Ruth F. Curtain!
Mathematics Institute - University of Groningen
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Abstract. This paper compares five different approaches to the design of
finite-dimensional controllers for linear infinite-dimensional systems. The
approaches are varied and include state and frequency domain methods, exact
controller designs, controller designs by approximation and robust controller
designs.

Résumé. Cet article compare cinq approches différentes de conception de
compensateurs de dimension finie pour des systémes linéaires de dimension
infinie. Ces approches variées, a base de représentations d'état ou
fréquentielles, conduisent a des calculs de compensateurs exacts ou par
approximation et a la conception de compensateurs robustes.

Keywords. Finite-dimensional controller design for infinite-dimensional
systems, robust control, H* control.
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A comparison of finite-dimensional controller
designs for distributed parameter systems

R.F. Curtain
Mathematics Institute
University of Groningen
P.O. Box 800
9700 AV GRONINGEN
The Netherlands

Abstract. This paper compares five different approaches to the design of finite-
dimensional controllers for linear infinite-dimensional systems. The approaches are
varied and include state and frequency domain methods, exact controller designs,
controller designs by approximation and robust controller designs.

Keywords. finite-dimensional controller design for infinite-dimensional systems,
robust control, H*®-control.

1 Introduction and Notation

Although there has been much research on the stabilization of distributed pa-
rameter systems, the theory usually produces infinite-dimensional controllers. For
example, the theory of linear quadratic control produces a state-feedback law in
which both the state and the gain operator are infinite-dimensional. To produce an
implementable finite-dimensional controller entails approximating both this gain
operator and the state, which is a complicated numerical procedure and sometimes
(in the case of unbounded inputs) difficult to justify theoretically. The continu-
ing popularity of this approach is somewhat surprising, since there exist several
exact methods of designing finite-dimensional controllers for infinite-dimensional
systems. The first exact finite-dimensional compensator design was a state-space
approach in 1981 (Schumacher, [63] [64]) and since then, there have been many
others, (for example, Sakawa [60], Curtain {11]). More recently, various frequency
domain theories for designing finite-dimensional controllers which are robust to
certain types of uncertainties or which satisfy other additional performance ob-
jectives have been developed. Some of these lead directly to a finite-dimensional



controller which is guaranteed to stabilize the infinite-dimensional system (Curtain
[13], Curtain and Glover [15]), while others produce an infinite-dimensional con-
troller (see for example, Foias and Tannenbaum [25]-(30], Flamm [21], Georgiou
and Smith [31]). All of the frequency-domain design approaches involve approxi-
mating irrational transfer functions by rational ones.

In this paper we survey and compare five approaches to designing finite-dimen-
sional controllers.

Section 2 Approzimation of infinite-dimensional deterministic LQG controllers
by numerical approzimation of infinite-dimensional Riccati equations.

Section 3 Ezract state-space design of finite-dimensional compensators.

Section 4 Finite-dimensional compensator designs based on reduced order models.
Section 5 Robust controller designs with a-priori robustness bounds.

Section 6 Finite-dimensional H®-controllers for distributed systems.

Section 7 Concluding remarks.

But first we introduce the notation we use and give some basic definitions of
stability.

H* The class of functions of a complex variable which are bounded and holomor-
phic in Re(s) > 0.

H* The class of functions of a complex variable which are bounded and holomor-
phic in Re(s) > —¢, for some € > 0.

H* + R(s) The class of transfer functions which are the sum of one in H* and a
proper rational one.

M(Z) Transfer matrices of any size whose components are elements of Z.

H>/H> The quotient space of H®.

We are concerned with the problem of stabilizing a plant with transfer matrix
G € M(H*/H®) by a controller with transfer matrix K € M(H*/H®*) in the
following feedback configuration.

For systems described by transfer functions the appropriate concept of stability
is as follows.



Definition 1 The feedback systems (G, K) of figure 1 with G,K € M(H®/H%)
is said to be input-output stable if and only if (a) and (b) are satisfied. where

(a) %ydet(z — GK)(s)] >0

(b) S=(1-GK)™, KS, I - KSG € M(H>)

+:" > G 1
+ €1
+
K <

Al

€z +  Ug

Figure 1: Input-output stability

We remark that, unfortunately, there are many different terms describing the
type of stability in Definition 1, for example, internal and external stability can
both be found in the literature. Usually, our plant and controller will be restricted

to the class M(H* 4 R(s)). Condition (a) ensures that all the maps from ( ZI )
2

to ( zl ) are well-posed and condition (b) requires that all the paths between the
2

inputs ( “ ) to the outputs ( % ) are stable. In fact, if (a) holds, we have

e ) (I-GK)' K -GK)™? .
(62)— (I - GK)"'G (I_GK)_I}(W) (1)

Very often we are given a state-space description Y (A, B,C, D) of the plant,
where Z,U and Y are separable Hilbert spaces, A is the infinitesimal generator
of the strongly continuous Co-semigroup T'(t) on Z, D € L(U,Y), C € L(Z,Y)
and B € L(U,Z). The transfer function of this state linear system is G(s) =
D+C(sI-A)™B. In state-space descriptions the appropriate concept of stability
is exponential stability.

