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C!-CURVED FINITE ELEMENTS WITH NUMERICAL
INTEGRATION FOR THIN PLATE AND THIN SHELL PROBLEMS (*)(**)

Part 1 : Construction and interpolation properties
of curved C! finite elements

Michel BERNADOU
INRIA, Domaine de Voluceau,
Rocquencourt, 78153 Le Chesnay Cedex, France

Abstract

The purpose of this paper is to construct curved finite elements of class C', compatible
with the elements of ARGYRIS-FRIED-SCHARPF and BELL. We start by the appro-
ximation of the curved boundary and, next, we construct curved finite elements of class
C!'. We conclude by proving that the corresponding asymptotic interpolation error has the
same order than for the associate straight elements.

In the second part of this work, we will study the approximation of thin plate and thin
shell problems by such curved C? finite elements. The effectiveness of these methods will
be illustrated in a subsequent work (en collaboration avec J.M. BOISSERIE).

(*) To appear in Comput. Meth. Appl. Mech. Engng.
(**) This work is part of
- the Project ”Numerical Solution of Partial Differential Equations for Engineering
Problems” of the Programm "INRIA-NSF”
- the Project "Junctions in Elastic Multi-Structures” of the Program "S.C.ILE.N.C.E.”
of the Commission of the European Communities (contract n° SC1 % 0473 — C(EDB))



ELEMENTS FINIS COURBES DE CLASSE C! AVEC INTEGRATION
NUMERIQUE POUR DES PROBLEMES DE PLAQUES
ET DE COQUES MINCES

Partie 1 : Construction et propriétés d’inter?olation
des éléments finis courbes de classe C

Résumé

L’objet de cette premiére partie est de construire des éléments finis courbes de classe C*,
compatibles avec les triangles ’ARGYRIS et de BELL. Nous commengons par ’approxi-
mation de frontiéres courbes puis nous construisons des éléments finis courbes de classe C!.
Nous concluons par I’étude de ’erreur d’interpolation correspondante et nous montrons
que pour la méme régularité de la solution, elle est du méme ordre que dans le cas des
éléments finis droits associés.

Dans la seconde partie de ce travail, a ’aide de ces éléments finis courbes de classe C!,
nous étudierons ’approximation de problemes de plaques et de coques minces. Dans un
travail ultérieur (en collaboration avec J.M. BOISSERIE), nous illustrerons 'efficacité de
ces méthodes par quelques exemples numériques.



1 INTRODUCTION

Many structural problems are set on curved boundary plane domains and are modelized
by fourth order partial differential equations or by systems of fourth order partial differ-
ential equations. In this way, let us mention :

*) many thin plate problems whose middle surfaces are curved boundary plane domains.
It is well known that the approximation of such problems by straight finite elements can
produce some lack of convergence as reported by {1] and bibliography of this work.

**) many thin shell problems : in [2] we have thoroughly shown that a high accuracy
approximation method can be easily developed when a general thin shell problem is formu-
lated on a plane reference domain. This is generally obtained through the use of an exact
or an approximated (for instance, by B-spline methods) mapping of the middle surface of
the shell. In general, such plane reference domains have curved boundaries.

* x %) many structural problems which include junctions between different thin shells :
for example let us mention junctions between circular cylinders, or pipes, which are used
in oil platform constructions. Each shell element can be associated to a plane reference
domain and, due to the complexity of surface intersections, the part of the boundary which
is associate to such intersections is generally curved. Corresponding open problems are
mentionned in [3].

Then, the development of approximations of high degree of accuracy by finite element
methods requires the use of C'-curved elements. Thus, in this paper, we develop and ana-
lyze such methods. The whole paper comprises two parts :

1) the construction of curved finite elements of class C! and the study of their interpo-
lation properties ;

ii) the use of these curved C!-finite elements in order to approximate the solutions of
plate or shell problems posed over plane reference domains with curved boundary. This

second part [4] will include the study of convergence and the obtention of asymptotic error
estimates ;

The detailed description of how to implement such curved C!-elements and some nu-
merical results obtained from benchmark plate problems will be reported in an additional

paper [5].

In this first part, we shall be only concerned with the construction of curved finite ele-
ments which have a connection of class C! with some classical C!-elements like ARGYRIS
triangle (see [6]) or BELL triangle (see [7]). In the sequel, we shall say that such elements
are C!-compatible with ARGYRIS or BELL triangles.

In the second part, we will generalize the results of [8] relative to the approximation of
solutions of thin shell problems posed on polygonal domains to the case of curved boun-



dary domains. In this way, we will analyze the simultaneous use of curved C!-elements,
considered here, and of numerica] integration techniques.

In addition to the introduction, this paper comprises three paragraphs. In paragraph
2, we consider the approximation of the domain 2. We first define an exact triangulation
of the domain . Next, to every triangle having a curved side located on the boundary,
we associate an approximate triangle by interpolating this curved side. Thus, we get an
approximate domain 2, whose constitutive triangles are in bijective correspondence with
a reference triangle K through applications F, affine or not. Similar constructions were
first analyzed by [9,10,11] and next some modifications were considered in [12 to 17]. Let
us also mention {18] who obtains optimal error estimates for the finite element solution of
second order elliptic problems by using isoparametric simplicial elements, {19] who consi-
ders the case of the interpolation on curved domains of functions which are not smooth and
[20] who analyzes special exact curved finite elements useful for solving contact problems
of second order in domain with piecewise circular boundaries..

Paragraph 3 is devoted to the definition of curved finite elements C*-compatible with
ARGYRIS or BELL triangles. Each curved finite element is in correspondence with a
reference element on K which is obtained by constraining a suitable polynomial space
P. In our knowledge, the results concerning the first curved element, C!-compatible with
ARGYRIS triangle, are new. For the second curved element, C'-compatible with BELL
triangle, we obtain, in an independent way, results comparable with some of {17]. In this
direction we also mention [21,22]. In addition, other curved C'-elements were considered
by different Authors : when the plane curved domain Q is the image of a plane polygonal
domain w through a parametric representation ¥, [23] introduces a curved version of the
Argyris element - named TUBAC 6 - which is the image of the associated straight element
defined on straight triangles of the polygonal domain w through the mapping . This
construction is really fruitful when such a mapping ¥ can be explicited like for circular or
elliptical domain for instance. In addition [24,25] have considered curved C!-elements for
which the finite dimensional space is polynomial over the current triangle. This is con-
venient for the approximation of constant coefficient operator as in some plate problems.
Nevertheless, for corresponding finite element methods, it seems difficult to analyze the
effect of numerical integration. A signifiant improvement of the method, suggested in [24],
is given in [26].

In paragraph 4, we give estimates of the asymptotic interpolation errors for every fa-
mily of these curved C!-elements. It is worth to note that these asymptotic error estimates
are of the same order than the one obtained for the associate straight elements.

Throughout this paper, we wuse notations of [27,28]. In particular, let
W*P() be the Sobolev space of real-valued functions which, together with all their
partial distributional derivatives of order k or less, belong to LP(§?). We set
H¥(Q) = W52(Q). On WkP() we shall use the norms and semi-norms defined by



1/p 1/p
lullxp0 = (Z llD"UII’},p(n)) y Julkpa = (E IID°ulI’£p(n))

lal<k lod=k

for 1 € p < oo, with the standard modification for p = +0co (see for example [29,30,31)).
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2 APPROXIMATION OF THE DOMAIN

Let there be given the plane R? referred to an orthonormal system (0, €}, ¢€,), the
corresponding system of coordinates (z,,;) and a bounded domain Q in R?. We assume
that the boundary I" can be subdivided into a finite number of arcs, each of them admiting
the following parametric representation

(2.1) Ty = x1(8), T2 = x2(8), Sm < s <spr.
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The functions x1(s), x2(s) belong to C9t! ¢ sufficiently large, and they are such that
[(x1)'P? + [(x2)']? is different from 0 on the interval s, sp].

2.1 Exact triangulation of the domain Q

Let us subdivide the set {2 into a finite number of triangles K with straight or curvili-
near sides. More precisely, given two distinct triangles of this triangulation 7, we assume
that either they are disjoint or they have a common vertex or they have a common side.
Moreover, we assume that every "interior” triangle K (i.e. a triangle having at most one
vertex on I') has only straight sides and that every "boundary” triangle K, has at most
one curved side located over an arc of type (2.1) upon the boundary I'. In the following,
we shall denote K the (rectilinear) triangle having the same vertices than the curvilinear
triangle K.

