Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

archives-ouvertes

Expressive power of query languages
Serge Abiteboul, Victor Vianu

» To cite this version:

Serge Abiteboul, Victor Vianu. Expressive power of query languages. [Research Report] RR-1587,
INRIA. 1992. inria-00074973

HAL Id: inria-00074973
https://hal.inria.fr /inria-00074973
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50449859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00074973
https://hal.archives-ouvertes.fr

1RIN

UNITE DE RECHERCHE
INRIA-ROCQUENCOURT

Institut National
de Recherche
en Informatique
et en Automatique

- .. Domaine deVoluceau
Rocquencourt
BP105
/8153 Le Chesnay Cedex
France

Tel:(1)39635511

Rapports de Recherche
1 '

e
W anniversaire

N° 1587

Programme 1
Architectures paralléles, Bases de données,
Réseaux et Systémes distribués

EXPRESSIVE POWER OF
QUERY LANGUAGES

Serge ABITEBOUL
Victor VIANU

Janvier 1992

AR

Puissance d’Expression des Langages de Requétes

Serge Abiteboul Victor Vianu

Résumé

Des recherches récentes sur les langages de requétes et leur puissance d’expression sont
discutées. Plusieurs langages de requétes sont décrits, et en particulier des extensions
des requétes du premier ordre basées sur les trois paradigmes: logique, algébrique et
programmation logique. La plupart de ces langages convergent vers deux classes de
requétes, les firpoint et les while. La puissance d’expression de ces langages est étudiée
ainsi que leurs connections avec des classes de complexité. On insiste sur I'incapacité de
caractériser des classes de complexité faible: PTIME et moins que PTIME. On considére
plusieurs moyens de corriger ce probléme. Le premier est d’introduire un ordre sur
le domaine, Le cout du calcul sans cet ordre est formalisé en définissant des classes
de complexité non-standard basées sur un modéle de calcul, la machine générique. Une
alternative est d’introduire des constructeurs non-déterministes. L’expressivité au-dessus
de NP est aussi discutée.

-y

Expressive Power of Query Languages®

Serge Abiteboul Victor Vianu

Abstract

Recent research on query languages and their expressive power is discussed. Several query
languages are described, emphasizing recursive extensions of the first-order queries based on
three paradigms: logic, algebraic, and logic programming. Many of these languages converge
around two central classes of queries, the fizpoint queries and the while queries. The relative
expressive power of these langunages is examined, as well as their connection to complexity
classes of queries. The focus is on the inability of languages to express low complexity classes
of queries, PTIME and below. We consider several ways to circumvent this difficulty. The first
is to introduce an ordering of the domain which leads to a trade-off between complexity and
the data independence principle. The cost of computing without order is formalized by defining
non-standard complexity classes based on a model of database computation called Generic
Machine. As an alternative to order, it is shown that the difficulty of expressing low complexity
classes can be circumvented by introducing non-deterministic constructs in query languages.
Expressiveness above NP is also discussed.

The present paper is to appear in Theoretical Studies in Computer Science, a celebratory volume
for Seymour Ginsburg’s 64th birthday edited by Jeffrey Ullman, to be published by Academic Press.

*Authors addresses: Serge Abiteboul, INRIA, B.P. 105, 78153 Le Chesnay CEDEX, France (abite-
bou@inria.inria.fr); Victor Vianu, CSE 0114, U.C. San Diego, La Jolla, CA 92093-0114, USA (vianu@cs.ucsd.edu).
Work supported in part by an INRIA-NSF cooperation grant, by the French Ministry of Research under grant PRC-

BD3 and the National Science Foundation under grants IRI-8816078 and INT-8817874. Work performed in part while
the second author was visiting INRIA.

1 Introduction

Query languages constitute a central aspect of practical and theoretical database research. While
closely related to finite model theory and descriptive complexily, research on query languages for
databases raises important specific issucs. This paper provides a bird’s eye view of some of the main
ideas and recent developments in research on query languages, in a concise and mostly informal
manner.

The paper has two main aspects. First, a review of relational query languages is provided,
emphasizing the recursive extensions of the first-order queries. Along the way, results on the relative
expressive power of these languages are mentioned. The second aspect is the expressive power of the
languages w.r.t. complexity classes of queries, with an eye to complexity-taylored query language
design.

First-order logic without function symbols (FO) provided the basis for query languages for
the early commercial relational database systems. Its appeal lies in its simplicity, clear semantics,
and dual declarative and procedural incarnations. Indeed, FO has a simple algebraization which
is particularly amenable to optimization. While FO has many appealing features, it has limnited
expressive power. For instance, it cannot compute the transitive closure of a graph. (We provide a
sketch of this result using Ehrenfeucht-Fraissé games.) Therefore, many recursive extensions of FO
have been proposed. We review several such extensions, based on three paradigms: logic, algebraic,
and logic programming. Many of these extensions converge around two central classes of querics:
the fizpoint querics and the while queries. We examine various aspects of fizpoint and while in detail
throughout the paper.

We present various ways of “sizing up” query languages w.r.t. complexity. We are particularly
interested in the ability of languages to capture complexity classes of queries. In practice, the
problem of capturing low complexity classes, below PTIME, is of most interest. Unfortunately, this
problem remains largely unresolved. Indeed, the existence of a language expressing exactly PTIME
is one of the main open problems in the theory of query languages. On the other hand, such classes
can be captured under the assumption that an order on the domain is available.

The impact of order is a running thread throughout the discussion of expressive power. The
need to consider computation without order is a consequence of data independence, a basic principle
in databases. Data independence arises from the assumption that the database provides an abstract
interface which hides the internal representation of data. The abstract interface does not neccessarily
provide an order on the domain. However, such an order could be obtained by accessing the internal
representation of data. Therefore, we view computation without order as a metaphor for the data
independence principle in databases.

While there are no expressiveness results known for classes below PTIME in the absence of order,
such results abound above NP. We suggest an explanation for this situation which is again based
on the impact of order. We claim that the ability to capture these high complexity classes is due to
the fact that order can be defined within these classes.

Low complexity classes of queries are most important from a practical point of view. We discuss
various trade-offs which allow circumventing the inability to capture these classes by languages.
Specifically, we point out trade-offs between (i) expressive power and data independence, concretized
by results in the presence of order, and (ii) expressive power and determinism. The latter involves
relaxing the determinism of query languages by introducing non-deterministic constructs. We show
that this allows expressing “nice” classes of queries, including PTIME. However, determinism of the
programs in the language can no longer be guaranteed.

.3

“

The impact of order is also emphasized by a normal form which we state for the while queries.
The normal form provides a bridge between computation without order and computation with order.
It says that every while computation on an unordered domain can be reduced to a computation on
an ordered domain via a firpoint query. In particular, this allows to resolve the problem of the
relationship of fizpoint and while: they are the same iff PTIME = PSPACE.

Intuitively, the lack of order resulting from computation with an abstract interface exacts a
price in terms of complexity. We usc as a running example the query even, which asks if a sct has
even or odd cardinality. We argue that queries like even are hard to compute without order, but
become easy in the presence of order. This suggests a trade-off between abstraction and complexity,
which cannot be captured by classical models such as Turing Machines. Instead, we describe a device
called Generic Machine, which models computation with an abstract interface. Using the machine,
we define robust complexity classes of queries, which differ from those of classical Complexity Thcory.
We outline results which formalize the trade-off between abstraction and complexity. For instance,
we prove that even is in EXPSPACE but not in PSPACE w.r.t. the new complexity classcs.

The paper provides a personal view of various issues of expressiveness of query languages, and
does not constitute a comprehensive survey. There is a large body of work in the area (sce the
surveys [G88, F90]). The study of computable queries originated in the work of Chandra and Harel
[CH80, C81, CH82]. Since then, the complexity and expressiveness of query languages, and the
relationship with logic, have been widely investigated, e.g. [V82, CHI85, GS85, 186, 187, C88, (388,
KP88, AV88, AV89]. While we discuss many results by other authors, we focus primarily on our
results from [AV88, AV89, ASV90, AV90, AVOla, AVIlb].

