archives-ouvertes

A theory of processes with localities
Gérard Boudol, Ilaria Castellani, Matthew Hennessy, Astrid Kiehn

» To cite this version:

Gérard Boudol, Tlaria Castellani, Matthew Hennessy, Astrid Kiehn. A theory of processes with local-
ities. [Research Report] RR-1632, INRIA. 1992. inria-00074929

HAL Id: inria-00074929
https://hal.inria.fr /inria-00074929
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inria.fr/inria-00074929
https://hal.archives-ouvertes.fr

RN

UNITE DE RECHERCHE
NRIA-SOPHIA ANTIPOLIS

Institut National
de Recherche
en Informatique
et en Automatique

Domaine de Voluceau
Rocquencourt
BP105
78163 Le Chesnay Cedex
France

Tel:(1)3963 5611

Rapports de Recherche

1992

W niversaire

N° 1632

Programme 2
Calcul Symbolique, Programmation
et Génie logiciel

A THEORY OF PROCESSES
WITH LOCALITIES

Gérard BOUDOL
Ilaria CASTELLANI
Matthew HENNESSY

Astrid KIEHN

Mars 1992

*

A Theory of Processes with Localities

G. Boudol, 1. Castellani
INRIA, Sophia-Antipolis,
M. Hennessy
CSAI, University of Sussex,
A. Kiehn
TUM, Munich.

Abstract

We study a notion of observation for concurrent processes which allows the observer to
see the distributed nature of processes, giving explicit names for the location of actions.
A general notion of bisimulation related to this observation of distributed systems is in-
troduced. Our main result is that these bisimulation relations, particularized to a process
algebra extending CCS, are completely axiomatizable. We discuss in details two instances

of location bisimulations, namely the location equivalence and the location preorder.

1 Introduction

A distributed system may be described as a collection of computational activities spread among
different sites or localities, which may be physical or logical. Such activities are viewed as
being essentially independent from each other, although they may require to synchrouize or
communicate at times. It has been argued in previous work [CH89,Cas88,Kie89,BCHK91] that
the standard interleaving approach to the semantics of concurrent systems may not be adequate
to model such distributed computations: more precisely, it may not be able to express naturally
properties of distributed systems which depend on their distribution in space, like e.g. a local
deadlock, that is a deadlock in a specific site of the system.

Most noninterleaving semantics proposed so far in the literature for algebraic languages
such as CCS [Mil80,Mil89] are based on the notion of causality between actions, or on the
complementary notion of causal independence or concurrency. Here we pursue the different
approach of [CH89,Cas88,Kie89,BCHK91], which focusses more specifically on the distributed
aspects of systems. At first sight, the concepts of causality and distribution in space may ap-
pear as dual notions, which should give rise to the same kinds of noninterleaving semantics for
distributed systems. In fact this is not the case, essentially because communication may intro-

duce causal dependencies between activities at different locations. In a distributed view, such

*This work has been supported by the ESPRIT/BRA CEDISYS project.

A Theory of Processes with Localities

Une théorie des processus répartis

Gérard Boudol & llaria Castellani
INRIA Sophia-Antipolis

Matthew Hennessy
CSAI, University of Sussex

Astrid Kiehn
TUM, Munich

Abstract.

We study a notion of observation for concurrent processes which allows the observer to sec the
distributed nature of processes, giving explicit names for the location of actions. A general notion
of bisimulation related to this observation of distributed systems is introduced. Our main result is
that these bisimulation relations, particularized to a process algebra extending CCS, are completely
axiomatizable. We discuss in details two instances of location bisimulations, namely the location
equivalence and the location preorder.

Résumé.

Nous étudions une notion d'observation des processus concurrents dans laquelle 1a structure de
répartition apparait, sous la forme de noms de sites attribués aux actions. Nous introduisons uue
notion générale de bisimulation relative a cette observation des systémes distribués. Notre principal
résultat est que I’on peut donner une axiomatisation compléte de ces bisimulations, appliquées & une
algébre de processus qui contient CCS. Nous discutons deux cas particuliers de telles bisimulations,
que nous appelons équivalence et préordre de répartition.