Definition 2 } (A, B,C, D) is ezponentially stable if T'(t) satisfies ||T(t)||(z) <
Me™°! for certain constants Mya > 0.

Y (A, B,C, D) is ezponentially stabilizable if there ezists F € L(Z,U) such that
A + BF generates an ezponentially stable Co-semigroup.

(A, B,C, D) is ezxponentially detectable if there exists G € L(Y, Z) such that
A + GC generates an ezponentially stable Co-semigroup.

3



In general, input-output stability is weaker than exponential stability. but for
certain systems they are equivalent.

Theorem 3 (Jacobson and Nett [{0]). Suppose that Y (A, B,C,D) is ezponen-
tially stabilizable and detectable and that U = R™,y = R?. Then G(s) = D +
C(slI — A)"'B € M(H®) if and only if A generates an exponentially stable Co-
semigroup.

The state-space approach to stabilizing a state linear system > (A, B,C, D) is
to find a dynamic controller described as a state linear system } (F,G,N, M) on
the Hilbert space W, i.e.

w=Fw+ Gy
u=Nu+ My (2)

such that the closed loop system operator A

A+ BMC BN
Acl = ( ) (3)

GC F

generates an exponentially stable Cp-semigroup on Z @ W. It is desirable that
the state-space of the compensator be finite-dimensional. However, the most
well-known state-space design. the so-called LQG design produces an infinite-
dimensional compensator.

The linear quadratic (LQG) control design is based on the following theoretical
results for Riccati equations.

Theorem 4 (Curtain and Pritchard [16]). Suppose that > (A,L,C,¢) and
> (A,B,M, @) are ezponentially stabilizable and detectable state linear systems.
Then there ezist unique solutions to the following Riccati equations in the class of
self-adjoint, nonnegative operators Q,P € L(Z)

A*Qz + QAz — QBR'B*Qz + M"MX =0, (4)
where x € D(A) and R,R™! € L(Z).

APz 4 PA*z — PC*S™'CPz + LL"z = 0, (5)
where z € D(A) and S.S™! € L(Z). Moreover, A~ BR™'B*Q and A— PC*S~1C

generate ezponentially stable semigroups.

Just as for finite-dimensional systems, it can be readily verified that an infinite-
dimensional LQG controller exists.



Theorem 5 Suppose that > (A, B,M,¢) and > (A, L,C, ¢) are ezponentially sta-
bilizable and detectable state-linear systems. Then the following dynamic controller
ezponentially stabilizes the state linear system ) (A, B,C,¢).

w=(A-PC"S'C)w+ PCS'y+ Bu
u=—R'BQu (6)

where Q and P are the unique solutions to (4) and (5) respectively.

Notice that the transfer function of the LQG controller is

K(s)==R'B"Q(sI - A+ PC"S™'C + BR'IB'Q'I)PCS'I, (7)
and the closed loop operator is given by
A -R'B*Q
A= . (8)
A—PC*S™'C - BR™'B*Q PCS-C
A~ PCS™'C 0
It can be shown that A, is similar to the operator
BR'B*Q A— BR'B*Q

and so the closed loop system is exponentially stable. If G(s) = C(sI— A)~'B and
K (s) is given by (7), then K also stabilizes G in the input-output sense of Defini-
tion 1. Theorems 4 and 5 hold for infinite-dimensional input and output spaces,
but in the applications these will be finite-dimensional. In this situation, the as-
sumption of exponential stabilizability on detectability implies that the spectrum
of the system operator A can be decomposed into a stable part in Res < —¢ for
some £ > 0 and an unstable part in Res > 0 comprising at most finitely many un-
stable eigenvalues (Jacobson and Nett [40]). This result depends on the bounded
nature of B and C and need not hold if B and C are very unbounded.

Natural generalizations of Theorem 4 and 5 to the case of unbounded B and
C exist (see Lasiecka and Triggiani [43] for references); we have only quoted the
results for bounded B and C to keep the exposition uncluttered.