The outline of the presentation is broadly based on [Vi89]. The paper consists of six sections.
Relational languages and their relative expressiveness are discussed in Section 2. We present F'O and
recursive extensions based on the algebraic, logic, and logic programming paradigms. In particular,
we introduce Ehrenfeucht-Fraissé games as a tool for proving non-expressibility results for FO (this
portion is independent of the rest of the development). Section 3 contains a discussion on how to
evaluate the complexity of query languages, and high-level remarks on trade-offs involving order
and non-determinism. The impact of order is discussed in detail in Section 4, and non-deterministic
languages and expressiveness results are presented in Section 5. Expressiveness above NP is discussed
in Section 6, including second-order logic and the use of complex objects.

2 Relational Query Languages and Their Relative Expres-
siveness

In this section we present some of the better known relational query languages. We focus on relational
calculus and algebra, and several recursive extensions. We consider the relative expressiveness of
these languages.

2.1 Preliminaries

We review informally some terminology and notation of relational databases and query languages.
A general presentation of the database field is given in [U88], and of database theory in [K91]. We
assume the existence of three infinite and pairwise disjoint sets of symbols: the set att of aliributes,
the set dom of constants, and the set var of variables. A relational schemais a finite set of attributes.
A tuple over a relational schema R is a mapping from R into dom U var. A constant tuple over a

relational schema R is a mapping from R into dom. An instance over a relation schema R is a finite
set of constant tuples over R. A dalabase schema is a finite set of relational schemas. An instance I
over a database schema R is a mapping from IR such that for each R in R, I(R) is an instance over
R. The set of constants occurring in an instance is called the active domain. The set of all instances
over a schema R. is denoted by inst(R).

Note that, in logic terms, a database schema supplies a language consisting of a finite set of
predicates, and a database instance provides an interpretation of the predicates as finile structures.
Indeed, only finite structures are considered in this paper.

2.2 The First-Order Queries

Most traditional query languages are based on first-order logic without function symbols (FO). The
FO formulas over predicate symbols {Ry, ..., R,} are built from atomic formulas R;(z,,...,zm) (R:
of arity m) and equality z = y using the standard connectives V,A,— and quantifiers 3,¥. The
semantics is also standard. Codd introduced a many-sorted algebraization of FO called relational
algebra that we denote here by A (see [U88]). It involves the following simple operations on relations:
7 (projection on some co-ordinates), x (cross product), U (set union), — (set difference), and a;=;
(select from a relation the tuples where the i-th and j-th co-ordinates are equal). For instance, the
FO query:
{z,yl ¢} where ¢ =Q(z,y)VI2(R(z,2) A R(z,9))

can be algebraically computed by: Q U (7} 4(c2=3(R x R))).

In the paper we use interchangeably FO formulas or expressions in .4, as convenient.

Expressiveness of FO: Ehrenfeucht-Fraissé Games. We briefly describe a characterization of
first-order logic with finite semantics, using Ehrenfeucht-Fraissé games [F54, E61]. The games are
used to prove that FO cannot express connectivity of graphs (and therefore transitive closure). This
portion is independent of the rest of the development in the paper.

We first describe the game. Suppose that L is a first-order language with finitely many relation
and constant symbols but no function symbols. Let A and B be two L-structures'with disjoint
universes | A | and | B |. Let r be a positive integer. The game of length r associated with A and B
is played by two players, I and II, making r moves each. Player I starts by picking an element in | A |
or | B | and player II picks an element in the opposite structure. This is repeated r times. At each
move, player I has the choice of the structure, and player II must respond in the opposite structure.
Let a; (b;) be the i** element picked in | A | (| B |). Player Il wins the round {(aj, 1), ...,(ar, b,)}
iff the mapping a; — b; is an isomorphism of the substructures of A and B generated by {a,, ..., a,}
and {b,,...,b.}, respectively, A/{a1,...,a;} and B/{b,,...,b.}.

Player Il wins the game of length r associated with A and B if (s)he has a winning strategy,
i.e., player II can always win any game of length r on A and B, no matter how player 1 plays. This
is denoted by A =, B. Note that the relation =, is an equivalence relation on structures.

Intuitively, the equivalence A =, B says that A and B cannot be distinguished by looking at
just r constants at a time in the two structures. The main result concerning Ehrenfeucht-Fraissé
games states that the ability to distinguish among structures using games of length r is equivalent
to the ability to distinguish among structures using some first-order sentence of “quantifier depth”
r. Quantifier depth is defined next.

1Tn database terms, A and B are instances over the relations of L.

ah

Definition 2.1 The quantifier depth of a first-order sentence is the maximum number of quantifiers
in a path from the root to a leaf in the representation of the sentence as a tree.

In particular, note that the quantifier depth of a sentence in prenex normal form is simply the
number of quantifiers in the sentence. The following result is due to Ehrenfeucht-Fraissé [F54].

Theorem 2.2 Let K be a class of L-structures. The following statements are equivalent.

1. There is a first-order sentence ¢ of L of quantifier depth r such that :
K={A|AE ¢},
2. for all L-structures A and B,

A€ K and A=, B implies B € K.

Suppose that K is a class of structures having some property of interest. The first statement
says that the property is definable using a first-order sentence of quantifier depth r; the second
states that two structures which are undistinguishable using games of length r either both have
the property or neither does. In particular, the 1 = 2 part of the theorem provides a technique
for proving that a property K is not definable by any first-order sentence. Indeed, it is sufficient
to exhibit, for each r, two structures A, and B, such that A, has the property, B, does not, and
A; =, B,. Since 1 = 2 is the part of the theorem of most interest in this paper, we state it in a
slightly simpler form, and sketch its proof.

Proposition 2.3 Let ¢ be a sentence of L with quantifier depth r and let A and B be two L-
structures. If A | ¢ and A =, B, then B E ¢.

Proof : The proof is done by a case analysis on the sentence. We only sketch it on an example. Let ¢
be the sentence : Yz, Jzg Vs (1, z2,23), and let A and B be two structures such that : A |= ¢ and
A =3 B. We have to show that B |= ¢. Suppose not. Then B |= 3z Yz 3z3 ~9(z), 22, £3). We will
show that player I can prevent player Il from winning by forcing the choice of constants a,, as, a3
in A and by,by,b3 in B such that A | 9(a1,az,a3) and B | -9(by, b2,83). Then the mapping
a; — b; cannot be an isomorphism of the substructures of A and B restricted to {ay,as,a3} and
{b1, b2, b3} respectively, contradicting the assumption that player Il has a winning strategy. To force
this choice, player I always picks “witnesses” corresponding to the existential quantifiers in ¥ and
—. Player I starts by picking an element 4; in | B | such that : B | Vz, 3z3 —-¢(by, 22, z3).
Player IT must respond by picking an element a; in | A |. Due to the universal quantification in ¢,
A | 3z, Vz3 ¢(a;, z2, 23) regardless of which a; was picked.

Next, player I picks an element a; in | A | such that : A |z V23 ¥(a1,az,z3). Regardless of
which element b, in | B | that player II picks, B |£ 3z3-¢(b), b2, z3). Finally, player I picks b3 in
| B | such that B |= —#(b1, b2, b3); player II picks some a3 in | A |, and A = ¥(a;,az,a3). O

The next example shows how Proposition 2.3 can be used to prove that graph connectivity, and
therefore transitive closure, are not first-order definable.

Example 2.4 For each r, we exhibit a connected graph A and a disconnected graph B such that
A =, B. For a sufficiently large n (depending only on r), A consists of a cycle of 2n nodes and I3
of two disjoint cycles B; and B; of n nodes cach. We outline the winning strategy for player II. If
player I picks an element a; in A then player Il picks an arbitrary element b;, say in B;. Now, il
player I picks an element bs in B,, then player 11 picks an element a; in A far from a;. Next, if
player I picks a b3 in B close to b;, then player II picks an element a3 in A close to a;. The graphs
are sufficiently large that this can proceed for r moves with the resulting subgraphs isomorphic. By
Proposition 2.3, we conclude that no FO sentence can define connectivity of graphs.

2.3 Recursive Extensions: Fixpoint, While, Datalog™

We have seen that FO has limited expressive power; for example, it cannot compute the transitive
closure of a graph. This is due to the lack of recursion in the language. In the next three sections,
we consider several extensions of FO with recursion.