“cross-causalities” induced by communication are observed as purely temporal dependencies,
while in the causal approach they are assimilated to “local causalities”, that is causalities in-
duced by sequential composition. Let us see give example, using a CCS notation for processes.
Let =, denote a causal equivalence such as the causal bisimulation of [DD89], which turns out
to coincide with the weak version of “history preserving bisimulation” [vGG90] and with an
instance of “NMS equivalence” [DDNM87]. Now, if =4 denotes a distributed bisimulation such
as that of [CH89,Cas88,Kie89] we have, for r = (a.a+b.8 | a.b+ f.a):

r+(ald) =g 1t %4 rT+a.b
#e R
If we add a restriction around 7 to prevent actions a,&,f3,3 from occurring independently,

these absorptions give rise to the following identifications, which are perhaps more suggestive:

alb =4 (a.a+bflab+p.a\a,f =. ab+bua

Of course in both the causal and the distributed approach a | b is distinguished from «. b+ b. a.

In this paper we develop a semantic theory for CCS which takes the distributed nature
of processes into account, along the lines of the above-mentioned works [CH89,Cas88,KicR9].
The first two of these papers do not deal with the restriction operator of CCS, and one may
argue that the treatment of restriction in [Kie89] is not completely satisfactory. Here we use a
different formalisation, similar to that of [BCHK91]: we shall deal with processes with explicit
localities or locations, extending CCS with a construct of location prefiringl :: p, which denotes
the process p residing at location I. Intuitively, locations will serve to distinguish different
parallel components. Let us illustrate our approach with a more concrete example. We may
describe in CCS a simple protocol, transferring data one at a time from one port to another,

as follows:

Sys < (Sender | Receiver)\a,
Sender <« in.a.[B3.Sender

Receiver < a.out. . Receiver

where a represents transmission of a message from the sender to the receiver, and 3 is an
acknowledgement from the receiver to the sender, signalling that the last message has been
processed. In the standard theory of weak bisimulation equivalence, usually noted =, one may

prove that this system is equivalent to the following specification:

Spec <« in.out. Spec

That is to say, Spec ~ Sys. The reader familiar with [DD89] should also be readily convinced
that Spec ~. Sys: intuitively, this is because the synchronizations on «, 3 in Sys create “cross-
causalitics” between its visible actions in and out, constraining them to happen alternately in
sequence. On the other hand Spec will be distinguished from Sys in our theory, because Spec
is completely sequential and thus performs the actions in and out at the same location [, what

can be represented graphically as follows:

.....................

in —— Spec —— out

while Sys is a system distributed among two different localities /; and I, with the actions in

and out occurring at I} and /; respectively. Thus Sys may be represented as:

..

..

Here the unnamed link represents the communication lines a, 3, which are private to the system.
Although Spec and Sys will not be equated in our theory, we will be interested in relatiug them
by a weaker relation, a preorder that orders processes according to their degree of distribution.
A similar “concurrency refinement” preorder, based on causality rather than distribution, was
proposed by L. Aceto in [Ace89] for a subset of CCS.

Consider another example, taken from [BCHK91], describing the solution to a simple mutual
exclusion problem. In this solution, two processes compete for a device, and a semaphore is

used to serialize their accesses to this device:

Proc < 7D.enter.exit.v. Proc
Sem < p.7.S5em
Sys < (Proc| Sem | Proc)\{p,v}

Take now a variant of the system Sys, where one of the processes is faulty and may deadlock
after exiting the critical region (the deadlocked behaviour is modelled here as nil). This system,

FSys, may be defined by:

FProc <« 7P.enter.ezxit.(v. FProc + v. nil)
FSys <« (Proc|Sem| FProc)\{p,v}

In the standard theory of weak bisimulation the two systems Sys and F'Sys are equivalent. In

fact they are both equivalent to the sequential specification:

Spec «< enter.ezxit. Spec

that is Sys &~ Spec = FSys. Note that both Sys and FSys are globally deadlock-free. On the
other hand F'Sys has the possibility of entering a local deadlock in its faulty component, which
has no counterpart in Sys. More precisely, consider the following distributed representation of

Sys:

..

enter

Sem

.

)

'

,

L} .
! — exil
:

L

)

)

..

The faulty system F'Sys has a similar representation, with FProc in place of the second oc-
currence of Proc. In this distributed view Sys and FSys have different behaviours, because
FSys may reach a state in which no more actions can occur at location [, while this is not
possible for Sys. Note that again the causal approach would make no difference between Sys
and FSys: it may be easily checked that Sys =, Spec =, FSys.

In the rest of this introduction, we present our formalisation of distributed systems as CCS
processes with explicit locations. Let us be more precise about the nature of locations, and
the way they are assigned to processes. Since the distributed structure of a system may evolve
dynamically (because of the nesting of parallelism and prefixing in CCS terms), the notion of
location will have to be structured itself. For example a process of the form a. p will be initially
considered as having just one location /. Suppose now that p = ¢ | 7, for some nontrivial
processes ¢ and r. Then the locations of the subprocesses ¢ and r should be distinguished,

to reflect the fact that ¢ and r are independent components; at the same time, they should

be both sublocations of the location I. In our formalisation we will take locations to be words
w,v,... over atomic locations [,/’,..., and define v to be a sublocation of u whenever u is a
prefix of v. Then the subprocesses ¢ and 7 in the above example will have locations [/}, resp.
{15, for some atomic locations [} and [,.