From now on, we consider regular families of triangulations 7 of the domain Q, i.e.,

(1) There exists a constant o such that

(2.2) VT, VK(or K) €T, he o o,

PK
where hxy = diam(K) and px = sup{diam(C);C is a disk contained in K} (in case of
curved triangles K., we replace K, by K).

(i1) The parameter

(2.3) h= max hy approaches zero.

Remark 2.1 : For h sufficiently small, it was proved in [10, Theorem 1] and [16, Theorem
1] that every triangle K, is the image of a reference triangle K through a diffeomorphism
of order gq. ]

2.2 Construction of an approximate triangulation of the domain Q

In order to construct finite elements of class C!, it is convenient to approach the
curvilinear side of every triangle K, by an arc parameterized with the help of polynomial
functions. This amounts to associate to every curved triangle K. an approximate curved
triangle K (see Figure 2.1). Thus, the initial domain (2 is replaced by an approximate
domain 2, whose corresponding triangulation is denoted by 7. Every triangulation 7, is
the union

(i) of a triangulation 7;' constituted by straight sides triangles K in correspondence
with a fixed reference triangle K through an affine mapping Fy ;

(ii) of a triangulation 7;? constituted by triangles K having two straight sides and a
third curved side approximating an arc of the boundary I'. These triangles K are the



images of the reference triangle K through a nonlinear mapping Fy.

Figure 2.1 : curved triangles, exact K. and approximate K

In both cases, we indicate how to construct an application Fx : K — K, for all
K € T,. Firstly, if the triangle K € T;!, then the application Fy is affine : there ex-

ists an invertible matrix By and a vector by of R? such that

(2.4) Fx :(#,,%,) € K — Fy(&,,%,) = Bx [ ”‘; } + by € K.

z
For clarity, using notations of Figure 2.2 :
Ty = T13 + (21 — T13)31 + (T12 — T13)E,
(2.5) FK(.’il,"i‘g) -

Ty = T3 + (T21 — Z23)T1 + (T22 — T23) T2,

where 1,;,a = 1,2 denote the coordinates of the vertices a;,7 = 1,2,3 of the triangle K.

Secondly, when the triangle K € 7,2, the application Ff : K — K isin general non-

linear and can be conveniently defined in two steps :

Step 1 : Interpolation of the curved side aja, of the triangle K, :

Consider the new parametrization of the arc aja; by using variable Z,

I, = 1[’1(532), T = 1!’2(5?2)’ 0<z, <1
(2.6) where

Ya(Z2) = Xa(8+ (5 — 8)%2), a=1,2.
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Figure 2.2 : Case of a triangle K € T}!
Then, the approximate arc v, is defined by the parametric equations
1 = Y1n(d2), T2 = Yau(f2), 0< 22 <1,

where the functions 1, and 2, satisfy the following hypothesis :

Hypothesis 2.1 : The functions Y., are interpolation polynomials, of Lagrange or Her-
mite type, with degree n > 1, of the functions ,,a = 1,2, over the interval [0,1] and such
that

1!)0;,(0) = 'lf)a(O), 7»Z)orh(]‘) = d’a(l)a a = 1,2 5
(2.7)

|1/)a - wah |p,oo S Chrll\’+1_p|¢a|n+l,ooy p= 0, nn + 1,

where ¢ 13 a constant independent of hy. ||

From Hypothesis 2.1, we immediately derive

0Oif n=1,
(2.8) Yar(Z2) = Tar + (To2 — To1)Z2 +
To(1 = 22)Pacgia(Z2) if n > 2,

where P,_3.,,a = 1,2, denotes polynomials of degree n — 2 with respect to Z,, completely

determined by the choice of the interpolation method. Some examples are given in section
2.4.

Step 2: Definition of the application Fg K — K :
To any point M of the reference triangle K, the application Fx associates the point
M, as follows :



v

(2.9) OM,, = Fy1(%1,32)€1 + Fro(1,%2)6;

where the functions Fk.,a = 1,2 are defined by the relations

( FKa(jlai‘2) = Ta3 + (xal - an)jl + (xa2 - mas)iQ
0if n=1,
(2.10) {
+¢ 1, . . .\
5 $1$2[Pn-—2;a(1 - :E]) + Pn—-2;a(x2)] lf n 2 2
t (where polynomials P,_,,, are defined by (2.8)).

Let us note that these functions Fk, are constructed SO that Fx,(1 —23,22) = Yan(Z2),
i.e., the image of the side a,a,; of the reference triangle K through the application Fy, is
the approximate arc 4. Moreover, if we denote by M the point of barycentric coordinates
(#1,%2,1 — & — &) in the (straight) triangle K = (ai,as,as3), relations (2.10) can be
rewritten in the vectorial form

—_— == 1 —
(2.11) OM, = OM + (MM, + MM}).

Figure 2.3 : Construction of M — M), through MM, = %(MM,} + MM}?)
(for clarity, the constructions of M —» M} and M— M} are displayed separately)

Corresponding geometrical interpretation is illustrated in Figure 2.3 and obtained from
relations

~

T2

MM,:=1 = PP if#)#1, M=M} =a if 3 =1,
— 41
(2.12)

~

MM,3=T%I52P§ fi,#1, M=Ml=ayifi,=1,



- 2 —— 2
since PIP,} = E.’%](l - .’i‘])Pn_z;a(l - .’i])é‘a, P2P2 = Zi’z(l - jg)Pn_Q;a(ii‘g)ga.

a=1 a=1

2.3 Some properties of the application F

In the following theorem, we prove directly some properties of the application Fg
defined by relation (2.10). Some of these results have been obtained in [10,11] by using
properties of the diffeomorphism K — K, mentioned in Remark 2.1.

We will use the following notations :

(2.13) Jr(£) = Jacobian of Fk at point £ = (&, Z2),
(2.14) Jpz1(£) = Jacobian of Fg! at point z = (z,, z,),
(2.15) Pkl = sup D Fx(2)),
(2.16) | Fic" ook = sup ID*Fi (2)]]-

Theorem 2.1 : Let T be a regular family of triangulations of the domain Q, i.e., satisfying
condstions (2.2) and (2.3). To any curved triangle K. of the "ezact” triangulation of the do-
main 1, we associate the approzimate curved triangle K obtained through the interpolation
of the curved side located on the boundary I'. We assume that this interpolation satisfies
Hypothesis 2.1, and that the boundary T' of the bounded domain Q C R? is piecewise of
class C*1 g > n(n = degree of the components Fy,).

Then, for hi sufficiently small, we have the following properties that are independent
of the degree n of the components Fy,, :

(i) The application Fy : K — K, defined by relations (2.9) (2.10) is a C®-diffeomorphism
from KontoK ;

i) The application Fx and its inverse F2' : K — K, satisfy following estimates
K

(2.17) 1Frlooo i Schk, £=0,1,...
(218) |FEII(|°°,K S Ch]_\»l, { = 1,2,

(313) The Jacobians Jg, () and Jpgx(x) satisfy the following estimates

(219) G h%\' < lJFK'O,oo.R < c2h3\’ 3 |JFK Il.oo.f( < Ch?\’-H’ = 03'“3”
< C2

2.20 = < gt ook < =,

( ) h%\ -—| FKIIO, K= h%\’

10



where, in the inequalities (2.17) to (2.20), letters c,ci,c; denote strictly positive
constants which are not necessarily the same from an tnequality to the other.

Proof : When n = 1(Fy affine) these results are obvious. Henceforth, we assume n > 2.
Then, the proof takes seven steps which can be summarized as follows (more details can

be found in [32]) :

Step 1: Fk verifies estimates (2.17) :
From hypothesis 2.1, we have

(221) Id)cx - d’ah Ip,oo < Ch2’+]_p|1/)a|n+l,oo’ p=0,...n+1.

Taking into account the hypothesis [(x1)']* + [(x2)')* # 0 on [s,,, sp] and the definition
(2.6), we obtain |t |p.0 = O(hk),p = 0,...,n + 1, so that

(2.22) [Yahlpoo < chk,p =0,1,... (note that |¢anlp0 =0 when p > n + 1).

Substituting the estimate (2.22) into definition (2.8), we derive

(2.23) sup |[Prczia(£2)]™] < chEt2,m = 0,1, ...
#,€[0,1)

and hence, with (2.10),

n+iz [,
(2.24) sup g Ko

— (1, Z < hil,+i2 0< . . —19
(51‘52)6};, (6il)11(0j:2)12($15$2) scC K R <1 +12’ a ,

Thus, we obtain
1D Fic(@)] < ¢ max|&” Fie(2)] < eh
so that the definition (2.15) involves estimates (2.17).