The integration of recursion and negation is very natural and yields highly expressive languages.
We will sec how it can be achieved in the algebraic, logical, and deductive paradigms. The algebraic
language is an extension of A with a looping construct, in the style of traditional imperative pro-
gramming languages. The logic language is an extension of the calculus where recursion is provided
by a fixpoint operator. The deductive language consists of an extension of “Datalog” with negation.

As we consider more and more powerful languages, the complexity of evaluating the queries is
of increasing concern. We will consider two flavors of the languages in each paradigm: one that
guarantees termination in time polynomial in the size of the database, and a second which only
guarantees that a polynomial amount of space is used. We will also show that the polynomial-time
bounded languages defined in the different paradigms are equivalent. The set of queries they define
is called the fizpoint queries. The polynomial-space bounded languages are also equivalent, and the
corresponding set of queries is called the while queries. In Section 3, we will examine in more detail
the expressiveness and complexity of the fizpoint and while queries.

Before we describe the specific languages, it is useful to understand the idea underlying the two
flavors of the languages, “inflationary” and “non-inflationary”. All languages we consider use a fixed
set of relation schemas throughout the computation. At any point in the computation, intermediate
results contain only constants from the input database or specified in the query. Suppose that the
relations used in the computation have arities ry, ..., r¢, the input database contains n constants, and
the query refers to ¢ constants. Then the number of tuples in any intermediate result is bounded
by Ef___l(n + ¢)™¢, which is a polynomial in n. Thus, such queries can be evaluated in polynomial
space. Suppose we wish to force termination in polynomial time. The standard way to achieve this
in the languages we consider is the following. The semantics of the language is such that a tuple
cannot be deleted from a relation once it is inserted. Thus, space usage is tncreasing throughout
the computation. Furthermore, the semantics ensures that programs do not work vacuously without
adding tuples. Since there are only polynomially many tuples, the program terminates in polynomial
time. This type of semantics is referred to as inflationary (there is an inflation of tuples!). In contrast,
the unrestricted semantics, which does not ensure the continuous growth of the set of tuples, is called
non-inflationary.

In summary, inflationary languages in the three paradigms express the firpoint queries and
terminate in polynomial time. Non-inflationary languages express the while queries and use a poly-
nomial amount of space.

2.4 Algebra + while

Relational algebra is essentially a procedural language. Of the query languages, it is the closest to
traditional imperative prograinming languages. The extensions of the algebra with recursion also
follow the procedural, imperative paradigm. They provide: (i) relational variables (P, @, R...) which
can hold relations of specified sorts, (ii) assignment of relational algebra expressions to relational
variables, and (iii) a while construct allowing to iterate a program while some condition holds.

The resulting language comes in two flavors: inflationary and non-inflationary. The two versions
of the language differ in the semantics of the assignment statement and the termination condition
for loops. The non-inflationary version was the one first defined historically, and we discuss it next.
The resulting language is called the while language.

We next discuss the assignment statement and while construct. The assignment statement is

of the form
P:=e

where e is an algebra expression and P a relational variahle of the same sort as the result of e. In
the while language, the semantics of an assignment statement is: the value of P becomes the result
of evaluating the algebra expression e on the current state of the database. This is consistent with
the standard “destructive” assignment in imperative programming languages, where the old value
of a variable is overwritten in an assignment statement.

While loops are of the form

while {condition) do
begin (loop body) end.

Termination conditions for while loops are tests of emptiness of the form e = @ or ¢ # @, where
e is a relational algebra expression. The body of the loop is executed as long as the condition is
satisfied. A while program is a finite sequence of assignment or while statements. The program
uses a finite set of relational variables of specified sorts, including the names of relations in the
input database. A designated relational variable holds the output to the query at the end of the
computation. One can view a while program as defining one query for each of its relational variables.

Example 2.5 Transitive Closure. Consider a binary relation G,
specifying the edges of a graph. The following while program computes in T the transitive closure
of G. Here, T and oldT are also binary.

oldT := 0;
T:=G
while T —oldT # @ do
begin
oldT := T,
T =TuU 1(1_4(62=3(T x G)),
end.

In the program, oldT keeps track of the value of T resulting from the previous iteration of the loop.
The computation ends when oldT and T coincide, which means that no new edges were added in
the current iteration, so T holds the complete transitive closure.

Example 2.6 Add-Remove. Consider again a binary relation G specifying the edges of a graph.
The following program removes from G all edges (a,b) if there is a path of length 2 from a to b,
and inserts an edge (a, b) if there is a vertex not directly connected to a and b; this is iterated while
some change occurs. The result is in the binary relation 7°. In addition, the binary relation variables
P, @, oldG are also used. For the sake of readability, we use the calculus whenever this is easier to
understand than the corresponding algebra expression. The semantics in the calculus is the active
domain semantics (with respect to the input).

T :=G;oldT =,
while (oldT — T)U (T — oldT) # 0 do
begin
P:={{z,y) | 3(T(z,2) A T(z,9))};
Q = {(z,y) | 32(=T(z, 2) A =T(z,z) A ~T(y, z) A =T(z,9))};
oldT :=T;, T:=(TuQ)-P;

end.

Like in the previous example, oldT is used to detect when no change occurs as a result of executing
the loop. The test (oldT — T) U (T — oldT) # @ could have been replaced with the comparison
oldT # T, if such comparisons were allowed in the language.

In the example, the transitive closure query always terminates. This is not the case for the
Add-Remove query. Indeed, while programs may not terminate. This is typically the case for non-
inflationary languages. We define next an inflationary version of the while language, which we denote
by while’™ . The while'™ language differs from while in the semantics of the assignment statement
and the termination conditions for loops. The assignment statement in while'™ is non-destructive.
Consider an assignment of an algebra expression e to variable P. The semantics is now cumulative;
the value of P after the assignment is obtained by adding to the old value of P the result of e. Thus,
no tuple is removed from any relation throughout the execution of the program. To distinguish
the cumulative semantics from the destructive one, we use the notation P += e for the cumulative
semantics.

While loops are modified as follows. There is no explicit termination condition. Instead, a loop
runs as long as the execution of the body causes some change to some relation. For readability, the
syntax of loops becomes while change do As seen from the previous examples, the “no change”
semantics is often natural. Clearly, both the cumulative assignment and the no change semantics
for while loops can be simulated in while. Thus, the set of queries expressible in while'™ is a subset
of those expressible in while.

Example 2.7 Transitive Closure Revisited. Following is a while'™ program computing the transi-
tive closure of a graph represented by a binary relation G. The result is obtained in the variable

T.

T += G,

while change do
begin
T 4+= 7!'1,4(172=3(TI X G)),
end.

Note that the variable oldT used in Example 2.5 is no longer needed. Also, it is no longer necessary
to explicitly add to T its old value, since this is taken care of by the cumulative semantics of the
assignment statement.

2.5 Calculus+Fixpoint

As for the algebra, we provide inflationary and non-inflationary extensions of the calculus with
recursion. This could be done using assignment statements and while loops, as for the algebra.
Indeed, we used calculus notation in Example 2.6 (Add-Remouve). However, an equivalent but more
logic-oriented construct is used to augment the calculus. The construct, called a fizpoint operator,
allows the iteration of calculus formulas up to a fixpoint. This in effect allows defining relations
inductively, using calculus formulas. To illustrate this, consider again the transitive closure of a
graph G. The relations T, holding pairs of nodes at distance at most n can be defined inductively
using a single formula

¢(T) = G(z,y) Vv T(z,y) vV 3 2(T(z,2) AG(2,9))

as follows:
To 0;
T é(Ta-1), n> 0.

Here ¢(T,-1) denotes the result of evaluating ¢(T") when the value of T is T,,_;. Note that, for
any given G, the sequence {T,}n>0 converges, i.e. there exists some k for which Ty = T; for every
J > k (indeed, k is the diameter of the graph). Clearly, T holds the transitive closure of the graph.
Thus, the transitive closure T of G can be defined as the limit of the above sequence. Note that
Tk = ¢(Tt), so T} is also a fizpoint of ¢(T). The relation T} is denoted by pr(é(T)). Then the
transitive closure of G is defined by

ur(G(z,y) VT(z,y) V 3 2(T(z,z) AG(2,9))).