2 Approximation of infinite-dimensional deter-
ministic LQG controllers: Numerical approx-
imation of infinite-dimensional Riccati equa-
tions

One of the early successes of infinite-dimensional systems theory was the solution of
the linear quadratic L@ control problem (Lions [45] and Bensoussan et al [5]) and
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this topic dominated the literature for decades. In particular, the case of boundary
control for p.d.e. systems and delayed control for delay systems presented difficult
mathematical problems and was the subject of many treatises. As stated in Theo-
rem 4, the solution to the linear quadratic control problem yields a state-feedback
controller u = —BR™'B"Qz, where Q is the solution of the infinite-dimensional
Riccati equation (4). The numerical approximation of infinite-dimensional Riccati
equations like (4) has been the subject of many papers, most of which assume
bounded input operators. A comprehensive survey of infinite-dimensional Riccati
equations for p.d.e. systems, including those with unbounded input operators
can be found in Lasiecka and Triggiani [43]. Although there are fewer results
on numerical approximations with unbounded inputs, the underlying idea is the
same. One approximates the underlying system operator A (p.d.e. or delay type)
by a suitable finite-dimensional scheme and one gives sufficient conditions on the
approximations to obtain strong convergence of the finite-rank approximating so-
lutions @, to the infinite-dimensional operator solution @ of the Riccati equation
(4). Although there exist general sufficient conditions to ensure convergence (see
Kappel and Salamon [41], 1t6 [38]), the sharpest convergence results are obtained
by specializing to the particular type of system involved. Lasiecka and Triggiani
[43] distinguish between two classes of p.d.e. systems.

The first class corresponds to analytic semigroups such as those arising in
parabolic p.d.e’s and the numerical theory for this class provides optimal conver-
gence results under mild assumptions on the approximations; this allows for all
spline, modal or spectral approximations, for example. As well as obtaining the
strong convergence of the finite-rank approximating solutions @, to the operator
solution @ of the Riccati equation (1.4), and the strong convergence of the approx-
imating feedback gain B}, Q. to the optimal infinite-dimensional gain B*Q, one can
prove that exp(A — BB;Q,)t converges strongly to exp(A — BB*Q)t as n — 00,
where by exp(At) we mean the Cy-semigroup generated by A. This last property
is crucial, because it shows that the approximating state-feedback controller will
stabilize the original infinite-dimensional system for sufficiently large n, and this
is what one would implement in practice.

In the case of the second class, which includes hyperbolic p.d.e.’s, and delay
equations, the numerical theory is less satisfactory. While it is possible to give
sufficient conditions under which @, converge strongly to Q as n — oo and B;Q,
converge strongly to B*Q) as n — oo, it is more difficult to verify that natural
approximating schemes actually satisfy these conditions. Moreover, it is not clear
whether or not the approximating state-feedback controller will stabilize the orig-
inal infinite-dimensional system even for sufficiently large n. In the case of delay
equations, the situation is better than in the hyperbolic case, since the sufficient
conditions on the approximations are more readily verified (see Kappel and Sala-
mon [41], It5 [38]). However, the sufficient conditions are more restrictive than in
the parabolic case (see Burns et al [9]).



Of course, even if one has a sequence of finite-rank gains which converge
strongly to the optimal gain, implemention of the L@ control law requires knowl-
edge of the whole state. It is impossible to measure an infinite-dimensional state
and so it is necessary to develop a controller design based on a finite-dimensional
measurement. While there is a stochastic LQG theory (Curtain and Pritchard
[16]), most attempts at designing finite-dimensional compensators have been deter-
ministic, and there have not been very many of these either. The classic approach
is to combine a L@ control law with a state-observer - a deterministic LQG design
approach (see Theorem 5). In principle, this reduces to two Riccati approximation
schemes: one for the control Riccati equation (4) and the other for the "filter”
Riccati equation (5). This was the approach taken in Itd [38] where sufficient
conditions were given for the convergence of the finite-dimensional approximating
compensators to the infinite-dimensional one. Moreover, he showed that one could
always design such an approximating finite-dimensional compensator which pro-
duces an exponentially stable closed loop operator (8). The assumptions were that
A, B, C have compact resolvent, B and C be bounded and that the approxima-
tions satisfv certain uniform stabilizability and detectability assumptions. They
cover parabolic and retarded systems with Galerkin type approximation schemes
and so represent an improvement on earlier results in Balas [1]. An earlier detailed
analysis of a specific application of the LQG design, to flexible systems in Gibson
and Adamian [33] reveals that if one wishes to do a realistic engineering filter de-
sign. it might be difficult to satisfy all of the assumptions one needs to guarantee
convergence. In this example, a physically meaningful choice of the state noise
weights L in (5) did not satisfy their theoretical assumptions and so they could
not prove convergence. However, their numerical results indicated that things did
converge nicely.

More recently, a new approach to the convergence of approximations was taken
in Morris [49]. Using coprime representations of systems, she was able to prove
convergence of the approximating systems in the graph topology. However, this is
a weaker form of convergence and only implies that the optimal controller stabilizes
the approximations in an input-output sense (see Definition 1).