As regards the attribution of locations to CCS processes, there arc at least two possibilities.
The most intuitive approach consists in assigning locations statically to the components of a
process, using the construct u :: p along the lines suggested by the examples above. Such
static assignment has been studied by L. Aceto [Ace91] for the so-called nets of automata, a
subset of CCS where parallelism may only appear at the top level. Here we will adopt the
different approach of [BCHK91], where locations are dynamically generated as the exccution
- or the observation - of a process goes on. The two approaches are in some sense equivalent
(see [Ace91]), though the dynamic view is more convenient for devecloping technical results, as
we shall establish here. In both views, a process with locations is described operationally as
performing location transitions of the form:

a
p—P

u

which differ from the standard transitions of CCS in that any (observable) action a has associ-
ated with it a particular location u. In the dynamic approach adopted here, these locations are
introduced when actions are executed. The essence of our semantics is expressed by the tran-
sition rules for action prefixing a.p and location prefixing u :: p. The rules for the remaining
operators of CCS are formally identical to the standard ones (with —z—' replacing =). The

rule for action prefixing is:

a.p —7—‘ lap for any atomic location [

This says that the process a.p may be observed to perform an action a at any atomic location
1. All subsequent actions of the process will be observed within this location: this is expressed
by the fact that the residual of a.p is [::p, the process p residing at location /. The rule for

the location prefixing operator u:: p is now:

a 7 a
p—pP = uup _——~uup

uv

/

Thus any action of u::p is observed at a sublocation of u. Note that the process u::p retains
the location u throughout its execution, in other words location prefixing is a static construct.
We will mainly be interested in the weak location transition system associated with the

o . a . .
transitions -— . We assume that unobservable r-actions have also unobservable locations:
u

thus T—transitions will have the usual form 5, and simply pass over existing locations without
introducing any new ones.

In a previous paper [BCHK91] we used a similar notion of location transition system to
give a non-interleaving semantics for CCS, by extending the notion of bisimulation. The work
presented here differs from that of [BCHK91] in two respects. First, the transition rule given
here for action prefixing is slightly different, in that it associates with an initial action an
atomic location ! instead of a general location u. We shall see in section 5 that this difference
is significant, and that the semantics proposed here is more in line with our intuition about
spatial distribution. Second, we shall be interested now in a more general notion of bisimulation
on location transition systems, which we call parameterized location bisimulation.

A parameterized location bisimulation (plb) is a relation B(R) on processes with locations,
parameterized on a relation R on locations. Roughly speaking, two processes are related by
B(R) if they can perform the same actions at locations u, v related by R. Our main result is a
complete aziomatisation, over the set of finite CCS processes, of parameterized location bisim-
ulations satisfying some general conditions, which we call sensible. This is achieved by intro-
ducing an auxiliary prefixing construct < @ at uz >.p. Intuitively, the construct <a at uz >.p
prefixes the term ¢ by an “action with locality”. Here u represents the access path to the
component performing the action a, while x is a location variable that is instantiated to some
actual location [when the action is performed. The operational behaviour of such a process is

given by the rule:

<aatuz>.p —:T pll/z]

This prefixing construct is used to define normal forms, which are terms of the form
D <a; at w;z;>.p; + »_7.¢;, and an essential part of our proof system for sensible pib’s
i€l j€J

consists of laws for converting terms into such normal forms. For instance a basic law is the

following, which is used to replace ordinary prefixing by the new prefixing construct:

a.p=<aatz>.z:up

We shall study in some detail two instances of sensible parameterized location bisimulation,
the location equivalence ~¢ and the location preorder L ,. Location equivalence is obtained by
taking the relation R on locations to be the identity: then two processes are equivalent when
they can perform the same actions at the same locations. The equivalence =, formalises the idea
that two processes are bisimilar, in the classical sense, and moreover they have the same parallel

structure. We will compare the relation =, with the earlier version proposed in [BCHK91], and

show that =, is a stronger notion. We shall also compare x¢ with the distributed bisimulation
equivalence x4 of [CH89,Cas88,Kie89] and show that the two notions are very close, in that
they coincide on finite restriction-free processes.