Step 2: Fk verifies estimates (2.19)
Expressions (2.10) and estimates (2.23) imply

(2.25) e (8)] = | G x Ga | +0(h ).

Then, the hypotheses (2.2) and (2.3) give the two first estimates (2.19). The last
inequalities (2.19) are direct consequences of estimates (2.24).

Step 8 : For hy sufficiently small Fy is injective :

We use a result from [33, Corollary 2] expressing that if O is an open set of R*, if M
is a compact of O with a connected boundary OM, if ¢ : O — R™ is of class C? such that
Jo(z) > 0 for all z € M, and if g|aas is injective, then g[p is injective.

11



Here we take M = K, g = Fy which can be extended to an open set O of R™ containing
K without any difficulty. Since estimates (2.19) imply Jz, (2) > 0, VZ € K, it remains to
prove that Fy|,; is injective.

@ (i) (iii)

Figure 2.4 : Basic situations for which Fx is not injective

Firstly, the definition (2.10) implies immediately that the restriction of Fj to the
sides d3a; and aza, is injective. Now, it remains to prove that situations as illustrated
in Figure 2.4 cannot occur. Situation (i) is avoided if the restriction of Fx to the side
@, is injective. Since Fio(1 — £3,22) = ¥on(Z2), we only need to prove that the system
Yor(X) = Yon(Y),a = 1,2, XY € [0,1] has the unique solution X =Y. This property
is easy to prove by using estimates (2.23) and by assuming hg sufficiently small.In the
same way we prove that situations (ii) and (iii) cannot occur for hx sufficiently small. For
instance, situation (ii) leads to the system

Ta3 — Ta1 + (2?0,2 - an)X - (1:02 - zal)Y - Y(l - Y)Pn—Q;a(Y) =0
0<X,Y<1
which admits the unique solution X =Y =1 (i.e., point a;) when hg is sufficiently small.

Step 4 : Fx is an homeomorphism fromIi’ onto K : ) .
Since F is continuous and injective, Fx is an homeomorphism from K onto FK(I;’).

By construction, the image of the boundary 8K is the boundary K. Since an homeomor-

phism applies the interior of a Jordan curve onto the interior of its image (see [34, §§110

to 113]), the application Fx is an homeomorphism fromK onto K.

Step 5: Fk is a C*-diffeomorphism fromI-;’ onto K : _
Application Fx is C* and its Jacobian Jg,(Z) is different from 0 over K. It follows
that the inverse application of Fx is also C*® (see [35]).

Step 6 : Application F' verifies estimates (2.18) :

We give a proof by induction. Starting from identity Fx o Fi' = I and using estimates
(2.17) and (2.24), we obtain

12



P23 s —sup||DFK‘(z)|| < sup grzqég

(-‘B)

< h}\
i.e., the estimate (2.18) for £ = 1.

Next, let us assume that estimate (2.18) is true for £ = 2,...,m — 1 and let us show that
(2.18) is true for £ = m. For m > 2, we have (see {35, section 7.5]) :

1 . o
m'z Z T DlF}?l(xl,$2)['—'DJ1FK(1:1’$2)(£1’...,éjl)’ ceey
(2 26) t=1 JGJ(lm) 71!
1 y ~ -~

F DJ[FK($I,$2)(€m.—jl+1, a{m)] =0,
where

J(€,m) = {j = (G1,--rJe) EN' 5 1< J1,eyje Sm, 1+ j2+ ... +je =m}.

Since the application Fk is a C-diffeomorphism from K onto K , the application
DFy(#,,%): K — K is bijective. Let ; = DFx(&1,%2)&,1 = 1,...,m and, conversely,
& = DF,}l(xl, T7)ni. Relation (2.26) can be written as

4

D™ Fg'(z)(m, - ,nm)——m'z 2. 7 D‘F;\ (2)

=1 jeJ(e, m)

(2.27) 4 {i—' D7 F(2)[DF (z)m, .., DER (z)m5,) 5 -

\

1 ] ol - -—
7 D F(2)[DFRMN(2)mmjpt1s ...,DFKl(x)nm]}

Then, estimates (2.17) and the hypothesis of the proof by induction give ||[D™ F'(z)]|| <
hLK’ hence IF};llmle < chy! and thus, estimates (2.18) are proved.

Step 7: Fi! satisfies estimates (2.20)
It suffices to combine equality JFK(:i)JF; (z) = 1, with the estimates (2.19). |

2.4 Examples

In this section we give three examples of functions Fx which seem to be practically the
most attractive. According to equations (2.8) and (2.10) it suffices to define the approxi-
mate arc .

Ezample 2.1 : Construction of v, by using polynomials of order 2
The degrees of freedom of the Lagrange-type interpolation are given by

13



Tor = d"a(o) = Xa(§)7 To2 = "f/)a(l) = Xa(§)7

1 s+ 35
Iao=¢a(3) =Xa( D) )a a:132

(2.28)

4

so that relations (2.8) and (2.10) lead to :

. N . . Tol + ZTo
(2.29) Yor(Z2) = Tor + (Toz — To1)T2 + 425(1 — 2,) [xao - -1—2——2]
and then
FKa(ils:i:?) = Zoz + (xal - an):i'l
(2.30)
+ (xa2 - an)jQ + 4 [zao - %ﬂ] jl:i'?-

Ezample 2.2 : Construction of v, by using polynomials of order 3
The degrees of freedom of the Hermite-type interpolation are given by

{ Tol = d’a(o) = XO(Q)a Ta2 = ¢0(1) = xa(§),
(2.31)
Ya(0) = (5 — 9)Xa(2), ¥a(l)=(3-9)xa(3), a=1,2
so that
Yah(Z2) = Tor + (Toz2 — Ta1)T2
(2.32) + £2(1 — £2){[2(02 — Ta1) — (5 — 8)[xa(3) + X (5)])22
+ Tar — Taz + (5 — 8)Xa(8)}
and then
( Fro(1,22) = Taz + (Ta1 — Ta3)Z1 + (Ta2 — Taz) T2
(2.33) . + %531512{[2(%2 — Za1) = (5 — 9)[Xa(8) + Xa()])(E2 — #1)
L + (8 = 9)[xal8) = xa(3)}

Ezample 2.9 : Construction of 4, by using polynomials of order 5
Now, the degrees of freedom of the Hermite-type interpolation are given by

{ To1 = d}a(o) = Xa(é), T2 = ¢a(1) = Xa(g)a
(2.34)

P0) = (5- 8)'x(s), ¢¥2(1)=(5-9)x0(3), £=1,2; a=1,2
so that '
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{ d’ah(i‘Z) = ZTo1 + (zOZ - 101)5:2

+ £2(1 — £2)[Boz(£2)® + Ba2(£2)* + BarZz + Bao)

where the coefficients B,¢, £ =0,1,2,3 are given by

(2.36) <

( Bao = Toa — Taz + (53— 8)X.(8)

s _;) Xa(2)

,Bal =Tol — Ta2 + (‘§ - -’)X:x(ﬁ) +

Bor = 9(%a2 = Ta1) = (5 — £)[BXa(8) + 4xa(3)] = G ;é) [2X0(8) = Xa(3)]

| Bus = 6201 = 22) + 365 ~ 9)xale) + Xl + E Ll 0) — 23]

Hence, from relations (2.10)

( Fra(%1,22) = Toz + (Ta1 — Zaz)T1 + (To2 — To3) 2
.. 4 \3 4 \2 -
] + 3 £182[Boa(£2)° + Bo2(22)* + BarZ2 + Bao
L + BaS(j:l)a + Bo&(:i:l)2 + Baljl + BaO]

where the coefficients B.e, £ =0,1,2,3 are given by

(2.38) <

( Bao = Taz — Toa — (5 — 8)X4(3)

3 ' (5 — §)2 "

220

Bt = 9z — 202) + (3 = oxal®) + 4, (9] ~ E5L 2 (5) — 2 0)

€

| Ao = 6(zs2 = 7a1) = 3(3 = 9.(®) + xa] + CL 1) = ¥ )

3 DEFINITION OF CURVED (! FINITE ELEMENTS

In this paragraph, we define curved finite elements which have a connection of class
C! (we will say C'-compatible) with ARGYRIS and BELL triangles. We state the basic
principles in section 3.1. In section 3.2, we detail this definition for a connection between
a curved finite element and an ARGYRIS triangle in case of an approximate boundary
parameterized by polynomials of degree five. Following a remark of [17], we indicate in

15



section 3.3 the simplifications that it is possible to realize when the boundary conditions
are of homogeneous Dirichlet type : the approximate boundary v, can be parameterized
by polynomials of degree three only. In both cases, we mention the modifications which
permit to obtain a curved element which is C!-compatible with the BELL triangle. Finally,
in section 3.4, we define curved elements which have a connection of class C° with an
Hermite element of degree 3 ; these elements can be used for instance to approximate
tangential components of the displacement for thin shell problems.