Summarizing, we can make the following general comments on finite-dimensional
compensator design via approximation of infinite-dimensional, deterministic LQG
compensators (6). At least for the case of bounded control and measurement,
there is a fairly complete theory of convergence of the approximations and suffi-
cient knowledge about the appropriate choice of the approximations for parabolic,
hyperbolic and delay systems. Care often needs to be exercised in the choice of
the weights and the approximations to satisfy the theoretical conditions for specific
applications, but even if not all the theoretical conditions are satisfied, in practice,
the LQG design usually leads to a finite-dimensional controller which stabilizes the
original infinite-dimensional system. This notwithstanding, this design method is
not recommended for nonexperts (see Burns et al [9]) and research is still contin-



uing into important properties of the approximations, such as the stabilizability
and detectability properties of the approximations (see Burns and Peichl [10])
and convergence properties of approximationa of Riccati equations for hyperbolic
p.d.e’s (see Lasiecka and Triaggiani [43]). Moreover, most of the theory on finite-
dimensional LQG compensator design has been restricted to the case of bounded
B and C operators (see It6 [38]) and further research on the case of unbounded
B and C operators is needed. Proving that the Riccati equations can be approx-
imated is not sufficient; one needs to prove that there exists a finite-dimensional
approximating controller which stabilizes the original infinite-dimensional system.
It is surprising how much research has been done on approximating the solutions
of L@ Riccati equations and how little has been done on the practical question of
a finite-dimensional LG compensator design.

3 Exact state-space design of finite-dimensional
compensators

Surprisingly enough, it took a long time to realize that it was possible to directly
design a finite-dimensional compensator for an infinite-dimensional system without
approximating anything. The first design in Schumacher [63], [64] was a geometric
approach and involved very simple numerical calculations. The assumptions were
basically that the inputs and output operators B and C were bounded, the system
operator A should generate a Cop-semigroup, Y (A, B,C) should be stabilizable
and detectable and the eigenvectors of A should span the state-space. It was this
last assumption which was restrictive. While most p.d.e. systems will satisfy this
assumptions, many retarded systems will not. The finite-dimensional compensator
designs in Sakawa [60] and Curtain [11] are similar to each other and use a type
of modal approach in designing the compensator; they also need the assumption
the the eigenvectors span the state-space. A completely different approach was
taken in Bernstein and Hyland [4] who presented a theory for designing a fixed
order, finite-dimensional compensator. They do not need the assumptions on the
eigenvectors, but they do need to assume the existence of solutions of nonlinear
"optimal projection equations” and they need to solve these numerically. This is
a nontrivial task, in contrast to the other three design approaches which can be
carried out in using PCMATLAB routines. Finally, we mention that the LQG
finite-dimensional compensator design by Ité [38] we have already discussed in
Section 2 could in some sense be considered as an exact state-space compensator
design.



4 Finite-dimensional compensator designs based
on reduced order models

Basic engineering methodology is to design a compensator based on an approx-
imate model of the true system: the reduced order model. In our application
the true system is infinite-dimensional, the approximation is finite-dimensional
and the compensator will be finite-dimensional. However, we apply the finite-
dimensional controller to the infinite-dimensional system, hoping that it will sta-
bilize, although we are only guaranteed that it will stabilize the reduced order
model. Usually it works fine, but it can happen that it fails to stabilize the origi-
nal infinite-dimensional systems. This phenomenon was demonstrated in Balas [2]
and was christened as the "spillover” problem. In Balas (1], [3] he suggested various
choices of reduced modal or Galerkin approximations of the infinite-dimensional
state-space and a list of sufficient conditions which were rather complicated to
check. An elegant existence result for finite-dimensional stabilizing compensators
for a class of irrational transfer functions based on model reduction was proved in
Nett [50], [51]. In Bontsema and Curtain 7] an explanation of and a remedy for
the spillover problem were given in terms of robustness properties of the plant. In
fact, it is a simple corollary of vthe theory of additively robust controllers which
we will discuss in Section 5. The following lemma is an easy consequence of the
theory of robust stabilization under additive perturbations which we shall discuss
in more detail in Section 5.

Lemma 6 Suppose the plant G is strictly proper and has a decomposition G =
Gy + Gy, where G; € M(H®) and G, is a strictly proper, rational transfer ma-
triz with all its poles in Re(s) > 0. Let Gy = G, + G,, where G, is an Le,-
approzimation for G,. If K; stabilizes the reduced order model G4, then K; also
stabilizes G provided that

IG = Gilieo = 11Ga = Galleo < 1K;(I — GrKp)7HIZ

Furthermore, a stabilizing finite-dimensional compensator K; for G; and G ezists
provided that

IG — Gilloo < omin(GL).

(a,,,,-,,(GI) ts the smallest Hankel singular value of the stable rational transfer func-

tion GI (s)= GI(—s). It gives an upper bound to the L, -approzimation error.)