The other example of sensible plb we shall consider, the location preorder T ,, relates two
processes when they are bisimilar but one is possibly less distributed than the other. The
relation § , is weaker than =, in the sense that ~, C §,. For instance, looking back at the
protocol example of p.3, we will have the following relations between the specification Spec and

the protocol Sys:

Spec % Sys but Spec T, Sys

~ ¢

whereas the two systems Sys and FSys in the mutual exclusion example of p.4 are distinguished
by both =, and T ,.

To conclude this introduction, let us say a few words about related work. We already
mentioned the work by L. Aceto [Ace91], which provides static characterisations of the relations
~¢ and gl for a general class of CCS processes, the so-called nets of automata. This is
interesting not only from an intuitive point of view, but also because it yields an effective version
of our theory (the reader could have noticed that the location transition system determined
by the simple process a. nil is infinitely branching). The notion of explicit locality is used
by A. Kiehn in [Kie91] to bring together in the same framework the causal and distributed
views of concurrent systems. A similar idea motivates some recent work by U. Montanari and
D. Yankelevich [MY91}, where the notion of locality is extracted from the proofs of transitions.
Their approach provides another effective version of the location equivalence for behaviourally

finite processes — but not in general for regular systems, such as the nets of automata.

2 Parameterized Location Bisimulations

In this section we introduce a new kind of transition system, called the location transition
system, to specify processes whose actions may occur at different locations. Let us explain the
intuition for the location transition system. The general idea is that processes consist of parallel
components which reside at different locations and thus may be observed independently. Then
instead of assuming a single global observer for a system we assume a set of observers, onc for
each parallel component. At each stage of evolution of the system, an observer — or parallel
component — has a current location, which we represent here as a word u over a set of atomic
locations Loc. This location may be seen as the “access path” to that component. In this
section we are not concerned with the way these access paths are generated; we simply assume

that they exist.

Let us now define our transition system, formalising the notion of process with locations. We
assume an infinite set of atomic locations Loc, ranged over by k,I,m ...; we then define general
locations, ranged over by u,v,w..., to be sequences of Loc*. As usual we denote concatenation
by uv, and the empty word by €. The set of non-empty locations is Loct. Processes will
have transitions p % p', where a is an action and u is the location where it occurs, as well
as unobservable 7-transitions; the locations of 7-transitions are themsclves considered to be

unobservable, so these transitions will have the usual form p 5 p'.
Definition 2.1 A Location Transition System is of the form
(S, A, Loc,{ —Z—~ la€ A, ue Loc*}, 5)

where S is a set of processes with locations, A is a set of actions, Loc is the set of atomic
locations and each -~ , 5 is a subset of (S x §), called an action relation. The union of
u

action relations forms the transition relation over §. 0O

Based on the transitions p -—Z—' p’ and p = p’, we define the weak transitions p = p’ and p%p’
in the standard way: we let &= (5)*, n > 0. We will also use = to denote (5)*, n > 1.

Then the % are given by:

p=p @ar 304 pHq — S

On the resulting (weak) location transition system we define now the notion of parameterized
location bisimulation (plb). A plb is a relation on processes with locations, parameterized on
a relation K on locations. Informally, two processes are related if they can perform the same
actions, at locations u, v related by R. Intuitively, R is a requirement on the way corresponding

transitions should be reached in related processes.

Definition 2.2 Let R C (Loc® x Loc*) be a relation on locations. A relation G C (S x) is
a parameterized location bisimulation (plb) parameterized on R, or R-location bisimulation, iff
G C Cr(G), where (p,q) € Cr(G) iff

(1) p>p implies ¢=>¢ for some ¢’ € S such that (p',¢') €G
(i) ¢=q implies p=p’ for some p’ € § such that (p',¢') € G
(ii2) p=:>p' implies q—%*»q’ for some ¢’ € S and v € Loc*
such that (u,v) € R and (p',¢') € G
(iv) q=:>q’ implies p=z>p’ for some p’ € S and u € Loc™

such that (u,v) € R and (p',¢') € G.

The function Cg is monotonic and therefore, from standard principles, it has a maximal fixpoint
which we denote by B(R). As usual

B(R) = | J{G |G C Cr(G)}

Other properties of B(R) depend on corresponding properties of the underlying relation R. For

instance we have:

Property 2.3 If R is reflexive (resp. symmelric, transitive) then so is B(RR).