Thus, pr is an operator which produces a new relation (the fixpoint T;) when applied to ¢(T). Note
that, although T is used in ¢(T'), T is not a database relation, but rather a relation used to define
inductively pr(#(T)) from the database, starting with 7= 0. T is said to be bound to pr. Indeed,
puT is somewhat similar to a quantifier over relations.

In the above example, the limit of the sequence {7}, },>0 happens to exist. This is not always
the case. Indeed, for

HT)=(z=0A-T(O)A-T(1))V(z=0ATQ)) V(z =1AT(0))

the sequence {Th}n>o0 is {(0)}, {(1)}, {(0)},..., i.e. T flip-flops between zero and one. The sequence
does not converge, so ur(¢(T)) is not defined. Thus, the operator y is defined for some formulas and
databases, and undefined for others. Situations where u is undefined correspond to non-terminating
computations in the while language. Following is a non-terminating while program corresponding to
ur(6(T)) above:

oldT :=9;

T :={{0)};

while (oldT — T)U (T — oldT) # 8 do

begin

oldT :=T;

T := {{0),{1)} - T;
end.

Since p is only partially defined, it is called a partial fizpoint operator. We define its syntax and
semantics in more detail next.

Partial Fixpoint Operator. Let R be a database schema, and T a relation schema not in R, of
arity m. Let S denote the schema R U {T'}. Let ¢(T) be a relational calculus formula using T and

relations in R, with m free variables. Given an instance I over R, ur(¢(7")) denotes the relation
which is the limit, if it ezists, of the sequence {7} }n>0 defined by:

To = 0
Tn :¢(Tn—l)1 n>01

where ¢(T,,—1) denotes the result of evaluating ¢ on the instance J over S whose restriction to R. is

Iand J(T) = T, ;.

Thus, pr(¢(T)) denotes a new relation (if it is defined). In turn, it can be used in more complex
formulas like any other relation. For example, pur(#(T))(y, 2) states that (y, 2} is in pup(¢(7)). If
ur(@(T)) defines the transitive closure of G, the complement of the transitive closure is defined by

{{z.9) | ~ pr(8(T))(2. v)}-

The extension of the calculus with u is called partial fizpoint logic, denoted FO+p.

Partial Fixpoint Logic. FO+pu formulas are obtained by repeated applications of ¥'O operators

(3,V,V, A, =) and the partial fixpoint operator, starting from atoms. In particular, ur(¢(T))(z), ..., z,),

where T has arity n and ¢(T') has n free variables, and the z; are variables or constants, is a formula.
[ts free variables are the variables in the set {z;,...,z,} (thus, the variables occurring inside ¢(7') are
not free in this formula). Partial fixpoint operators can be nested. FO+pu queries over a databhase
schema R are expressions of the form

{{z1, ..y zn) | &(z1, ..., zn)},

where £(z1, ...,z,) is a FO+p formula with free variables z4, ..., z,,. The formula £ may use relation
names in addition to those in R; however, each occurrence P of such relation name must be bound
to some partial fixpoint operator gp. The semantics of F'O+pu queries is defined as follows. First,
note that, given an instance I over R and a sentence ¢ in FO+, there are three possibilities: o is
undefined on I o is defined on I and is true; and, o is defined on I and is false. Given an instance

I over R, the answer to the query

{(xl""’zﬂ) l E(zl,...,l'n)}

is the n-ary relation consisting of all valuations v of ¢y, ..., z, for which the formula §(v(z1), ..., ¥(z,))
is defined and true. The queries expressible in Partial Fixpoint Logic are called the partial fizpoint
queries. We will see that they are equivalent to the while queries.

Example 2.8 Add-Remove Revisited. Consider again the query in Example 2.6. To express the
query in FO+u, a difficulty arises; the while program initializes T to G before the while loop,
whereas FO+u lacks the capability to do this directly. To distinguish the initialization step fromn
the subsequent ones, we use a ternary relation @ and two distinct constants: 0 and 1. To indicate
that the first step has been performed, we insert in @ the tuple (1,1, 1). The presence of (1,1,1} in
Q inhibits the repetition of the first step. Subsequently, an edge {z,y) is encoded in Q as (x,y, 0).
The while program in Example 2.6 is equivalent to the FO+pu query

{(z) y) I IIQ(¢(Q))($, Y, 0)}

wh
$Q = ~QULDA(CEYAz=0V(E=1Ay=1Az=1)
VR(LLL,DA((z=1Ay=1A2z=1)
V((z = 0) A Q(z,9,0) A ~3w(Q(z, w,0) A Q(w, y,0)))
V ((z = 0) A Sw(-Q(z,w,0) A ~Q(w, z,0)
AﬁQ(yv w, 0) A ﬁQ(w! Y, 0))))

10

-

L

Clearly, this query is more awkward than its counterpart in while. The simulation highlights some
peculiarities of computing with FO+p.

As seen, the non-convergence of the sequence {T, },,20 in some cases is similar to non-terminating
computations in the while language with non-inflationary semantics. The semantics of the partial
fixpoint operator u can also be viewed as non-inflationary. Indeed, in the inductive definition of the
T,, each step is a destructive assignment. As for while, we can make the semantics inflationary by
having the assignment at each step of the induction be cumulative. This will yield an inflationary
version of p which is defined for all formulas and databases to which it is applied. The inflationary
version of y is denoted by p*™ . It is referred to simply as an inflationary fizpoint operator.

Making the fixpoint operator inflationary by definition is not the only way to guarantee polynomial-
time termination of the fixpoint iteration. An alternative approach (and historically first) is to
restrict the formulas ¢(T') so that convergence of the sequence {T,}n>0 associated with jup(¢(7))
is guaranteed. This can be done by requiring that T occur only positively in ¢(7T), 1.e. under an
even number of negations in the syntax trce of the formula. With this requirement, it can be casily
checked that the partial fixpoint semantics yields an increasing sequence {T,,}.50, and pr(é(T))
is always defined. It can be shown that the two approaches are equivalent, i.e. the sets of queries
expressed are identical.

We describe the syntax and semantics of u*™ next.

Inflationary Fixpoint Operators. The definition of y?’(d)(T)) is identical to that of the partial
fixpoint operator except that the sequence {T,}n>0 is defined as follows:

To = 0
T, = n—1U¢(Tn—l)x n>0.

This definition ensures that the sequence {T"}"ZO is increasing: T;—; C T; for each i > 0. Since for
each instance there are finitely many tuples which can be added, the sequence converges in all cases.

Adding u*" instead of u to FO yields inflationary fizpoint logic, denoted by FO+u'™ .

Inflationary Fixpoint Logic. The syntax of inflationary fixpoint logic is identical to that of the
partial fixpoint logic, except that u*™ is used instead of u. Note that inflationary fixpoint queries
are always defined.

For example, the transitive closure of a graph G is defined by the FO+u'™ query
{{z.9) | 77 (G(z,9) V 32(T(2, 2) A G(z,9))(z,v)}-

The set of queries expressible by inflationary fixpoint logic is called the fizpoint queries. The
fixpoint queries were historically defined first among the inflationary languages in the algebraic,
logic, and deductive paradigms. Therefore, the class of queries expressible in inflationary languages
in the three paradigms has come to be referred to as the fizpoint queries.

2.6 Datalog and Datalog™

A third paradigm for query languages, besides the logic and algebraic, is based on logic programming.
We consider first Datalog, which can be viewed as a “pure” relational version of Prolog. The syntax

11

of Datalog is essentially that of Horn Clauses. A Datalog rule is an expression of the form :
Rl(ul) — Rz(u2), ceey R,,(u,,)

where for some n > 1, Ry, ..., R,, are relation names, uy, ..., u, arc tuples of variables or constants of
appropriate arities. Furthermore, each variable occurring in the head must also occur in the body.
A Datalog program is a finite set of Datalog rules.