3.1 Basic principles

Figures 3.1 and 3.2 recall the definitions of the ARGYRIS and BELL triangles as well
as their interpolation properties. By Py and L we note respectively the functional space
and the set of degrees of freedom of the finite element while 7x means the associate inter-
polation operator.

Among the principles we need to observe when constructing such curved finite elements,
we shall consider the ”essential” conditions and the ”desirable” conditions.

Py = P(K); dimPyx =21

Lx = {p(a;), Dp(a;)(ai-1 — a;), Dp(a;}(ai}1 —a;), 1 <1 <3;

D*p(ai)(as41 — a51)%, 1 <i,j < 33 Dp(bi)(ai — ), 1< i < 3)

v = 7k v)|mi < R ™ vlksrk, YV € HFY(K), 3<k<5and0<m <k+1

Figure 3.1 : ARGYRIS triangle [6]

16



q,

a a3

Py = {p € P(K); O,p € P5(K') for each side K’ of K}

dimPy = 18 ; Py(K) C Px C Ps(K) ;

Ex = {pla), Dp(ai)(ai-1 — a;), Dplai)(ait1 —ai), 1 <21 <3
D’p(ai)(aj41 — a;-1)*, 1 <4, <3}

v—7rKvmKSchk“'"‘kaK,Vver“K,k=3,4;0§m§k+1
. K ,

Figure 3.2 : BELL triangle |7]

”Essential” conditions :

The connections between the curved elements, associated to curved triangles K of Fi-
gure 2.1, and the adjacent (straight or curved) finite elements are realized through the
straight sides aza; and aza;, as mentionned in Figure 3.3.

First, consider the connection of a curved finite element associated to the curved trian-
gle K with the ARGYRIS (or BELL) triangle associated to the triangle Kp of Figure 3.3.
Such a connection will be of class C! if, and only if, the traces of functions p € Px and
of their normal derivatives Op/0ngs, along the side aza; coincide with their homologues of
the adjacent finite element. In order to satisfy these conditions, it is sufficient to meet the
following requirements :

(3.1) (i) the degrees of freedom of the curved finite element relative to the sides
' asa,, a = 1,2, are identical to that of the adjacent finite elements.

( )
(ii) the traces pla, 0, | TESP- GTP [asaa] | » @ = 1,2, of functions
3a

(3.2) p € Px associated to the curved triangle K are one-variable
' polynomials of degree 5 (resp. 4 for ARGYRIS triangle and 3
for BELL triangle), entirely determined by the degrees of

| freedom relative to the sides aza,, a = 1,2.

17



Likewise, it is worth to note that these conditions insure a C! connection between two
adjacent curved finite elements.

Figure 3.3 : Adjacent triangles to a curved triangle K

”Desirable” conditions :

The application Fk, studied in paragraph 2, associates the curved triangle K to the
reference triangle K. We use the same application Fx to associate to any function v
defined over the triangle K, a function © defined over the triangle K, i.e.,

(3.3) v=>00Fg;', b =vo Fk.

Then, it is ”desirable” that the following condition is satisfied :

(iii) To any function p € Py, defined over the curved triangle K,
(3.4) . : .=
the correspondance (3.3) associates a polynomial function p = p o Fj,.

This condition (3.4) is convenient for the study of the approximation error and to take
into account the numerical integration and the boundary conditions.

On the other hand, this condition leads to the definition of reference finite elements
which are most complicated than those associated to corresponding straight finite elements.
Indeed, let @ be any point of the side Gsa; of the triangle K (see Figure 3.4) and set
a = Fg(a). Then, relation p = p o Fk involves

op,.._ _ OFk . Op OFy . Op
6—:;:2((1) =< 6_52(0)’ i3 > 'at—m'(a) + < E;(a), na; > B

(3.5) (a),

and a similar relation for any point a € aza, :

OFg

0y

0 OF, 5}
(&), ts2 > 5,-(a) + < Z25(a), 72 > 5= (a),

3 ..
(36) a_.i‘](a) =< 3.%1 8n32

where < , > denotes the usual scalar product of R?.
18



)

32

1y

>

o J

Figure 3.4 : Local reference systems along the straight sides of the curved triangle K
(t3a, N3, are the unit tangential and normal vectors to the side aja,).

By consideration of the hypotheses (3.2), we verify that

(3.7) the derivatives 8atp (a), for a € asza,, a =1,2, are polynomials
: 3o
of degree 4 with respect to &, (note that Fy is affine along a;a,) ;
the derivatives i (a), for a € azas, a =1,2, are polynomials
(38) anSa
of degree 4 (ARGYRIS) or 3 (BELL) with respect to Z, ;

Thus, relations (2.10) (3.5) (3.6) (3.7) and (3.8) involve that, for & € aza,, 8%%(&) is a
polynomial of degree n + 3 with respect to ;, while for a € asa,, 8251-(&) is a polynomial of
degree n + 3 with respect to #;. Let us denote

PK={13:I;'—>R;ﬁ=poFK,pEPK}
the space of functions defined over the reference triangle K from the space Py and through

the application Fx. Then, in order to satisfy condition (3.4), above remarks show that we
need to satisfy the inclusion

(3.9) Py C Poyy.

By using these considerations, we show in section 3.2 that it is possible to define
curved finite elements compatible with ARGYRIS or BELL triangles in case of n = §, i.e,,
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Fx € (Ps)?. In section 3.3, we examine the more simple case n = 3 which is sufficient for
homogeneous Dirichlet boundary conditions.

3.2 Definition of curved finite elements C'-compatible with Ar-
gyris or Bell triangles when Fx € (P;)?

Subsequently, we detail the definition of a curved finite element C!'-compatible with
ARGYRIS triangle. Similarly a curved finite element C!-compatible with BELL triangle
can be constructed ; the modifications will be mentionned by "resp. BELL :...”. Since
all the curved elements into consideration satisfy conditions (3.1) (3.2) and (3.4), the C'-

compatibility between two adjacent curved finite elements is automatically satisfied.

_ For our definition, we associate to the reference triangle K a basic finite element
(K,P,X) described in Figure 3.5. The choice of P = P takes into account inclusion
(3.9). We say that this finite element is "basic” by opposition to the notion of reference
finite element (see the theory of affine finite elements). To get the reference finite element
associated to the curved finite element into consideration we will have to impose 24 (resp.

BELL : 27) constraints to the set P.
Considering Figure 3.5, it remains to prove :
Theorem 3.1 : The triple (K,P,E) of Figure 3.5 defines a finite element

Proof : Since dimP = card(i), we need to prove that 0 is the unique element of P whose
corresponding degrees of freedom ¥ are zero. First we remark that such a function p is iden-
tically zero when restricted to the sides of K so that (31, 32) = [£122(1 =21 — £2)]24(31, F2)
where § € P;. Next, we have §(é;) = 0,2 =1,...,10 so that § = 0. [

Construction of the interpolate function v — wgv :

By using this basic finite element we are going to associate to any regular function v
(for instance v € C*(K)) defined over the curved triangle K its interpolate mxv. It takes
three steps :

Step 1 : Definition of the set Lk of degrees of freedom of the curved element
In all section 3.2, application Fg is that of Example 2.3, i.e., (2.37). Let us set

a; = Fr(&), bi=Fx(b), 1=1,2,3; d = Fx(d)), i=1,..,12;
(3.10) e; = Fx(&), i=1,..,10;

130, N30, @ = 1,2, unit vectors defined according to Figure 3.4
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i,
d, diz
d A du
42 N
A \ NS
by & &2
R . A A d
=B & 510 Tes O
R R I A
6\5 36 tl;2 A7 é‘8
O T 3
K = unit right-angled triangle ;
P=P,; dimP =55;
o, .. 0w, 0w, . 0w Fw .. 0w
E(w) - w(ai)’ a_~(a!)’ a_ftg(ai)’ a 2((1,), FEN 0%, ( )a a z(al 1=1,2,3;
aw ow - V2 [0 O
(bl) 'é'g(bz) Y (3i ) (bs); w(dy), i=1,..,12;
6w 5
—=—(d;), 1=1,...,4; d;), i =
\/Qil(d')’z 1,...,4; 8”( ), 1=25,...,8;
2 (0w Ow
AN e d),i=9,..,12; %(&),i=1,..10
2 (63:1 8:52)( ) 1=9,  w(é), ¢ }
Figure 3.5 : "Basic” Py-Hermite finite element

Then, the set L (v) of values of degrees of freedom of v is given by (see Fig. 3.6) :
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Zk(v) = {(D°v(a@), |e|=0,1,2), i=1,2,3; Dv(b)na ;
(3.11) {

Du(by)nsz ; Dv(bs)DFx(bs)(as — bs) 5 v(e;), i =1,...,10} ;

(resp. BELL :
(3.12)

Lk (v) = {(D%v(a), |a| =0,1,2), 2 =1,2,3; v(e), ¢ = 1,..,,10}).