The class of infinite-dimensional systems covered by this lemma is very large. It
includes systems with a state-space representation Y (A, B,C, D) in which B and
C may even be unbounded. The system should be "well-posed” in the sense that
it should have well-defined controllability, observability and input-output maps,



but these are very mild requirements (see Curtain and Weiss [18]. The essential
restriction is that the operator A should have only finitely many unstable eigen-
values, but, as remarked after Theorem 1.5, this is also necessary for the LQG
theory in the case of bounded, finite-rank inputs and outputs. In addition, this
class includes systems which do not have a nice state-space representation and for
which Riccati equations are not well-posed. For example, it includes the important
class of systems of the type G(s) = e™*’Gy(s), where Gy(s) is a proper, rational
transfer function (see Curtain [14] for more examples). Lemma 6 suggests the
following

Reduced order model design algorithm 1

Step 1 Find a reduced order model Gy so that |G, — Gyl < €.

Step 2 Design your favorite compensator Ky (e.g. LQG) for Gy and calculate its
robustness margin ||K (I - G;K;)™!||2}.

Step 3 Check whether |G, — G|l < |Ks(I — Gy K;)'||Z2. If not, go to step 1
and obtain a more accurate reduced-order model Gy and repeat the loop.

Step 4 If the inequality checks out, K stabilizes G.

The only numerical approximation occurs in step 1 and there are many ex-
cellent techniques for these approximations; see for example Glover, Curtain and
Partington [34], Glover, Lam and Partington [35], [36], Gu, Khargonekar. Lee [37],
Zwart, Curtain, Partington and Glover [70] and Partington, Glover, Zwart and
Curtain [56]. This is a numerically simpler design approach than the one approx-
imating solutions of infinite-dimensional Riccati equations discussed in Section 2.

In addition, the number am;n(GI) gives a good indication of the order of the
reduced-order mode] required. The L.—approximation error should be less than

a,,,,-,,(GI). A small value of 0, (Gy) indicates, a priori, that a low order reduced
order model could lead to spillover problems.

The choice of the control design for the reduced order model G; is open, pro-
vided only that its robustness margin is greater than the model error (see step 3).
In particular, one could use an LQG design to produce K; and so obtain an
alternative LQG design which produces a finite-dimensional controller which is
guaranteed to stabilize the original infinite-dimensional system. This design is nu-
merically simpler than the one discussed in Section 2, as it bypasses the problems
of conditions on the state-space approximations.

Finally, a word about exponential stability of the closed loop system and sta-
bility in the sense of Lemma 2: in general, this type of input-output stability is
weaker than exponential stability. However, for large classes of state-space realiza-
tions it will imply exponential stability of the closed loop system , not only these
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with bounded input and output operators (see Theorem 3), but several classes
with unbounded input and output operators as well(see Curtain {12], Yamamoto
[66], Logemann [47)].

5 Robust controller designs with a-priori ro-
bustness bounds

Since the infinite-dimensional model is, at best, an approximate one, it is highly
desirable that the controllers will also stabilize perturbations of the nominal model,
the robustness property. Depending on the class of perturbations chosen and the
topology chosen to measure the size of the perturbations, one obtains different
definitions and measurements of robustness. A minimal requirement is that of
robustness with respect to the graph topology, (Vidyasagar [65], chapter 7), but
this says little about the size and nature of the perturbations which retain stabil-
ity. Although deterministic LQG controllers usually give good results, it is known
that even for finite-dimensional systems they are not always robust to small per-
turbations. It is well-known that certain stabilizing control laws for flexible beam
models are destabilized by small delays (see Datko et al [19] Curtain [14], Sec-
tion 8). Numerical results carried out on an example using the design in Curtain
[11] discussed in Section 3 indicated that little robustness is guaranteed by this
method either. On the other hand, it is clear that Lemma 6 is a type of robustness
result. It says that there is robustness with respect to stable additive perturba-
tions in the plant and it also gives an indication of the robustness tolerance in
1K, - Gk ).

In this section, we discuss two simple finite-dimensional robust controller de-
signs for infinite-dimensional systems with finitely many unstable poles, which
guarantee a degree of robustness and give information about the size and nature
of perturbations which retain stability.

The first is that of robust stabilization of a plant G under additive perturbations
A.

G and A are assumed to satisfy the following assumptions

(5.1) G is regarded as the nominal plant and is assumed to be a strictly proper
transfer matrix in M(H>™ + R(s) and moreover, it is assumed to have no
poles on the imaginary axis.

(5.2) The permissible perturbations A are also in M{H>+R(s)) and they are such
that G and A + G have the same number of unstable poles in Re(s) > 0.

Definition 7 The feedback system (G, K) of Figure 1 with G, K € M(H® +R(s))
ts said to be additively robustly stable with robustness margin € if the feedback

11



Figure 2: Additive robust stability

system of Figure 2 is input-output stable for all G and A satisfying (5.1) and (5.2)
and ||[Alle < €.