In a Datalog program P, sch(P) denotes the database schema consisting of all relations involved
in the program P. The relations occurring in heads of rules are the intensional relations (idb) of P,
and the others are the eztensional relations (edb) of P.

Datalog can be given a model-based semantics, or a fixpoint semantics. The two semantics
turn out to be equivalent. With the model-based semantics, the result of a Datalog program is
the unique minimal model satisfying the sentences corresponding to the rules in the program, and
containing the input database. The fixpoint semantics consists of firing the rules of the program
with all applicable valuations until a fixpoint is reached. We illustrate this with an example.

Example 2.9 The following Datalog program computes the transitive closure of the graph G in T*:

T(z,y) — G(z,y)
T(z,y) — T(z,2),G(z,y)

Datalog provides recursion, but no negation. In particular, it is incomparable to FO. Indeed,
it only defines monotonic queries. The precise connection with FO is investigated in [AG89]. It
is shown that a Datalog program defines a FO query iff it is bounded, i.e. it terminates after a
constant number of iterations of firing the rules (the “only if” part is quite surprising!). The precise
expressive power of Datalog is not easy to characterize. While Datalog defines only monotonic
queries in PTIME, it has been shown that there are such queries that Datalog cannot express, even

with order and inequality [ACY91].

Viewed from the standpoint of the deductive paradigm, Datalog provides a form of monotonic
reasoning. Adding negation to Datalog rules allows defining non-monotonic queries, and performing
non-monotonic reasoning.

Adding negation in Datalog rules requires defining semantics for negative facts. This can be
done in many ways. The different definitions depend to some extent on whether Datalog is viewed
in the deductive framework, or simply as a specification formalism like any other query language.
Indeed, Datalog with negation can essentially be viewed as a subset of the while or fizpoint queries,
and treated similarly. This is not necessarily appropriate in the deductive framework. For instance,
the basic assumptions on the reasoning process may require that, once a fact is assumed false at
some point in the inferencing process, it should not be proven true at a later point. The issue of a
“natural” semantics of negation in a deductive context is not considered here.

As usual, we will consider inflationary and non-inflationary versions of Datalog with negation.
We start with the inflationary version, which is most commonly used. The inflationary language
allows negations in bodies of rules, and is denoted by Datalog™. Like Datalog, its rules are used
to infer a set of facts. Once a fact is inferred, it is never removed from the set of true facts. This
yields the inflationary character of the language. To illustrate this, consider the following Datalog™
program. Its input is a graph G. The program computes the relation closer(z,y,z’,y’) defined
as follows: closer(z,y,z’,y’) means that the distance d(z,y) from z to y in G is smaller than the

12

distance d(z’,y’) from =’ to y/'.

T(z,y) — G(z,y)

T'(z,y) — T(z,y)

T(:L‘,y) — T(x,z),G(z,y)
closer(z,y,z',y) — T'(z,y),T(@,y), T, y).

The program is evaluated as follows. The rules are fired simultaneously with all applicable valuations.
At each such firing, some facts arc inferred. This is repeated until no new facts are inferred, or the
rules can no longer be fired. A negative fact such as ~T'(z’,y) is true if T7’(z’,y’) has not been
inferred so far. This does not preclude T/(z’, y) from being inferred at a later firing of the rules. One
firing of the rules is called a stage in the evaluation of the program. In the above program, T and 1"
hold the transitive closure of G. Consider the consecutive stages in the evaluation of the program.
Note that, if the fact T(z, y) is inferred at stage n, then d(z,y) = n. On the other hand, 7" is one step
behind T, i.e. T'(z,y) is inferred one stage later than T(z,y). Thus, if T'(z,y), T(z',), ~T'(«',y')
holds at some stage n, then d(z,y) < n and d(z',y’) = n. By the fourth rule, closer(z,y,z’,y’) is
then inferred.

Syntax and Semantics of Datalog™. The formal syntax and semantics of Datalog™ are straight-
forward extensions of those for Datalog. A Datalog™ rule is an expression of the form

][(h) — Bl(ul), ey Bn(‘ll,,),

where: (i) H is a relation name, (ii) B; are relation names (in which case B; is called positive) or
—R; where R; is a relation name (then B; is called negative), and (iii) h and u; are tuples of variables
or constants of appropriate arities. A Datalog™ program is a finite set of Datalog™ rules.

The semantics of Datalog™ is as follows. Let K be an instance over sch(P). A fact R(r) is
an immediate consequence for K and P if R(r) — Ay, ..., A, 1s an instantiation of a rule in P and:
each positive A; is a fact in K, and (ii) if A; = —A} then A} ¢ K. Instantiations use valuations into
the active domain with respect to the input idb relations. The immediate consequence operator of
P, denoted I'p, is now defined in the same way as for Datalog. Given an instance I over edb(P),
one can compute ['p(I),[%(I), I3 (I), etc. As for Datalog, the sequence reaches a fixpoint, denoted

% (I), after a finite number of steps.

An important difference with Datalog is that I'® (I) is no longer guaranteed to be a minimal
model of P containing I. This is easily seen by the following example.

Example 2.10 Let P be the program

R(0) — Q(0),~S(0)
S©0) — Q(0),~R(0).

Let edb(P) = {Q} and idb(P) = {R,S}. Let I be the instance over Q: {{0)}. Then P(I) =
{Q(0), R(0), S(0)}. While P(I) is a model of P, it is not minimal. Indeed, the minimal models
containing I are {Q(0), R(0)} and {Q(0), S(0)}.

The above shows a divergence between Datalog and Datalog™ with respect to the model theoretic
semantics. This can be viewed as a drawback of the fixpoint semantics for Datalog™. However, a
natural model theoretic semantics is not easy to formulate for Datalog™. As seen in Example
2.10, there are Datalog™ programs which simply do not have a unique minimal model which can
be taken as the semantics. In such cases, a model-based semantics requires choosing a natural

13

model among several possible candidates. Inevitably, such choices are open to debate. We do
not elaborate on the model-based semantics in this paper. However, it is important to note that
some of the most widely accepted model-based semantics yield the same expressive power as the
inflationary semantics described here. Such a semantics is the well-founded semantics of Van Gelder,
Ross, and Schlipf [VRS88]. However, another popular semantics for negation, stratified negation
[CH85, ABW86, N86, VG86], is strictly weaker than the fizpoint queries. This was shown by [K87]
using a result by [D87]. Intuitively, it is due to the fact that the stratified semantics, unlike the
inflationary semantics, bounds the number of applications of the negation by disallowing recursion
through negation.

Datalog™. The language Datalog™ has inflationary semantics. This is because the set of facts
inferred through the consecutive firings of the rules is increasing. To obtain a non-inflationary
variant, there are several possibilities. One could keep the syntax of Datalog™ but make the semantics
non-inflationary by retaining, at each stage, only the newly inferred facts. Another possibility is to
allow explicit retraction of a previously inferred fact. Syntactically, this can be done using negations
in heads of rules, interpreted as deletions of facts. We adopt this solution here, since it is more
common in practical languages such as those used in production systems. The resulting language is
denoted by Datalog™, to indicate that negations are allowed in both heads and bodies of rules.

Example 2.11 Add-Remove Revisited. The following Datalog™ program computes in 7' the add-
remove query of Example 2.6, given as input a graph G.

T(z,y) +— G(z,y),~0f(1)

off(1) «

-T(z,y) « T(z,z),T(z,y),oﬂ(l)

T(I, y) — Tz, z)ﬁT(z’ .’L')ﬂT(y, Z)"IT(Z, y), Oﬂ(l)

The result of the query is produced in T. Relation off is used to inhibit the first rule (initializing T
to G) after the first step.

The semantics of negations in heads of rules is the following. If -R(z,y) is inferred, the fact
R(z,y) is removed, unless R(z, y) is also inferred in the same firing of the rules. This gives priority to
inference of positive over negative facts, and is somewhat arbitrary. Other possibilities are: (i) giving
priority to negative facts, and (ii) interpreting the inference of R(a,) and —-R(a,b) simultaneously
as a contradiction which makes the result undefined. The chosen semantics has the advantage over
(i1) that the semantics is always defined. In any case, the choice of semantics is not crucial: they
are essentially equivalent.