Proof. Straightforward. a

It should be clear that if R C R’ then any R-location bisimulation is also an R'-location

bisimulation, therefore:
Property 2.4 RC R = B(R)C B(R"

If for instance we take R to be the universal relation U = Loc™ x Loc™, we obtain an equivalence
relation, B(U), which is the largest parameterized location bisimulation. Intuitively, letting
R = U amounts to ignore the information on locations. In the next section we will see that
indeed for the location transition system associated with the language CCS the relation B(U)
coincides with the standard weak bisimulation equivalence of [Mil89)].

Another important instance of parameterized location bisimulation is B(Id)}, where Id is
the identity relation on locations. Again this is an equivalence relation, which we shall call
location equivalence and denote by =¢. This equivalence, which equates processes with the same
degree of distribution, will be studied in detail in sections 4 and 5. We shall see that in some
sense location equivalence is the strongest “reasonable” parameterized location bisimulation. In
section 6 we will discuss another example of parameterized location bisimulation, the location

preorder G ,, a preorder formalising the idea that a process is less distributed than another.

3 Language and Operational Semantics

We propose now a location transition system semantics for an extension of Milner’s language
CCS, and discuss the resulting parameterized location bisimulations. We should point out that
the semantics presented here is very similar, but not identical, to the one given in [BCHK91].
The reasons for introducing a new, more discriminating semantics are both technical and intu-
itive; they will be explained in the next sections.

The language we consider is essentially CCS, with some additional constructs to deal with
locations. As usual we assume a set of actions of the form Act = AUA, where A is a set of names
ranged over by @, 8,..., A the corresponding set of co-names {& | a € A}, and ~ is a bijection
such that & = «a for all @ € A. The symbol 7, not belonging to Act, denotes the invisible
action. We use a,b,c,... to range over Act and p,v,... to range over Act; = ActU {r}. We
will use p,q,... to denote terms of our language. The set of process variables, ranged over by
P,Q...,is denoted PVar. The operators we consider are all those of CCS, namely nil, action
prefixing p. p, nondeterministic choice +, parallel composition |, relabelling [f], restriction \«
and recursion rec P. p. In addition we shall use the construct of location prefixing w :: p
(already introduced in [BCHK91]) to represent an agent p residing at the location u. We recall
from the previous section that locations u,v,w... are words of Loc™.

Moreover we shall assume, for axiomatization purposes, an infinite set of location variables
LVar, ranged over by z,¥..., and introduce a new form of prefixing, < a at oz >.p, where ¢
is a location word possibly containing variables, that is ¢ € (Loc U LVar)*. Intuitively, the
construct < a at oz >.p prefixes a term by an “action with locality”. The meaning of this
operator will be specified more precisely when we give the formal semantics of our language.
Because of location variables, we will need a more general location construct of the form o::p,
where o0 € (Loc U LVar)*; thus u :: p will be a particular case of ¢ ::p . To sum up, our

language IL is given by:

p = nid | pp | ptp | plp | 2lfl | p\e
| P | recP.p

| oup | <aatozr>.p

Here rec P. p is a binding operator for process variables, which leads to the usual definition
of free and bound occurrences of variables and of substitution [p/P] of terms for process vari-
ables. Similarly, <a at oz >.p is a binding operator for location variables, which binds all
free occurrences of the variable z in p. However, 2 may still occur free in o. Once more,

this leads to standard definitions of free and bound occurrences of location variables and of

10

substitution [u/z] of locations for location variables. We will use the notation p[p] to de-
note an instantiation of both process and location variables in p. Similarly, we shall use
o[p] to represent an instantiation of an “open” location word o. Thus we have for exam-
ple: (<a at ez >.p)[p] = <a at ofp]y >.(p[y/z])[p) where y is a fresh variable. In general
we will be only interested in closed terms, where all occurrences of both kinds of variables arc
bound. We take IP to denote the set of such closed terms, also called processes in the following.
We shall still use p,q... to range over IP, specifying whether we deal with closed or open terms
when this is not clear from the context. Note that if <a at oz >.p is a process then o must
be a word over location names only, i.e. ¢ € Loc*. For any process p, we shall denote by loc(p)
the set of location names [€ Loc occurring in p. The set of finite processes, that is those not
involving the recursion construct, will be denoted IPy.

We define now the location transition system for IP, specifying its operational semantics.
The transition rules are given in Figure 1. As we said in the previous section, the idca is
that actions are observed at particular locations. Initially, some locations may be present in
processes because of the location construct u :: p. Pure CCS processes contain no locations:
one may regard them as having all components at the empty location ¢. Subsequently, when
an action is performed by a component at some location u, an atomic location [is created,
which is appended to u to form the new location ul. The word u may then be understood as
the access path to the component performing the action. For the prefixing operator a.p of CCS

the “access path” is empty, and we have the following transition rule:
a.p —57—* {::p for any atomic location ! € Loc

Here the action @ may be observed at an arbitrary location | € Loc. The only difference with
the semantics given in [BCHK91] is that here the location where the action occurs is atomic,
i.e. it is a letter ! of Loc instead of a word u of Loc*.