The assumptions (5.1) and (5.2) are needed to apply a Nyquist argument and the
following result from Logemann [46] is a generalization of first version for infinite-
dimensional systems in Curtain and Glover [15].

Theorem 8 If G € M(H® + R(s)) and (5.1) is satisfied, given an € > 0 there
ezists a compensator K which stabilizes G + A for all A satisfying (5.2) and
|A|l < € if and only if

omin(Gl) 2 ¢ (9)

where Um,',,(GI) ts as tn Lemma 6.

In addition to this existence result, there are also explicit formulas for a con-

troller K which achieves the maximum robustness margin orm,-,,(Gi ). These depend
on the stable part of G, G,, and so this K is infinite-dimensional, which is un-
desirable for applications. However, is one replaces G, by a finite-dimensional
L..-approximation, G*, say, then one can design a finite-dimensional controller (of
the order of k plus the McMillan degree of G,) which has a robustness margin

of at least a,,.;,,(GI) — |G, = G¥||o- So in combination with a theory for good
L..-approximations, we have a practical design technique for additively robust
finite-dimensional controllers for a large class of infinite-dimensional systems.

Reduced-order model design algorithm 2

Step 1 Calculate am,-,,(GI)

Step 2 Approximate G by G* + G, so that ||G* — G, |l << amg,,(G’I).

12



Step 3 Find the finite-dimensional additively robustly stabilizing compensator
K which stabilizes Gﬁ + G,.

Step 4 K/ additively robustly stabilizes G with a robustness margin of at least
Omin(GL) = 1G% = Golls:

The same remarks made in section 4 concerning the L,—approximation tech-
niques and the class of systems covered apply here too. The advantage of this
approach over the reduced order model design approach 1 is that we can give an a
priori robustness margin of am;n(GI) —|G* -G, |l and design a finite-dimensional
controller to achieve this. Applications of this technique to design robustly stabi-
lizing finite-dimensional controllers for a class of flexible systems can be found in
Bontsema [6)].

The second robust controller design is applicable to an even wider class of
systems, including those with infinitely many unstable poles.

Robustness stabilization under normalized coprime factor perturbations

The plant G and the controller are allowed to be in M(H>/H>); the elements of
the transfer matrix are quotients of elements in H*. In addition, it is assumed
that G has a normalized coprime factorization.

Definition 9 If G € M(H>/H>), then M~'N is called a left-coprime factoriza-
tion of G if and only if

(i) M and N € M(H>)
(i) G = M'N
(iti)) M and N are left coprime in the sense that there ezist X and Y in M(H™)

such that ) )
NY - MX=1 (10)

M~'N is called a normalized left coprime factorization of G if it is a left
coprime factorization and

N(jw)N (—jw) + M(jw)M*(—jw) = I for all real w (11)

The definition of a right-coprime factorization is analogous.

It is known that G € M(H>/H®™) has a normalized left-coprime factorization
if and only if G is stabilizable in the sense of Definition 1 which can be extended
in the obvious way to cover G, K € M(H*/H®). (see Smith [61].
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Figure 3: Left coprime factor perturbations

We consider the robustness of stability with respect to perturbations of the
form

Ga = (M 4+ AN N + Ap) (12)

where G = M~ N is a left-coprime factorization of G and Apr, Ay € M(H®).
The robust design objective is to find a feedback controller KX € M(H>/H*>)

which stabilizes not only the nominal system G, but also the family of perturbed
systems defined by
Ge = {Ga € M(H*/H®): Go = (M + Ap) " (N + Ax)
such that Ay, An € M(H™) (13)
and |[[Am, An]|le < €}(see Figure 3).

This leads to the following definition of factor robust stability.

Definition 10 Suppose that the system G € M(H*™ /H™) has the normalized left-
coprime factorization of Definition 9. Then the feedback system (M,N,K,<) of
Figure 3 is factor robustly stable if and only if (Ga, K) is input-output stable for
all Ga € G.. If there ezists a K such that (M, N, K,¢€) is factor robustly stable,
then G is said to be factor robustly stabilizable with factor robustness margin €.

This problem has an elegant solution.