With the above semantics, termination is no longer guaranteed. For instance, the program
T(0) « T(1)
-T(1) —~ T(QQ)
T(1) — T(0)
=T(0) — T(0).

never terminates on input 7'(0). Indeed, the value of T flip-flops between {{0)} and {{1}} so no
fixpoint is reached.

2.7 Equivalence

We introduced inflationary and non-inflationary recursive languages with negation in the algebraic,
logic, and deductive paradigms. We show here that the inflationary languages in the three paradigms,

14

while’™ , FO+p' | and Datalog™, arc equivalent. The same holds for the non-inflationary languages
while, FO+pu, and Datalog™. This yields two classes of queries which are central in the theory of
query languages: the fizpoinl queries (expressed by the inflationary languages), and the while queries
(expressed by the non-inflationary languages).

We begin with the equivalence of the inflationary languages.
Theorem 2.12 FO+u'™, while'™ | and Datalog™ are equivalent.

The equivalence of FO+u'" and while* is casy. Indeed, the languages have similar capabili-
ties; program composition in while'™ corresponds closely to formula composition in FO+u', and
the “while change” loop of while'™ is close to the inflationary fixpoint operator of FO+u*. More
difficult is the equivalence of these languages with Datalog™, since this much simpler language has
no explicit constructs for program composition or nested recursion. Thus, the non-trivial part of the
equivalence proof is showing that Datalog™ can simulate these constructs. The following example
illustrates some techniques used in the simulation.

Example 2.13 The following Datalog™ program computes the complement of the transitive closure
of a graph G. The example illustrates the technique used to delay the firing of a rule (computing the
complement) until the fixpoint of a set of rules (computing the transitive closure} has been reached.
The idea is that, as the transitive closure of G is computed in relation T, the result is duplicated in
relations previous and previous-unless-last, but with a delay of one iteration. However, the result
of the previous iteration is copied in previous-unless-last, only if the current iteration is not the last.
Thus, previous and previous-unless-last differ only at the last iteration, which allows recognizing
when the fixpoint has been reached, and firing the rule computing the complement in relation 7".
The program is:

T(z,y) ~ G(z,y)

T(I’y) - G(z,z),T(z,y)

previous(z, y) — T(x,y)

previous-unless-last(z,y) — T(z,y),G(z',2"),T(Z,v),-T(z',y)

=T(z,y), previous(z’,y’),

T(z, Y) ~previous-unless-last(z’,).

(It is assumed that G is not empty.)

1

An analogous equivalence result can be proven for the non-inflationary languages while, FO+p,
and Datalog™. The proof of the equivalence of FO+u and Datalog™ is easier than in the infla-
tionary case because the ability to perform deletions in Datalog™* facilitates the task of simulating
explicit control. Thus we can prove:

Theorem 2.14 while, FO+pu, and Datalog™ are equivalent.

The set of queries expressible in while, FO+u, and Datalog™ is called the while queries.

Normal Forms. The equivalence results have some interesting side-effects. Consider the inflation-
ary languages. We showed the rather surprising fact that FO+u*" is equivalent to Datalog™, which
is essentially a fragment of FO+4™ |, much simpler than the full language. This yields a normal
form for FO+p*™ queries: each FO+pu* query can be expressed using a single application of the
fixpoint operator on an existentially quantified formula (in prenex form). The same normal form
holds for FO+p, and analogous normal forms can be shown for while'” and while.

15

2.8 While versus Fixpoint

The problem of the relationship of the fizpoint and while query is a difficult one. However, it
seems very likely that while is strictly stronger than fizpoint. Indeed, the following was shown in
[AVOla, AVI1b].

Theorem 2.15 firpoint = while iff PTIME = PSPACE.

The proof is based on Theorem 4.1 and on a normal form for while, both stated in Section 4.2.

Surprisingly, the result also applies to the PTIME fragment of while (i.e., whilelpripgp): it is
shown in [AV91a, AV91b] that PTIME = PSPACE iff fizpoint = while|prspme. Note that this reduces
the separation of PTIME and PSPACE to the separation of two classes of queries within PTIME.

2.9 Breaking the Space Barrier

The languages described so far have bounded complexity. Indeed, any language using (i) a finite set
of fixed-arity relations and (ii) only constants from the input, stays within PSPACE. We next consider
briefly languages with unbounded complexity, which express all queries. To break the space barrier,
(i) or (ii) must be relaxed. The first such language, while*"*° ¢4, was introduced in [CH80], and is
based on relaxing (1). It is obtained by using an unsorted algebra, and allowing in while, unsorted
variables, 1.e. variables standing for relations whose arities are not fixed. The possibility to count
using the arity of intermediary results yields the desired computational power. Another complete
language, while'**"*, is based on relaxing (ii), and was presented in [AV90]. The expressive power is
obtained by having a constructor (new) allowing the introduction of new constants in the database.
For instance, for a binary relation R, the following program creates a new constant for each pair of
tuples in R using two variables X (4-ary) and Y (5-ary):

X:=RxR; Y :=new(X).

2.10 Bibliographic Notes on Languages

The while language was first introduced as RQ in {CH82] and as LE in [C81]. The other non-
inflationary languages, FO+p and Datalog™, were defined in [AV88, AV89]. The equivalence of
the non-inflationary languages was shown in [AV88, AV90]. The inflationary languages have a
long history. Logics with fixpoints have been considered by logicians in the general case where
infinite structures (corresponding to infinite database instances) are allowed [M74]. In the finite
case, relevant here, the fixpoint queries were first defined using the partial fixpoint operator pr
applied only to formulas positive in T [CH82]. The language allowing applications of ur to formulas
monotonic, but not necessarily positive, in T, was further studied in [G84]. The two languages were
shown equivalent in [GS86], where it was also proven that they are equivalent to FO+u'™. As a side-
effect, it was shown in [GS86] that the nesting of u (or u*™) provides no additional power. This fact
had been proven earlier for the first language in [I86). Of the other inflationary languages, while'™
was defined in [AV90] and Datalog™ with fixpoint semantics was first defined in [AV88, KP88]. The
equivalence of Datalog™ with FO+u'™ and while*™ was shown in [AV88]. The relationship between
the while and fizpoint queries was investigated in [AV91a, AV91b], where it was shown that they are
equivalent iff PTIME = PSPACE.

16

The normal forms discussed here can be viewed as variations of well-known “folk theorems”,
described in [H80]. The deletion ability in Datalog™ can be viewed as an updating capability.
Other mechanisms to perform updates using a logic programming based formalism are described in
[NK88, MW83].

3 Sizing Up Languages

In the previous section we presented a variety of languages which converge around three important
classes of queries: F'O, firpoint, and while. Clearly, many extensions of these languages can be
defined, all the way to complete languages, which can define all queries. It is relatively easy to
define very powerful languages, as seen in Section 2.9. However, the real challenge for the language
designer lies not simply in defining more and more powerful languages. Instead, an important
aspect of language design is to achieve a good balance between expressiveness and the complexity
of evaluating queries in the language. The ideal language would allow expressing most “useful”
queries, while at the same time providing reasonable complexity bounds for all queries expressible
in the language. We will discuss the expressiveness and complexity of query languages in detail. In
this section, we begin by answering the following question: how does one evaluate a query language
w.r.t. expressiveness and complexity? We discuss the issue of “sizing up languages”.

3.1 Queries

The expressive power of a language is measured by the set of queries it can express. We start by
making more precise the notion of query. A query is a mapping from #nst{(R) to ins{(S), where R.
and S are disjoint database schemas. The input predicates are sometimes referred to as extensional
database predicates, and the output predicates as intensional database predicates, following the
Datalog terminology.

Database queries are usually required to obey three conditions: well-typedness, effective com-
pulability and genericily [AUT9, AV88, C88]. Well-typedness is captured by requiring that instances
over a firzed schema be related to instances over another fired schema. Effective computability
is self explanatory. Genericity originates from the data independence principle: a query can only
use information provided at the conceptual level. In particular, distinct data values can be treated
differently only if they can be distinguished using the information available at the conceptual level,
or if they are named explicitly in the query. This is formalized by the notion of genericity:

Let R and S be database schemas, and C a finite set of constants. A mapping r from
inst(R) to inst(S) is C-generic iff for each bijection p over dom which is the identity on
C,J =7(1)iff p(J) = é(p(1)).