For the new prefixing construct < a at uz >.p the access path is given by u, while = is a
variable which is replaced by an arbitrary location ! when a is executed. Thus the rule for this

operator is:
<aatuzr>.p —a—l‘ p[l/z] for any atomic location | € Loc
u

Note that for u = € and p = z:: ¢ the process < a at uz >.p has the same behaviour as «. ¢:
<aatz>.xTig —% l::q for any atomic location { € Loc
The remaining rules of Figure 1 are modelled on the standard ones for CCS. They are exactly

the same as those in [BCHK91]. For example p + ¢ can perform any of the moves of either p or

g while u :: p has all the moves of p with locations prefixed by .

11

For each a € Act let - C (P x IP) be the least binary relation satisfying the following

u
axioms and rules.

(LT1) a.p -% lzp le Loc
(LT2) <aatuzr>.p _:T pli/z] 1€ Loc
(LT3) p —Z» P implies vip ;% viap
(LT4) P -Z—» p’ implies P+q —z~ 74
a /
g+p = p
(LT5) p—p implies Plg = p'lq
glp = qlp
r a . . /(‘1) ,
(LT6) p—p implies Pl = V(]
(LT7) P —:—‘ 7 implies p\a -Z—o P\e, a ¢ {a,a)
(LT8) plrec P. p/ P] -% I implies recP. p —% 7

Figure 1: Location transitions for r

12

For each yu € Act, let & C (IP x IP) be the least binary relation satisfying the following axiom

and rules.

(ST1) pp = p

(ST2) <aatuz>.p5plzy]

(ST3) pSyp implies unpLuny

(ST4) pLp implies p+qlyp
g+p 5

(ST5) poyp implies plasp g
glp>qlp

(ST6) p=p implies Pl p 11

(ST7) pop implies p\a = p'\a, p ¢ {a,a}

(ST8) plrecP. p/P] & p implies recP. p % pf

(ST9) pSp, ¢3¢ implies pleSp|d

Figure 2: Standard Transitions for IP

13

By inspecting the rules one can easily check the following property:
P —:17» p' = Ju€loc(p)® 31 € Loc. v =ul

Thus in what follows we will often write transitions explicitly in the form p _“_l. p’, and refer
u
to u as the “access path”, and to [as the “actual location” of the action a. One may show the

following property, stating that the actual location ! can be chosen arbitrarily at each step:

Property 3.1 For any term p and L such that loc(p) € L C Loc, if p%p’ then Yk ¢
L3p". p%p” and p"[k — 1] = p/, and p%ﬁp"[k — h] for any h € Loc.

The transitions p — p’, whose location is not observable, are defined through a simple
adaptation of the standard transition system for CCS to our extended language, which is
described in Figure 2. The only new rules are the ones for the constructs u :: p and
<a at uz >.p; in these rules the locations are in fact ignored. In particular, for the scc-
ond construct we use the notation p[z./] to represent the term p where all free occurrences
of = have been erased, that is p[zyv] = p[e/z]; for instance (z :: p)[zv] = € :: (p[zv]), and
(<aatzz>.p)[zy] = <aat z>.pbecause the first occurrence of z is free and the second oc-
currence of z binds this variable in p. The weak transitions p=zvp' are then derived as explained
in the previous section.

In the last two sections of the paper, we shall consider specific subsets of IP that consist of
terms representing nets of agents. These terms are built on top of given agents using the static
constructs of the language. More precisely, given a subset Ag of IP, we denote by IN(Ag) the

set of terms given by the following grammar:

ru=p | wxzr | (r|7) | rlf] | r\e

where p is any process of Ag. This syntax extends Milner’s one for flowgraphs (see [Mil79]).
The same syntax is used by Aceto [Ace91] to define what he calls “states”, which include the
nets of automata. Obviously this IN(Ag) is only interesting for a set Ag of agents which is not
closed for the static constructs. For instance if we take the CCS processes as agents, then the
terms a.(u :: p) and p + u :: ¢ are not in IN(CCS). We shall also use the notation IN,(Ag) for
the set of terms built on top of agents of Ag using the static constructs except restriction. It

is easy to see that the static structure of the nets is preserved by transitions, that is:

Lemma 3.2 Let Ag be a subset of IP closed w.r.t. transitions, that is satisfying
(i) if pe Ag and p & p then p' € Ag

(i) ifpe Ag and p —Z—» p' then p' € Ag

Then IN(Ag) is closed w.r.t. transitions.