(ARGYRIS)

Figure 3.6 : Sets Lk for C'-compatible curved finite element (Fx € (P5)?)
Note that in addition to the usual degrees of freedom of the corresponding classical
elements, we find ten additional degrees of freedom inside of the triangle K. Also, note
that the sets £x given by (3.11) (3.12) satisfy condition (3.1).

Step 2 : Definition of the set Ak (v) from Ex(v)
Consider the following partition of the set ¥ : ¥ = 21 U 22 U 23 where

(£, = {(D°B(a;),|a| =0,1,2), s =1,2,3; p(&), i = 1,...,10},

= {p(d),i=1,..,8; — ap (b,) —-3£(J,.), i=1,..4;

(3.13) : - a—i(&) P — (d) i=5,..,8);
S = {p(d:), i=9,..,12; Q (ﬁ @) (b)
V2 (ﬁi’_ + 31))

\ 2 a.’i'l 6(132

To the set of values Xk (v), we are going to associate the sets of values A;(v) that
we need to attribute to Z,,z = 1,2,3 to obtain a suitable function % € P. Let us note

Ag (v) = A (v)UAm(v)UAA 3(v) By means of the application Fi we define the function
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(3.14) v =vo Fg.
Then, from the set g (v) we immediately derive
(3.15) Ax1(v) = {(D*(&), la| =0,1,2), i =1,2,3; #(&), i = 1,..., 10}.
R Now, consider the set AKQ(‘U). We first examine the case of the degrees of freedom of
3, located on the side aza,. In order to obtain an interpolate function 7y v which satisfies

conditions (3.2) we need that :

- on the one hand, its trace mxv|[,; q,) coincides with the one-variable Ps-Hermite poly-
nomial defined by the data of the following degrees of freedom

{ {v(a1), v(as), Dv(ai)(as —a1), Dv(as)(a; — a3),

D?v(a;)(az — a1)?, D*v(az)(a; — a3)?}.

(3.16)

We parameterize the side aza; by using 1, 1.e.,
(3.17) Ty = T13 + (11 — 213)%1, Tz = To3 + (T — T23)T
and we note
(3.18) fi (which will coincide with (1xv) 0 Fi|s5.4,])
the so-defined Hermite polynomial ;

- on the other hand, its normal derivative %’;'11;]3 has a trace %1;]3 fa.01] which coincides
a3,81

with the one-variable P;-Hermite polynomial (resp. BELL : P;), defined by the data of
the following degrees of freedom

(3.19) {Dv(a;)naz1, D*v(a;)(na,tar), ¢ =1,3; Du(by)nas},
(3.20) (resp. BELL : {Dv(a;)na;, D*v(a;)(na1,ts1), ¢ =1,3})
Similarly to (3.17) and (3.18), we note

(3.21) g1 (which will coincide with (%1“’”) o Fi|jas.in]),
31

(3.22) (resp. BELL : h; (which will coincide with (%’;’; 1”) o Fylizs o))

the so-defined Hermite polynomial. Next, we define Hermite polynomials over the
second straight side, i.e.,
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(3.23) Ty = T13 + (T12 — 213)T2, T2 = Taz + (T2 — T23)32,

(3.24) f> (which will coincide with (Txv) 0 Fi [ja,4,));
(3.25) g2 (which will coincide with (aé;;"v) 0 Fx|(a3.3])»
32

(3.26) (resp. BELL : hy (which will coincide with (667:::) 0 F|ias,a2]))-

At this stage, note that the polynomial functions f;,ga, by o = 1,2, are only dependent
of the values of the degrees of freedom of the function v, given in the set L (v), and relative
to the sides aza; and aza;. Then, the set of values AKz('U) associated to the set of degrees
of freedom £, (see (3.13)) is given by :

Ara(v) = {fo(di),i =1,....,4; fi(d), i=25,..,8;

1 OF, AFk .
. { S (h), ta > (bl) +lasa < S (B), e > gz(bl)} ;
1 aFK f; »A 6FK ,\‘ ) ..
lasas | { (d) ta2 > 3;:Z(d.) + |asaz| < E?T(d')’ na; > gg(d.)} ,
1=1,...,4;
(3.27) )
1 0F1\ dfi - OFy - . '
laza | { (b2) 31 > il(bz) + |azay| < %;(bz)’n:” > gl(bQ)} :

1 aF]\ dfl aFK A' ) ”.
laza, | { 0z, (d) t31 > (d )+ lasar| < 9%, —(di),n31 > gl(d,)} ,
i =35,...,8}

(resp. BELL : replace g, by ho, o = 1,2).

\

To find the expression of the ten last elements of AKQ(v) we have used relations (3.5)
and (3.6), by observing that from conditions (3.18) and (3.24), we obtain :

( f2 Omxv
272 4l coincide with Fx
iz, will coincide with |aza,| ( . ) o Fx

(43.42]

(3.28) ¢
df
d:zl

will coincide with |azq, | (O;KU> o Fx
31

(a3,d1]
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In a third set Aka(v) we give suitable values for the nine degrees of freedom of L.
First, let us observe that the correspondence o = v o Fx involves

(3.29) Di(bs)(@ — bs) = Dv(bs) DFx (bs) (a3 — b3).

The second member is known since it appears among the degrees of freedom of L (see
(3.11)). Moreover, expression (3.15) contains the values of D?%(a;),|a| = 0,1,2. The side
a,a, of triangle K is parameterized by

(330) jl = 5:1, ig - 1 - .'i:l.

Then, we note fs(il) the Ps-Hermite polynomial defined by the data of the degrees of
freedom

{o(a1), o(az2), Do(a,)a; —a), Do(az)(a, — az),
(3.31)
D?*5(a1)(a2 ~ & )?, D?6(d:)(é — 42)°}
and by §3(£,) [resp. BELL : iz;;(a":l)] the P,-Hermite polynomial (resp. BELL : P;), defined
by the data of the degrees of freedom

{D9(8a)(a3 — bs), @ = 1,2; D*(é,)(as — bs, 4 — &) ;
(3.32)
sz)(&z)(&s — b3, a1 — az) ; Do(bs)(as — bs)} 3
[resp. BELL : {D%(a,) (a3 — bs), @ = 1,2 ; D*5(a,)(as — bs, a3 — a;) ;
(3.33)
D?%(a3)(3 — bs, &1 — @2)}).
Then, we set
Axa(v) = {fa(di), i =9,..,12; =2 G3(Bs) s =2 Ga(di), i =9,...,12} ;

(3.34) )
[resp. BELL : replace §3 by h3] .

Here again, note that the set of values Ag3(v) is only dependent of the values Lk(v)
of the degrees of freedom of the function v.

Thus, the set Ak (v) = {Ak1(v), Axa(v), Axs(v)} (see (3.15) (3.27) and (3.34)) spe-
cifies a value to every degree of freedom of ¥ (see Fig. 3.5).

Step 3 : Definition of function mxv from the set AK(v)

Let w be the function of P which takes the set of values Ak (v) over the set of degrees
of freedom ¥ (see Fig. 3.5). Then, the function w is obtain through the mapping Fy!, i.e.,

25



(3.35) w = o Fg'.

In Theorem 3.2, we prove that w interpolates the function v and verifies properties
(3.1) (3.2) and (3.4), so that we are allowed to pose w = Txv. |

Remark 3.1 : To the function  defined by (3.14), the basic finite element (K, Z, P) (see
Fig. 3.5) associates an interpolate function 7o which is generally different of w. The dif-
ference w — 70 is studied in paragraph 4. |

Now, we check that the function w verifies the desirable interpolation properties.

Theorem 3.2 : The function w, defined by (3.95), is determined in an unique way by
the data of the set Tk (v) of the values of the degrees of freedom of the function v, t.e.,

EK(U) = {(Dav(ai)’ Ia:l = 07 1’.2)’ t = 1’273 ) Dv(b2)n31 3 Dv(bl)n32
Du(b3)DFk(b3)(as — b3) ; v(ei), t =1,...,10}
(3.36)
(resp. BELL : £k(v) = {(D%v(q;), |a] =0,1,2), 2 =1,2,3;
v(e),t = 1,...,10}).