In the definition of genericity, the set C specifies “exceptional” constants, which can be treated
differently from other constants. This is needed because a query can explicitly name a finite set of
constants. However, in this paper we ignore the issue of constants in queries, which is not central.
Thus, the set C in the definition of genericity is empty.

A query language or computing device is called complete if it expresses all queries.

17

3.2 Programs and Queries

Given a program £ (in a query language L), the mapping (or relation) between database instances
that the program describes is called the effect of the program. The concepts of input, output and
temporary relations are also important. When a program is applied to a given database, its effect
is often interpreted by identifying some relations as input relations, and other relations as output
relations. In addition to semantically significant input and output relations, the programs may usc
“temporary” relations. Thus, it appears useful to also define the effect of a program with respect
to specified input and output database schemas. Given a program P and two schemas R and S, P
transforms instances over R. into instances over S as follows: relations which are not in the input
schema are assumed to be empty before the program is executed; after the program is run, the
relations in the output schema must contain the desired result. (The content of the other relations
is immaterial.)

3.3 Complexity of queries

We will refer to complexity classes of database queries. We use as complexity measures the time and
space used by a Turing Machine to produce a standard encoding of the output instance starting from
an encoding of the input instance. The complexity is w.r.t. the size of the encoded input. Thus,
the query is viewed as constant, and the input database as variable. This choice is due to the fact
that, typically, one can expect that the size of the database dominates by far the size of the query.
This way of looking at complexity is called data complezity {V82], as opposed to query complezily,
where the measure is the size of the query. In this paper we only consider data complexity.

For each Turing Machine complexity class C, there is a corresponding complexity class of queries,
which we also denote by C. For example, the PTIME class consists of all generic mappings ¢ such
that there is a TM which, given on the tape a standard encoding enc(I) of an input I, produces a
standard encoding of ¢(I), in time polynomial in |enc(I)|. Note that this is slightly different from
the traditional definition in terms of the associated recognition problem [V82], where the complexity
of a transformation is defined as the complexity of deciding if a given tuple belongs to the result. We
sometimes describe complexity in terms of the associated recognition problem. Thus, NP denotes
deterministic transformations for which the recognition problem is in NP. We will specify which
measure is used only when the distinction is relevant.

3.4 Expressiveness w.r.t. Complexity Classes

So far we provided a definition of the complexity of an individual query. In order to measure the
complexity of a query language L, we would like to establish a correspondence between

e the class of queries expressible in L, and

e a complexity class C of queries.

The most straightforward connection is when L and C are precisely the same?. In this case, it is

said that L expresses C. Thus, every query in L is computable with complexity C, and conversely,
L can express every query of complexity C.

2By abuse of notation, we also denote by L the set of queries expressible in L.

18

Ideally, one would be able to perform “complexity taylored” language design; that is, for a
desired complexity C, one would be able to design a language expressing precisely C. Unfortunately,
we will see that this is not always possible. In fact, there are no such results for complexity classes
of polynomial time and below, which are of most interest. We will dwell at length upon this
phenomenon in Section 4. Intuitively, the “shapes” of classes of queries of low complexity simply
do not match those of classes of queries defined by any known language. Therefore, we are lead to
consider a less straightforward way to match languages to complexity classes.

3.5 Completeness w.r.t. Complexity Classes

Consider a language L which does not correspond precisely to any natural complexity class of queries.
Nonetheless, we would like to say something about the complexity of queries in L. For instance, we
would like to guarantee that all queries in L can be evaluated with some complexity C, even though
L may not express all of C. In order for the bound to be meaningful, we would also like that ' be,
in some sense, a tight upper bound for the complexity of queries in L. In other words, L should
be able to express at least some queries which are among the “hardest” in C. The property of a
problem being “hardest” in a complexity class C' is captured, in complexity theory, by the notion
of completeness of the problem in the class®. This leads to the following. A language L is complete
w.r.i. a complezily class C if:

e every query in L is also in C, and

o there exists a query in L which is complete w.r.t. the complexity class C.

In some sense, completeness says something negative about the language L. Indeed, L can express
some queries which are as hard as any query in C; on the other hand, there may be easy queries
in C which may not be expressible in L. This may at first appear contradictory, since L expresses
some queries which are complete in C, and any query in C can be reduced to the complete queries.
However, there is no contradiction. Indeed, the reduction of the “easy” query to the complete query
may not be expressible in L.

3.6 Fixpoint and While vs. PTIME and PSPACE

In the discussion on inflationary and non-inflationary languages, we pointed out that fizpoint C
PTIME, and while C PSPACE. We would like to understand the precise relationship with these
complexity classes, in view of the previous discussion on expressiveness and completeness. It turns
out that fizpoint is complete w.r.t. PTIME and while is complete w.r.t. PSPACE. The completeness is
a consequence of the above observation, and results in Section 4. Thus, fizpeint can express some of
the hardest queries in PTIME, and analogously for while and PSPACE. Nonetheless, there are “easy”
queries in PTIME and PSPACE that the two languages cannot express. The typical example of such
a query is the even query on a set:

even(p) = true if |p| is even, and false otherwise.

It is rather puzzling that a query as simple as even is not expressible by powerful extensions
of FO such as fizpoint and while. Indeed, the even query illustrates well several important issues

3 A problem is complete in C if it is in C, and any other problem in C can be reduced to it using a reduction of
reasonable cost relative to C.

19

of expressiveness of query languages, and we will use it repeatedly in the paper. Intuitively, cven
is hard to compute by query languages because of the generic nature of the resulting computation.
Indeed, if the abstract interface to the database only provides an unordered set, all elements of the
set are treated uniformly throughout the computation. This rules out the straightforward solution
of repeatedly extracting one arbitrary element from the set until the set is empty, while keeping a
binary counter. Indeed, there is no way to deterministically extract an arbitrary element from the
set. Of course, the problem disappears if the database provides an ordering of the domain, since
then every element in the set can be distinguished from every other.

The limitation in the expressive power of fizpoint and while is emphasized by an interesting
feature of properties expressible in the two languages. Consider a property of finite structures
expressed by some sentence o. Let p,(7) be the probability that a structure of size n satisfies o.
The property o has a 0-1 law if pn(0) converges to 0 or 1. The 0-1 laws were defined by Fagin,
who also proved that all properties expressible in FO have a 0-1 law [F76]. This was extended to
fizpoint and while [KV89], and to more powerful languages [KV90a, KV90b). Note that the non-
expressibility of even follows directly from the fact that while has a 0-1 law, since the probability of
evenness flip-flops between 0 and 1 and does not converge. A comprehensive survey of 0-1 laws is
provided in [Co88].

The difficulty of expressing PTIME with fizpoint extends to other languages. Indeed, no language
is known that expresses precisely PTIME. The existence of such a language is a major open problem
in the theory of query languages. The “running conjecture” is that no such language exists. The
same remarks apply to other complexity classes below PTIME, for which there are no expressiveness
results.

3.7 Trade-offs: Order and Non-determinism

We saw that the query even becomes easy if an order on the domain is available. This is not
accidental, and in fact extends to all queries in PTIME and PSPACE. More precisely, with the order
assumption, all queries in PTIME and PSPACE can be expressed by fizpoint, respectively while. Thus,
a precise match of these languages with complexity classes occurs. We present these results in more
detail in the next section.

Results such as the above show that the presence of order can solve some of the problems of
expressiveness of query languages. This can be interpreted as a trade-off between expressiveness
and the data independence provided by the abstract interface. Indeed, the internal representation,
hidden by the abstract interface, could be used to extract an ordering of the constants used in the
database. Thus, giving up the data independence principle allows access to an order, and results
in improved expressive power. The tension between data independence and efficient computing of
database queries is further examined and formalized in Section 4.3.

Consider again the query even. Another way to circumvent the difficulty of computing it
generically, is to relax the determinism of the query language. Indeed, if one could choose, whencver
desired, an arbitrary element from the set, this would provide another way of enumerating the
elements of the set and computing even. The drawback is that, with such a non-deterministic
construct in the language, determinism of queries can no longer be guaranteed. We elaborate on the
power of non-determinism in query languages in Section 5.