14

(SL1) rls = s|r

(S12) rl(sle) = (rl9)lq
(SL3) p = €up

(SL4) v(r]s) = uunr|uss
(SL5) vu(vur) = wur
(SL6) (Il = Al slf)
(SLD) (wanlf]l = wa ()
(SL8) (war)\b = u:(r\b)

Figure 3: Some Static Laws

Obviously the same result holds for IN;(Ag). Sometimes it will be useful to abstract to some
extent from the static structure of a net, by considering it up to some reorganization that
preserves transitions. More precisely let = be the congruence over IN(Ag) (regarded as the
algebra of terms generated by Ag using the static constructs) induced by the equations SL1-
SL8 given in Figure 3. Then it is easy to show that = is a “strong (/d-location) bisimulation”
that is:

Lemma 3.3 Let Ag be a subset of IP closed w.r.t. transitions. Then for any p,q € IN(Ag)
(i) if p=q and p 5 p then there erists ¢’ such that ¢ 2 ¢’ and p' = ¢’

(i) ifp=gqand p —:} p' then there ezists ¢’ such that q —3' ¢ andp' = ¢.

The proof is left as an exercise. m]

We establish now a result that will be used in the next section, which relates the location

transitions and the operation of substitution of locations for location variables, denoted p|p].
Lemma 3.4 For any term p:

1) plp) = p' implies 3p" such that p' = p"[p] and V¥p'. plp'] S p'[p']

2) plp) =3 p implies 3o,p". u=0[p], p = p"[p] and Vp'. p[p] p"[p']

;=a:
olp'}l
Proof. We prove the first point by induction on the definition of p[p] = p’. Clearly it is
enough to prove this statement for “strong” arrows. More precisely, we show

plel 59 = 380 = p"ll &V . plp] & Pl

by induction on the definition of the transition. The case of ST2 is the only one deserving some

consideration. If p[p] = < a at uz >.q then there exist o and r such that p = <a at az>.7

15

with « = o[p] and ¢ = r[z/2][p] where = does not occur free in 7, and is not affected by p.
Then ¢ = a and p' = ¢[zy] = (r[zv])[p]- For any p’ we have plp'] = < a at ofp'ly>.r{y/z][p']
for some fresh variable y, and p[p'] = (r[y/z][p'Dlvv] = (r[2v])[P], therefore we may let
p' =rlzv]

Regarding the second point, we have by definition p[p] %f p’ if and only if there exist po
and p; such that p[p] = po — p1 = p’. Then, using the previous point, we only have to

ul
prove the statement for “strong” transitions p{p] —3-' p’. One proceeds by induction on the
inference of this transition. We omit the proofs. Just note that the case of LT2 is very similar
to the case of ST2 in point 1), and that in the case of LT3 we have p[p] = v :: ¢, therefore

p=o:r with v = op] and ¢ = r[p]. O

We may now instantiate definition of parameterized location bisimulation to obtain a family of
relations B(R) over IP. These relations are extended to open terms in the standard way: for
terms p, q involving process and location variables we set p B(R)q if p[p] B(R) ¢ [p] for every
closed instantiation p of both process and location variables.

We already mentioned in the previous section the case where R is U, the universal relation
on locations. In B(U) the locations are completely ignored and therefore one expects it to
coincide with the usual (weak) bisimulation equivalence ~. The bisimulation equivalence % is
defined on our extended language in the standard way, using the weak transitions £ associated

with the transitions - of Figure 2. We may then show the following;

Proposition 3.5 For all processes p,q: (p,q) € B(U) if and only if p = q.

Proof. For any term 7 let pure(r) be the CCS term obtained by removing all locations from
r, for instance pure(< a at oz >.s) = a.pure(s) and pure(o ::s) = pure(s). Let now p,q € IP.
Obviously p & p' implies pure(p) 2 pure(p’), and conversely if pure(p) £ p’, then there exists
p" such that p £ p” and p’ = pure(p”). Therefore p ~ pure(p) and thus it is sufficient to
establish

pure(p) = pure(q) if and only if (p,q) € B(U).

The proof of this fact depends on relating the two different types of transitions = and =%.
u

One can show that
1. if p=:>p' then pure(p) 2 pure(p')

2. if pure(p) = r then there exist u € Loc* and p' € IP such that p%p’ and r = pure(p’)

16

3. p= p' if and only if pure(p) S pure(p').