Moreover the function w verifies the relations :

(3.37) D°w(a;) = D°v(a;), |a| =0,1,2;i=1,2,3;
(3.38) Dw(by)na = Du(by)na,

(3.39) Duw(by)nz, = Do(by )nag,

(3.40) Dw(b3) DFy(b3)(és — bs) = Du(bs)DFx (bs) (a5 — bs),
(3.41) w(e;)‘z v(e;), i=1,...,10,

(resp. BELL : w verifies relations (3.37) and (3.41)) and w satisfies conditions (3.1) (5.2)
and (8.4) so that we have w = Txv.

Proof : The functions @ and w are only dependent on the set of values ¥y (v). By
construction, the function w verifies (see (3.15))

Dei(&) = D°3(&), |e| =0,1,2, i=1,2,3
(&) = #(&), i=1,..,10,

so that, by using (3.14) (3.35), we get (3.37) and (3.41).
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In the same way, by construction of Am(v), we get

Duw(bs) DFi (b3)(a3—bs) = Dib(bs)(as—bs) = gs (;

and hence we obtain relation (3.40).

To prove (3.38) (3.39), we show that

ow .
(342) [———] OFKl[aa,aa] =Gay, = 1,2

3n30

Then, relations (3.38) (3.39) are direct consequences of definitions (3.19) (3.21) and
(3.25) for interpolating functions g, which verify

!}1(32) = Dv(b2)n317 f]z(i)l) = Dv(bl)n32-

Therefore let us prove (3.42). First, by construction

-~

(3.43) | 5, 4] = fo-

Since application Fy is affine along the sides G3a,,a = 1,2, the traces w|(, q,] are
one-dimensional Ps-polynomials entirely determined by the degrees of freedom relative to
the sides aza,(a = 1,2). Thus, the function w|(, q,] realizes the first part of condition (3.2).

Now, we prove relation (3.42) for & = 1. Relations (3.5) and & = w o Fg involve for
any a € [as, ] :

N Ay BF . 0 OFy o]
(3.44)  D(a)é, = axh (@), ta > &—Z’l(a) +< 5@, na > 87:1((1).
4f
The functions dfl , 91, f?th |la3,6,) are Py-polynomials in ;. Then, the expression
1 BF;\ df1 OFy . S
_ t -1 bl
Iasa1l 9%, ——(a), ta dﬂ (@) +< 5%, (@), na1 > Gqi(a),

is a P3-polynomial in ;. This polynomial is identical to Di)(a)é>, which is a Ps-polynomial
in &,, since both polynomials take the same values over the set

R o n o I op
{p(as) i (@) 5 p(be) 5 B(di), i=5,...,8; a:p( as), (al)}
In particular, we use the equalities

d . a .
d—jjl a;) = |laza;|Dv(a)ts;, Gi(@) = Dv(ai)na, 2 =1,3,
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2f, . dgy ,. .
(di’fl)Q(a,-) = |aza, |*D*v(a;)(ta1, ta1), d_.g::(a‘) = |aga | D*v(a;)(nay, ta1), i =1,3,

which are themselves direct consequences of the definitions of fi and §;. Thus for any
a € [as, ]

dh
di,

1 OFk

1 _0F OFk
|a3a1| 3532

(345) D’li)(fl)gg = (&), 13 > (&) + < 8_5:2({1), ng; > 571(&)

But, relations (3.43) imply

dw 1 dh

—(a) = —(a
Ot laza| da:l( ),

a = Fx(a), Va € asé,.

Then, relations (3.44) and (3.45) involve relation (3.42) for a = 1. Indeed, for hg
sufficiently small, we have

e x5 |+ 0(0) # 0.

Similarly, we could show that relation (3.42) is true for & = 2. Since application Fk -

is affine along the sides aza,,a = 1,2, the traces |la3.00] are one-variable P, (resp.

w
67130,
BELL : P;) polynomials entirely determined by the degrees of freedom relative to the sides

aza,,a = 1,2). Thus, the function ——ihas,%] realizes the second part of condition (3.2).

87130,

By construction, @ is a polynomial function. Hence, condition (3.4) is verified by
w = 1 o Fi'. Finally, the definition of £y (see (3.11) (resp.BELL : (3.12))) insures con-
dition(3.1). ]

Thus, to the set Lx(v) of values of degrees of freedom of a function v, the previous
construction associates a suitable interpolate function w that we denote 7x v in the sequel.
It remains to study the interpolation error : this is the object of paragraph 4.

3.3 Definition of curved finite elements C!-compatible with AR-
GYRIS or BELL triangles when Fx € (P;)?

The construction of such elements follows the same lines than in the case Fx € (P5)2.
Thus we just indicate the main changes.

Now, the basic finite element is described in Figure 3.7 (see also {36]) and by similarity
with Theorem 3.1, we get
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Theorem 8.8 : In Figure 3.7, the triple (R, P,f)) defines a finite element.

Construction of the interpolate function v — wgv

By using the basic finite element, we associate to any regular function v its interpolate
nxv. First, with notations of Fig. 3.4 and 3.8 we define the set £x(v) of values of degrees
of freedom of the curved element. Next, from the 24 (resp.BELL : 21) - elements of the
set Lx(v), we associate a set Ag(v) with 36-elements from which we define a suitable
interpolating function 1 € P :

{ Tk (v) = {(D*v(a), 1,2),
(3.46)

Dv(bl)nsz 3 Dv(bs)DFK(i’S)(&S -

la =0, 1 =1,2,3; Dv(b)na ;

53) ) v(ei)a 1= 13233} ;

a
5 N\
b ’62 &
«82 ‘83 ﬂél ds
F S R S
8, 3
K = unit right-angled triangle
P="P; dimP =36;
- W & 0% P
(w) = N “t ) ~ 1)y ) ’ ’ = )
@)= {aa), 22 (a) 5 Gar@) g g 6), g =128
ow \/— ow Ow
Ry - ke = CB(8). § =
8:2:1( 1) — (bg) 2 (6:1: + )(b3) w(d ), 1=1,...,6; w(é&), 1=1,2,3
ow , . . \/_ ow Ouw
351((1‘)’2 T an(d,), =5ty (0z1 612)(d) z 5’6}
Figure 3.7 : "Basic” P;-Hermite finite-element
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(resp. BELL :
(3.47)
Zx(v) = {(D°v(a), |a] =0,1,2), :=1,2,3; v(e), 1=1,2,3}).
Finally we set
(3.48) w = 1o Fg'

and by similarity with Theorem 3.2, we prove in the next theorem that w satisfies the
desirable properties.

Theorem 3.4 : The function w, defined in (8.48) , is determined in a unique way by the
data of the set L (v) of the values of the degrees of freedom of the function v, i.e.,

{ Tk (v) = {(D°v(@), la|=0,1,2), i=1,2,3; Do(b;)na ;
Do(by)nsz 5 Do(bs) DFc(bs)(ds — bs) 5 v(es), i=1,2,3} 3
(3.49)
(resp. BELL :
{ Zx() = {(D*v(a;), |a] =0,1,2), :=1,2,3; v(e;), 1 =1,2,3})

(ARGYRIS)

Figure 3.8 : Sets £k for C!-compatible curved finite elements (Fx € (P3)?).

Moreover the function w verifies the relations

(3.50) D°w(a;) = D°v(a;), |a|=0,1,2;:=1,2,3;
(3.51) Dw(by)nz = Dv(by)na,
(3.52) Dw(by)ns; = Dv(bi)na,
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(3.53) Dw(b3)DFx (b3)(as — b3) = Dv(b3)DFK(53)(&3.— b)

(354) w(e,-) = v(e;), 1= 1,2,3,

(resp. BELL : w verifies relations (3.50) and (5.54)) and w satisfies conditions (5.1) (5.2)
and ($.4)) so that we have w = mgv. u

3.4 Definition of curved finite elements C’-compatible with the
Hermite triangle of type (3) when Fx € (P,),,n =3 or 5

These elements will be used in the approximation of tangential components of the
displacement for thin shell problems. They are defined by

( K = Fx(K), Fx € (P,)?, n =3 (see Example 2.2)
or n =5 (see Example 2.3) ;

(3.55) ¢ P ={p:K—R;p=poFg'; p€ P},

EK = {Dap(al'), |oz| _<_ 1, 1 ? 1,2,3 ; p(FK(ao)),
\ do = barycenter of K}

Thus, to any regular function v (for instance v € C}(K)) we associate the interpolating
function mxv defined by

(3.56) kv = 0o Fg', ¥ =vo F,
where 79 is the P3-Hermite interpolating function of ¢ over the reference triangle K.