Theorem 11 (Georgiou and Smith [31]). If G € M(H*/H*) has a normalized
left-coprime factorization, then (M, N, K ,€) is factor robustly stable if and only if

e < (1= I[N, M)||x)/?

where || - ||y represents the Hankel norm of the system [M,N]. The mazimum
" factor robustness margin is given by

Emaz = (1 — ”[N, M]||H)1/2'
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In general, explicit formulas for normalized coprime factorizations and hence
for the optimal controllers are not available. In Georgiou and Smith [32] they
illustrate a technique for obtaining a closed form formula for the optimal con-
troller for single-input single-output systems of the type e~?*g(s), where g(s) is
rational. Moreover, for proper rational transfer functions and a large class of
infinite-dimensional systems they are given in terms of the solutions of algebraic
Riccati equations (see MacFarlane and Glover [48], Curtain [13], Curtain and Van
Keulen [17]). In these cases explicit formulas for robustly stabilizing controllers are
also known. While it is nice to have an elegant mathematical solution for infinite-
dimensional systems in terms of algebraic Riccati equations, these are not always
a good basis for designing finite-dimensional robustly stabilizing controllers. An
alternative is for example the following approximation results from Bontsema and
Curtain (8] for plants in G € M(H*™ + R(s)).

Lemma 12 Suppose that G € M{(H>=+R(s)) has the decomposition G = G;+G,,
where G, € M(H®) and G; is a rational transfer function (not necessarily stable).
Gy is a reduced order model for G such that |G — Gyllx < 4 < €mar.- If Ky
stabilizes Gy with a factor robustness margin of € > p , it stabilizes G with the
factor robustness margin of at least € — p

This yields the following algorithm for designing a robust finite-dimensional
compensator.

Reduced order model design algorithm 3

Step 1 Find a reduced-order model G for G with an Le,—error ||G — Gylleo < u.

Step 2 Obtain a minimum realisation for G; and calculate the maximal factor
robustness margin for G; (This involves solving finite-dimensional algebraic
Riccati equations), say €mqz.

Step 3 Compare €ma; and g. If €mar — g is acceptable as a robustness margin, go
to step 4. Otherwise, return to step 1 and find a reduced-order model with
a smaller L —error.

Step 4 Find a factor robustly stabilizing compensator K for G; with robustness
margin € >> pu.

Step 5 K factor robustly stabilizes G with robustness margin ¢ — p.
This is analogous to the reduced-order model design 2 for additive perturba-
tions. It is applicable to a wider class of systems, since (5.1) and (5.2) do not need

to be satisfied here. In particular, G can have finitely many poles on the imaginary
axis and G and G, do not need to have the same number of unstable poles.
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It includes systems with an exponentially stabilizable and detectable state-
space realization ) (A4, B,C, D), where B and C are allowed to be unbounded.
For examples of systems in M(H* + R(s)) (see Curtain [14]).

The design approach 3 was applied to a flexible beam mode] with parameter
uncertainty in Bontsema and Curtain [8]. This study was a follow-up of that
on additively robustly stabilizing compensators in Bontsema [6]. Both the addi-
tive and the factor theories allow one to measure the perturbations allowed (in
the Lo,—norm and in the gap metric) and this was done for parameter variations
in a flexible beam model. The reduced order model design approach 3 allowed
the largest range of parameter variations in the model, both in the theoretically
guaranteed robustness margin and in the actual robustness margin. This is to be
expected, as it admits a larger class of perturbations; in particular, G and G4 do
not need to have the same number of unstable poles. This very same reduced or-
der model design algorithm 3 together with the same flexible example (both from
Bontsema and Curtain [8] were given in Zhu [68] to illustrate his new results on
convergence of approximations in the gap topology. An approximation approach
designed specifically for delay systems is given in Partington and Glover {57] and
Partington {58].

Finally, we remark that both robust controller designs in this section can be
modified to allow for frequncy weighting. The idea is to replace the plant G by the
frequency weighted plant G,, = W,GW, for suitable proper and invertible rational
weights W, and W, and to design a robust controller Kw for Gw. W1. KwW; is
then a robust controller for G (see Curtain and Glover [15] and MacFarlane and
Glover [48] for details).

6 Finite-dimensional H®—controllers for distributed
systems

Although there has been considerable interest in H*-control design for distributed
systems (Flamm and Mitter [23], Foias, Tannenbaum and Zames [29],{30], Foias
and Tannenbaum, [25]-[27), Flamm [21], Flamm and Yang, [22], Ozbay et al [53],
Ozbay and Tannenbaum [54],[55], Khargonekhar et al [42]), the H>®-controllers are
infinite-dimensional and often improper as well. While one can always approximate
in an ad-hoc way as in Lenz et al [44], it is clearly desirable to develop a theory
for finite-dimensional controller designs which are guaranteed to achieve similar
objectives. That this is not necessarily achievable by approximating the plants or
the controllers is convincingly illustrated in Smith, [62]. There he gives examples
of H*—control problems which are not continuous to perturbations in the plant.
In particular, the problem of weighted sensitivity minimization studied in [21]-
(23], [29], [30] mentioned above is not always continuous to perturbations in the
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plant. For a stable plant this reduces to the following H*-minimization problem

ocia_ IWA(I = GQ)llw = k(G), (14)
where G € MH®) is the plant, W] is a rational transfer function in M(H>) and
K = Q(I - GQ)™! is the stabilizing controller achieving (6.1). In general, it is not
true that if G, € M(H®) is an approximating sequence to G in the H®-norm
(IG = Gallec — 0 as n — o0), then u(Gn) — u(G). Even if u(G,) — u(G), the
corresponding stabilizing controllers K, = Qn(I — G»@n)™! need not converge to
K = Q(I — GQ)™!. Consequently, it is not clear that K, will stabilize G for
sufficiently large n.