Now let
G = {(p,q) | pure(p) = pure(q) }.

Using the previous facts one shows that G C Cy(G) and therefore pure(p) = pure(q) implies
(p,q) € B(U). Converscly let

B = {(pure(p), pure(q)) | (p,q) € B(U)}.

Once more facts 1,2,3 can be used to show that B is a standard bisimulation and therefore

(p,q) € B(U) implies p = q. O

We have seen in the previous section that for any R, the relation B(R) is included into B(U).

Therefore:
Corollary 3.6 For any relation R and processes p,q: (p,q) € B(R) implies p = q.

We also mentioned the plb obtained by taking R = Id, the identity relation on locations. This
relation, the location equivalence =,, will be studied in detail in Section 5. By Corollary 3.6 we
know that this equivalence is at least as discriminating as bisimulation equivalence =~. We give
now an example showing that =, is strictly finer that ~. Let p and ¢ denote respectively the
CCS processes (a.a.c | b. @ d)\a and (a.a.d | b. & c)\a. Since in p the actions a and ¢ are in
the same parallel component we have p=—‘11> =Z> =§>p, = u = Il' for some I, whereas this is not
the case for ¢g. Therefore p %, ¢, while it is easy to check that p = q.

Let us consider another example of plb, which is a preorder but not an equivalence. Let < wt
be the plb induced by (the inverse of) the suffix relation on words, defined by: v Rv & Jw
s.t. u = wv, that is v is a suffiz of u. The relation R is obviously a preorder, and thus the
corresponding plb B(R) = S ,ur 1 2lso a preorder. This preorder might be used to express
the intuition that one process is more sequential or less distributed than another: if p is more
sequential than ¢ we expect every move of p to be matched by a move of ¢ from a location
which is less nested in the sequential structure of the process and thus somehow “contained”

in the location of p. We have for example:

a.b.nil +b.a.nil < _ - a.nil | bonil

uf

and more generally

a.(plbg)+b(aplg) S, aplby

17

for any processes p,q. However < is not preserved by location prefixing, and therefore

~ suf
neither by action prefixing. For example if r,s are the processes in one of the above examples
then c.r ﬁsuf c.s because this would require, after one execution step, that [::r < suf l::s,
which is not true. Essentially [::7 £ . 1:s because the underlying relation on locations is
not preserved by concatenation on the left.

The last examples show that if we want B(R) to have a reasonable algebraic theory then It

must enjoy certain properties. For instance we have the following:

Proposition 3.7 If R is reflerive and compatible with concatenation on the left, that is

uRv = wuRwv, then B(R) is preserved by all the operators in the language except +.

Proof. The reflexivity of R is used in showing that B(R) is preserved by the prefixing constructs
a.p and < a at oz >.p. The compatibility of R with concatenation plays a role in proving that
B(R) is preserved by location prefixing u :: p and by the prefixing construct a.p. We examine
thesc two cases, leaving the others, which follow the standard pattern, to the reader.

Let G be the set {(w :: r,w ::), (a.7,a.8) | (r,8) € B(R)}. Then one can check that
G C Cgr(G). For example any possible external move from w :: 7 must be of the form
w rfa:w 7/ where r=Z>r’. Since (r,8) € B(R) there must be a move from s of the form
s=z>s' where u Rv and (7', s’) € B(R). But then the move w:: s=u%w :: ' matches the original
move from w :: v since also wu R wv. This shows that G is an R-location bisimulation, therefore

(p,q) € B(R) = (w:up,w:q)€ B(R). 0

It should be clear that if R is reflexive, then
p=g = pB(R)q

Counsider now the preorder <

Npm

¢ induced by (the inverse of) the prefir relation on words,
defined by: uRv & 3w s.t. u = vw. This relation R is preserved by concatenation on the

left and thus <

~ pref

could be a suitable candidate for our theory. Note that, like the relation
S o discussed above, 5pnf could be viewed as a preorder ordering processes according to
their “degree of distribution”; however we will see in Section 6 that <

~ pref

is not completely

appropriate to formalise this intuition. Moreover the relation < pref lacks another algebraic

property that we would like to ensure, namely:
uRv = wup B(R) vup

We have for instance [::a.nil £ pref & nil. A sufficient condition for this property to hold is

the following:

18

Proposition 3.8 If R is compatible with concatenation on the right, that isu Rv = uw Rvw,

then B(R) satisfies the property: uRv = wu:up B(R) vip

In what follows we shall also make use of properties of plb’s with respect to the operation
of location renaming. A location renaming is determined by a mapping n from Loc to Loc®,
which is extended to words in the obvious