Remark 9.2 : When Fg € (P3)?, the curved finite element defined in (3.56) is similar,
but not the same, than the isoparametric Hermite triangle of type (3) studied by (37,
Example 6]. Indeed, our definition of application Fy is different. n

4 ESTIMATES OF THE INTERPOLATION ERRORS

In this paragraph, we give estimates of the interpolation error for the curved finite elements
of class C! constructed in the previous paragraph. It is worth to note that

(i) these estimates have the same order of those obtained for the associate straight
finite elements ;

(1) these estimates use the interpolate triangle K instead of the “original” triangle K.

(see Figure 2.1). The "geometrical” approximation resulting of the substitution of triangle
K. by triangle K will be analyzed in Part 2.
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4.1 Estimates of the interpolation error for curved finite ele-
ments C!-compatible with ARGYRIS or BELL triangle when
FK € (P5)2

We are going to extend to the associate curved elements the interpolation error esti-

mates obtained for ARGYRIS (resp. BELL) triangle in [27, chapter 6].

Theorem 4.1 : There ezists a constant ¢, independent of hy, such that for all curved

finite elements C' -compatible with ARGYRIS (resp. BELL) triangles we have :

|v - 7I'K'U|m,1( < Ch§(+1_m“'v”k+1‘x, Yv € Hk-H(I{),
(4.1) {
k=3,.,5;0<m<k+1,
(resp. BELL : |[v — mg0|m x < chS "™ ||v|lks1., Yo € HF(K),
(4.2) {
k=3,4;0<m<k+1),

where v 18 the interpolate function of v defined in section 3.2.

Proof : We prove estimates (4.1) (resp. BELL : (4.2)) in the most significant cases,
i.e, k =5 (resp. BELL : k = 4). The other cases can be obtained similarly. Let ¢ and
7xv corresponding functions over the reference triangle K| i.e.

(4.3) v =vo Fy ; fgv = wpvo Fg.

The assumption v € H®(K) involves 9 € HG(I;’). Moreover, note that function 7xv
(resp. mxv) is denoted W (resp. w) in section 3.2.

According to [37, (3.10)], there exists a constant ¢, independent of hy such that

VYo € WFP(K), |vlepk
(4.4)

k
< eIrel? (D olipk X (1R Bk Fr oo i i o)
Jj=1 i€l(j,k)

where |F,}l|m,,x,,x, 1 < m <k, is defined by relation (2.16) and where

I(,k) = {i = (44,...,0x) E N* 5 iy +ip + .. + 4k = J,
(4.5)

Thus, Vv € H™(K), we have for 1 <m < 6 (resp. BELL : 1 <m <5)

32



[v = Tk V|mkx <

(4.6)

m

1/2 - — —1qi —1gim

CIJFK|0,/°°,RZ |0 — WKva,k . Z (IFKII'II.OO.K lFKII:n,oo,K)
j=1 i€l(jm)

We prove below the existence of a constant ¢ such that for any v € H®(K) (resp.

BELL : v € H*(K)) :

(4.7) |6 — 7xvl; 5 < chillvflex, 0<j <86,
(4.8) (resp. BELL : |6 — gl ¢ < chk|lvllsx, 0<5 <5),

where v = 9 o Fg'.
Moreover, from Theorem 2.1,
| Frlooo i S chk, £=0,1,..; |Fg' oo < ch!, €=1,2,...
(4.9)

[T locoic < €k 5 |Tp=tloook < chy.
100, K

Then, by combining estimates (4.7) (resp. BELL : (4.8)) and (4.9) with inequality
(4.6), we obtain the result :

v — Tk vlmx < chE ™ |0llox, Yo € HY(K) ,1<m <6,
(4.10)

(resp. BELL : |v — 7k v|m kg < ch‘;’{’"||v||5'K, Vv € H3(K), 1<m <5).

Note that estimates (4.10) are still valid for m = 0. It suffices to replace inequality
(4.6) by the following

(4.11) lv — mxvlox < |JFK|:),/2

oo,k'i} - 7('/]?'0!0,]{—.

To complete the proof, it remains to obtain estimates (4.7) (resp. BELL : (4.8)).

Let 7 be the Py-interpolation operator associated to the basic finite element of Figure
3.5. Then, for any 0 < j <6 (resp. BELL : 0 < j < 5), we have

(4.12) [0 — 7ol g S |0 — 70, 5 + 7D — 7KV, 4
In particular, polynomials of degree 5 (resp. BELL : 4) are invariant by 7 ; hence

(4.13) o — 76l 5 < cldle i, 0<J <6,
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(4.14) (resp. BELL : [0 — 79|, i < ¢|d]s , 0 <5 <5).

Similarly to relation (4.4), we obtain

k

. 1 i i i

9k < CUF;’ |o./:;>‘KZ [v};.0.x Z ('FK|1l'°°';:;|FK|22,°°'R-~|FK|kk'°o,,;-) )

(4.15) j=1 i€l(j k)
Vo € WEP(K).

From inequalities (4.9) and (4.15), we have

(4.16) |blex < chkllvllex, Vo € H(K),
(4.17) (resp. BELL : [9]; z < chil|lv]is.x), Vo € HY(K),

so that, with (4.13) (4.16) (resp. BELL : (4.14) (4.17)) :

(4.18) |6 — 76|, o < chl|vllex, Vo € H(K), 0<j <86,
(4.19) (resp. BELL : [0 — #9|, z < chi|lv]ls x, V0 € H*(K), 0<j <5).

Subsequently, we show (in 3 steps) that Vo € HS(K) (resp. BELL : V& € H3(K)), we
have

(4.20) |75 — 7xv|, 5 < chi|lvlle, 05 <6,
(4.21) (resp. BELL : |70 — Agv|; g < chi||vlls.x, 0<j <5).

Step 1 : Method of estimation :
The difference

(4.22) §(2) = 79(2) — TRv()
is a polynomial of degree 9, hence #6 = 6. Let ﬁ,‘,ﬁ,‘,l < 2 £ 53, be the degrees of

freedom and the corresponding basis polynomials of the basic element of Fig. 3.5, arranged
according to (3.13). For any £ € K, we have

(4.23) #6(2) = 8(2) = Y_DL:(6)p:(2).

_ The sets of values of degrees of freedom used to construct 7xv = w are given by
Ag1(v) U Aga(v) U Ags(v) (see (3.15) (3.27) and (3.34)). Comparing with (3.13), we
observe that }°;(0) = Ag1(v) so that
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(4.24) DLi(§)=0, i=1,...,28.

Step 2 : Estimates of DI, (5) 1=29,...,46 :
Next, consider 3,(%) and A;\g(v) We have from (3.13) and (3.27) :

(4.25) DLysii(8) = 6(d) - fold), i=1,...4
(4.26) DLos.i(8) = 6(d;) — A1(di), i=5,...,8;
([~ . B, 1 a Fy dfs .
DLge+i(6) = D (@) +T— 3, | (q,), ta2 > i, —=(4)
4.27) 4 OF,
( ) + < K(qx) N3y > g2(q;) 1= 1 5

| where for convenience §; means by for: =1 and d;_; for : =2,...,5;

— . 1 6 d
DLarsid) = ~ (i) + 1o < (), > L)

4

4.28 15 3%
(4.28) + < 6-"((1.) na > G1(Gi), 1 = 1,...,95,

| where for convenience §; means 132 for 2 =1 and (f;+3 forz=2,...,5;
(resp. BELL : replace g, and g; by hy and hs, respectively).

Relations (3.16) to (3.18) show that f; is the P;-Hermite polynomial which interpolates
v over the side @sa;, from the given degrees of freedom

{ {9(a1), 9(as), Do(a1)(@s —ar), Do(as)(a — as),

D?*0(ay)(az — &)*, D*0(as)(a; — as)*}-

(4.29)

In the sequel, we denote by the same letter the functions defined on a triangle K and

their traces along the boundary K. From the definition of function f,, we get for any
b € WH*(a3a;)

’6(3‘) - fl(Ji)| < If) - fl |0'°°,53&1 < c|ﬁ|4,oo,&3&,, 1= 5) a8

and with Sobolev’s theorem (see [29])
8(d) = fi(d)| < cllly o < cldllog, V6 € H(K), i=5,...8.
Thus, the linear form
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F i Vo€ HU(K) — F(6) = max, [3(d) - fi(d)]

is continuous. Since it vanishes for any ¢ € P, the lemma of Bramble-Hilbert [38] implies
the existence of a constant ¢ such that

6(di) - fi(d:)] < clole s, Vo€ HY(K), i=5,..,8,

or, with relation (4.16)
(4.30)  |DLysyi(8)| = |6(d:) — fi(d:)] < ek |vllex, V6 € HY(K), i=35,...,8.