In Section 5 we have discussed two special examples of H*~control problems
which do have all these nice properties and more. However, for other H*-problems
this remains an open problem. In Engelbert and Smith [20] they give sufficient
conditions under which the 4-block problem

, ] W _ ,
w6 = int I (e ) U = GH) M WG (15)

will be continuous with respect to variations in the weights W; and in the plant.

Theorem 13 Suppose that G € M(H®/H®), W; and W' € M(H*®) and let
G, be a sequence of perturbed plants in M(H® /H®) such that lim §(G,,G) =10

(convergence in the gap metric). Let W be sequences such that |W! — Wil — 0
asn — oo . Then lim u(Gn,Win) = p(G,W;).

_ The gap metric is closely related to robustness concepts and an excellent anal-
ysis of this is contained in Zhu [67). Although it can be calculated for finite-
dimensional systems, for infinite-dimensional systems it is difficult and the follow-
ing result from Zhu [68] is particularly useful (see also Zhu [69]).

Lemma 14 Suppose that G and G, € M(H® + R(s)) and that they have no poles
on the imaginary aris. If G and G, have the same number of unstable poles for
sufficiently large n, then |G — Gplleo — 0 as n — oo if and only if §(G,G,) — 0

asn— oo,

These results are important steps in the development of an approximation
theory, but as already pointed out in Smith [62], one also needs sufficient conditions
for continuity with respect to the controller. Otherwise, applying a reduced order
model approach to H®-control design along the lines advocated in Section 5 will
not work. An important step in this direction can be found in Ozbay [52] There
he considers a H™ sensitivity minimization problem for single-input, single-output
plants and obtains a finite dimensional controller by approximating the optimal
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one in the gap metric. In addition, he deduces an explicit bound for the achievable
performance. A more direct approach to finite-dimensional compensator design is
taken in Rodriguez and Dahleh [59]. They consider the SISO sensitivity problem:
p(G,W;)in (6.1) with W, = I, W3 = W, = 0, W; an outer, proper stable rational
transfer function and G € H*. They define approximants W} to W, and G, to G
so that u(G,, W) — u(G,W;) as n — oo. Moreover, they give conditions under
which the finite-dimensional controllers designed for G, will also stabilize G. They
give a similar treatment of the SISO mixed-sensitivity problem.

It is interesting to note that in this approach they approximate the inner and
outer factors of the plant separately. Finding inner and outer factors for irrational
transfer functions is possible, but not trivial numerically (see Flamm, Yang, Ran
and Klipec [24]).

7 Conclusions

We have discussed five different approaches to designing finite-dimensional com-
pensators for infinite-dimensional systems. The first two approaches are state-
space ones. The infinite-dimensional LQG approach in Section 2 finds an infinite-
dimensional compensator first and then approximates to obtain a finite-dimensional
compensator, whereas the state-space approaches in Section 3 lead in one step to a
finite-dimensional compensator. Although the LQG approach usually works well
in practice, the theory for the case of unbounded input and output operators still
needs to be developed further.

The remaining approaches are frequency domain ones and follow the philosophy
of approximating the irrational transfer function first by a reduced-order model
and then designing a finite-dimensional compensator for it. Coupled with good
L.-approximation techniques, these offer computational simplicity. The class
of systems covered by the frequency domain approaches is much wider than that
covered by state-space techniques. It includes those systems with an exponentially
stabilizable and detectable state-space realizator ) (A, B,C, D), where B and C
may be unbounded and also systems of the form e~*G(s), where G(s) is rational.
The reduced order model design approach 1 discussed in Section 4 has long been
standard engineering practice. It is very flexible and allows one to use any finite-
dimensional controller design on the reduced order model provided that the Lo~
model error os less than the robustness margin. In particular, it gives an alternative
approach to L@QG controller design. The two robust controller designs discussed
in Section 5 have the extra advantage of guaranteeing robustness to uncertainties
in the model. Furthermore, by introducing suitable weights other performance
criteria can be met.

Finally, in Section 6 we have touched on some very recent developments in
H®*-controller design for infinite-dimensional systems. For general H*-control

18



problems it is not clear that designing a controller for a reduced order model will
produce a good controller for the infinite-dimensional system. Partial results on
the convergence of the performance criteria of the approximating systems exist,
but the question of convergence of the associated controllers is still open, except
for very special cases. This is an important area for future research.
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