Similarly, we can prove that

(resp. BELL :
(4.31) {

|DLys4i(8)] = |6(di) — fi(di)] < chi|vlls.x, V& € HYK), i=5,...,8),

(432)  |DLwsyi()| = i(d)) — fo(di)] € chikllvlloc, Vo € HY(K), i=1,..,4,
(resp. BELL :

(4.33) _ ) ) o )
|DLssi(8)| = |8(di) — fa(d)| < ch||vls.ic, V0 € HY(K), i = 1,...,4).

Now, let us examine the case of degrees of freedom (4.28). The correspondences
0 =vo Fg and ¢; = Fx(§;) imply

[ o-(d) = Di(§)és = Du(a)DFi(d)é: = Dola) 5(d)

$ = Dv(g) |< %(é;),t;«n >t + < %F (¢:),na1 > na |,

L = I%aﬂ 66F1\ (), ta1 > = 0 ( D+ < %I;}:(Qi), na1 > Dv(gi)na,
and hence,
. DLuai(d) = e < Gorld). tr > [g—i(q*o— )

OFy . o .
+< —aj—h(%),nsl > (¢1(§i) — Dv(gi)nar), 1 = 1,...,5.
2

A proof similar to that of estimate (4.32) shows that
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1 OFx dfy

4, < ——(q; , t
( 35) |a3a1| 652 (q) 31 >

0o )
i) — == (@) | < B Iollex, V6 € H(K).
az, ) ail(q’)]l < chillvllex, V9 € HO(R)

Now, let us consider the last term of relation (4.34). Firstly according to the proof of
Theorem 3.2, we have since ¢, means b,

(4.36) G1(¢1) — Dv(q1)na; = §1(32) — Dv(by)ng = 0.
The next term is §1(G2) — Dv(gz2)na1 = 61(ds) — Dv(ds)na; where, according to (3.17)

(3.19) and (3.21), the function g, = §, o F; 2! is the one-dimensional P;-interpolate of the
function 2(.) = Dv(.)ns, along the side aza, by using the set of degrees of freedom :

{z(ai), Dz(ai)ta, i =1,3 ; z(&)}.
Then the interpolation properties and Sobolev’s theorem imply :
|2(ds) — g1(ds)| < |2 = g1lo,ooiesar = |2 = G1l0,00,838: < €|2]3,00,8541
{ < elllls oo i < €li2lls V2= 20 Fx € H(K).
Thus, the linear form
G :Vi e H3(K) — |3(ds) — §1(ds)| is continuous.

Since it vanishes for any Z € P,, the Bramble-Hilbert lemma implies the existence of a
constant ¢ such that

(4.37) |2(ds) — §1(ds)| = |2(ds) — g1(ds)| < el2ls g, Vi€ HY(K).
By analogy with (4.15) and (4.16) we obtain

(4.38) 3]s 5 < Chillzllsx, Vi€ H(K)

and since 2(.) = Dv(.)ng, we get

(4.39) llzlls.x < Cllv]l6.x,

so that relations (4.37) to (4.39) imply

(4.40) |61(ds) — Dv(ds)nay| < Chi|vlle.x, Vv € HS(K),

and three other relations at points dg, d; and ds. Then, relations (2.17) (4.34) (4.35) (4.36)
and (4.40) imply

(4.41) IDLy4i(8)] < CRS||v|lex, Vv € HY(K), i=1,..,5.
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By the same way, we could get :

(4.42) (resp. BELL : | DLy 4:(8)| < chi|lv|ls.x, Yv e HYK), i=1,..,5;
(4.43) |DLss4i(8)] < chlc|jvllexc, Yv € HYK), i=1,..,5;
(4.44) (resp. BELL : |DLss4i(8)] < chi||vlls.c, Vo € HY(K), i=1,...,5.

Step 8 : Estimate ofﬁz;(g),i =47, ...,55
From definitions (3.13) and (3.34) we obtain

(4-45) 52464»:’(5) = 5(<is+i) - fs(‘isﬁ), t=1,...,4;
— . 2[00 95 . . s
DLs(6) = - -6_1:‘—1 + 5;::; (bs) + \/593(1)3),
(4.46)
— . V2 [ 8% o | o .
DLs4i(8) = - 3_9:1 + 3%, (dsyi) + V23a(dsys), i=1,...,4.

By using the definition (3.31) of (f3), a proof similar to that of (4.30) shows that

(4.47)  |DLuo4i(8)] = |6(dssi) — fo(dssi)| < chic|vlle, Vo € HY(K), i=1,....4,

(resp. BELL :
(4.48){

|DLs1i(8)] = [6(dsssi) — fa(dssi)| < chillvllsi, Vo€ HYNK), i=1,....4).

Now, consider the first term (4.46), i.e., DLs;(8) = — v2[§a(bs) — D9(bs)(@s — bs)).
With definition (3.32) of g3, Sobolev’s theorem and Bramble-Hilbert lemma, we get

IDLsy(8)] < V21§3(.) — Do(-) (a3 — bs)lo,cosass

< < | D5(.) (a3 = B3 )ls.00.81 2

L < elblacosa < ellbllex < chkllvllex, Vo € HS(K).
And, by similarity, we finally obtain

(4.49) |DLsosi(8)| < chi||vllex, Vo€ HYK), i=1,..,5;

(4.50)  (resp. BELL : |DLso4i(8)| < chi:|lvlls.x, Vo€ HY(K), i=1,..,5).
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Note that for a curved finite element C'-compatible with an ARGYRIS triangle we
have in fact DL (8) = 0. This property is not generally true for a curved finite element
C'-compatible with a BELL triangle.

Finally, relations (4.22) (4.23) imply
-~ 55 ——— ~
B,k < i — vl 4 < ¢ 3 IDL(S)]
1=1

Then, estimates (4.24) (4.30) (4.32) (4.41) (4.43) (4.47) and (4.49) [resp. BELL : (4.24)
(4.31) (4.33) (4.42) (4.44) (4.48) and (4.50)] give estimate (4.20) [resp. BELL : (4.21)].
We obtain estimates (4.7) [resp. BELL : (4.8)] by combining estimates (4.18) and (4.20)
[resp. BELL : (4.19) and (4.21)]. |

4.2 Estimates of the interpolation error for curved finite ele-
ments C!-compatible with ARGYRIS or BELL triangles in
case of F € (P;)?

In this case, we can prove similar results than in Theorem 4.1 :

Theorem 4.2 : There exists a constant ¢, independent of hx, such that for all curved
finite elements C'-compatible with ARGYRIS (resp. BELL) triangles, we have :

[v = TVl g < 5™ |v|lkp1x, Yo € HFY(K),
(21 { k=3,...,5, 0<m<k+1,

(resp. BELL : |v — T ¥|mx < ch’;‘,“""|]v]|k+1,;<, Yv € Hk“(K),
e { k=34, 0<m<k+1),

where mxv 13 the interpolating function of v defined in section 8.3. ]

4.3 Estimates of the interpolation error for curved finite ele-;
ments C’-compatible with Hermite triangle of type (3) (Fx €
(P,)} n=3 or 5)

For the curved finite elements introduced in section 3.4, it is easy to prove the theorem :

Theorem 4.5 : There ezists a constant c, independent of hg, such that for all curved
finite elements C°-compatible with Hermite triangle of type ($), we have

v — T V|m kg < ch‘;\»""||v||4,K, 0<m<4, Yoe H“(K),

where miv 13 the interpolating function of v defined in section 3.4. |
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5 CONCLUDING REMARKS

To conclude it is worth to emphasize some very interesting properties of these interpolation
methods on curved triangles :

1) they allow to construct C'-interpolating functions from just a set of degrees of free-
dom which is completely compatible with those of the associate straight finite elements. In

this way they used a mapping Fi : K — K which is entirely symmetric and polynomial ;

i1) corresponding functions on the reference triangle are of polynomial type so that the
study of the effect of numerical integration is straightforward (see Part 2, i.e. [4]) ;

ii1) for a given degree of regularity, the asymptotic interpolation error estimates have
the same order for the straight and for the associate curved finite elements ;

iv) thus, these curved finite elements constitute a really powerful tool to approximate
fourth order problems set on plane curved boundary domains.
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