The trade-offs based on order and non-determinism are not unrelated, as it may seem at first.
Indeed, suppose that an order is obtained by suspending the data independence principle and ac-
cessing the internal representation. In general, the computation may depend on the particular

20

.}

order accessed. Then at the conceptual level, where the order is not visible, the mapping defined
by the query appears as non-deterministic. Indeed, different outcomes are possible for the same
conceptual-level view of the input. Thus, the trade-offs based on order and on relaxing determinism
are intimately connected. The trade-off between determinism and expressive power is an alternative
to the trade-oflf between data-independence and expressive power. Indeed, the following conjectured
meta-theorem has been consistently confirmed (C is a time or space Turing complexity class at least
linear) :

If the class of deterministic queries in C can be expressed by a deterministic language in
the presence of order, then the class N-C of deterministic and non-deterministic queries
computable in C can be expressed by a non-deterministic language.

The idea behind the meta-theorem is that an arbitrary order which can be used to compute the
queries in C can be generated by non-deterministic means in linear time/space.

4 The Impact of Order

In this section we discuss in detail the impact of order on the expressive power of query languages.
As discussed above, we view the order assumption as essentially the same as suspending the data
independence principle in a database. Since data independence is one of the main guiding principles
in databases, it is important to understand its consequences on the expressiveness and complexity
of query languages.

4.1 Expressiveness With Order

As exemplified by the even query, order can considerably affect the expressiveness of a language and
the difficulty of computing some queries. Without the order assumption, no expressiveness results
are known for the complexity classes of PTIME and below. With order, there are numerous such
results. We mention here some of the most prominent ones.

A database is said to be ordered if one particular binary relation succ provides a successor
relation on the constants occurring in the database.

We start with fizpoint and while.

Theorem 4.1 (i) Firpoint expresses PTIME on ordered databases.
(i1) While expresses PSPACE on ordered databases.

Part (i) of the theorem appears in [I86, V82] and part (ii) is due to [V82].

Of course, complexity classes lower than PTIME are most useful in practice. There are numerous
results on languages which express complexity classes below PTIME. To illustrate, we mention
characterizations of LOGSPACE, non-deterministic logspace, denoted NLOGSPACE, and symmetric
logspace, denoted SLOGSPACE. These results are due to Immerman [I87). The classes LOGSPACE
and NLOGSPACE are well known. We briefly review the meaning of SLOGSPACE. This class is based
on Symmetric Turing Machines (STM), defined by Lewis and Papadimitriou [LP82]. An STM is a
Turing Machine for which the “next move” relation is symmetric. Thus, the machine can always

21

return to any previous configuration. The class S.OGSPACE consists of the queries for which the
recognition problem is computable by an STM with logarithmic space in the size of the input.

The languages capturing these classes are extensions of FO with various kinds of transitive
closure operators, which in turn are specialized forms of the fixpoint operator u*™. We begin with
the transitive closure operator TC. The operator is applied to formulas ¢(Z, §), where ¥ and ¥ are
both k-tuples of free variables in ¢. Then TC(¢(Z, %)) denotes the transitive closure of the binary
relation of k-tuples (Z, §) defined by @(Z, 7). We use two other variations of the TC operator. The
first is called deterministic transitive closure (DTC). Given a formula ¢(Z, §) as above,

DTC(#(Z,9)) = TC[¢(Z, §) AVZ($(£,2) — £ =)].
Finally, the symmetric transitive closure operator (STC) applied to a formula ¢(Z,) is defined by
STC(¢(%,9) = TC[¢(Z,9) V 6(¥, 7))

The logics obtained by augmenting FO with each of the operators TC, DT'C, STC, are denoted by
FO+TC, FO+DTC, and FO+STC, respectively. We now have the following [I87].

Theorem 4.2 (i) FO+TC expresses NLOGSPACE;
(i) FO+DTC expresses LOGSPACE; and,
(iii) FO+posSTC expresses? SLOGSPACE.

4.2 Normal Form for While

We next discuss a normal form for the while queries, which provides a bridge between computation
without order and computation with order. This helps understand the impact of order, and the cost
of generic computation without order.

The normal form says, intuitively, that each while computation over an unordered domain can
be reduced to a while computation over an ordered domain via a fizpoint query. More precisely, a
while program in the normal form consists of two phases. The first is a fizpoint query which performs
an analysis of the input. It computes an equivalence relation on tuples which is a “congruence” with
respect to the rest of the computation, in that equivalent tuples are treated identically throughout
the computation. Thus, each equivalence class is treated as an indivisible “block” of tuples, which
is never split later in the computation. The fizpotnt query outputs these equivalence classes in some
order, so that each class can then be thought of abstractly as an integer. The second phase consists
of a while query which can be viewed as computing on an ordered database obtained by replacing
each equivalence class produced in the analysis phase by its corresponding integer.

By applying the normal form to the while queries, one can obtain the result on the relationship
of fizpoint and while, stated in Theorem 2.15. Thus, it is shown in [AV9la, AV91b] that fizpoint =
while iff PTIME = PSPACE. The “only if” part follows from Theorem 4.1. The normal form is used
for the “if” part as follows. Suppose PTIME = PSPACE. Let w be a while query. By the normal form,
w = fw', where f is a fizpoint query and w’ is a while query whose computation is isomorphic to
that of a while query on an ordered domain. Since w’ is in PSPACE and PSPACE = PTIME, &' is in
PTiME. By Theorem 4.1 (i), there exists a fixpoint query f’ equivalent to w’ on the ordered domain.
Thus w is equivalent to ff’ and is a fizpoint query.

4 FO+posSTC denotes the restriction of FO+STC where STC does not appear within negations.

22

-

4.3 Generic Complexity

Generic computation without order raises specific complexity issues which cannot be captured by
traditional mechanisms such as Turing Machines (TM). Indeed, there is now ample evidence of a
fundamental mismatch between the Turing complexity of queries and their practical hardness.

A typical example of the mismatch between complexity of generic computation and standard
Turing complexity, is the even query on a set, which has low Turing complexity but is a hard query
in the usual query languages. In particular, it cannot be computed by any of the query languages
discussed so far. Recall that the source of the difficulty is that all elements of the set must be
treated uniformly throughout the computation. The problem disappears if the database provides an
ordering of the domain, since then every element in the set can be distinguished from every other.
In a Turing Machine the issue becomes moot, since the input is presented in a sequential fashion to
begin with. Thus, TM’s cannot capture the generic nature of database computation.

To understand the complexity of queries like even on unordered sets, we need to provide a com-
plete and robust model of generic computation, which can be used as a basis for defining complexity
classes proper to generic computation. Such a model, called Generic Machine (GM), is defined in
[AV91a]. The machine consists of a Turing Machine extended with a relational store. Designated
relations contain the input at the beginning of the computation, and other relations hold the out-
put at the end of the computation. GM allows loading the content of relations on the tape, and
storing tuples back into relations. To load a relation in a deterministic way, tuples cannot be put
on the tape in some arbitrary sequence. A natural solution is to introduce parallelism. A load
operation therefore involves spawning a new copy of the machine for each tuple loaded. All copies
then compute synchronously in parallel. There is a mechanism for merging parallel machines, and
for communication among them. The output is only obtained after all machines are merged into a
single one, which ensures genericity of the global computation.

Based on GM, one can define complexity classes proper to generic computation, focusing on
generic analogs of PTIME (GEN-PTIME) and PSPACE (GEN-PSPACE). One of the main results is
the robustness of these classes. Indeed, it was shown that the natural polynomial time and space
restrictions of two complete languages, while®™*°"* of [CH80] and while'?*"* of [AV90] (described in
Section 2.9), coincide respectively with GEN-PTIME and GEN-PSPACE. Similar results can be obtained
for the object-oriented language IQL of [AK89]. More recently, in [DV91]}, an object-oriented model
of database parallel computation using methods is investigated. It is shown that the PTIME and
PSPACE complexity classes defined using that model essentially coincide once again with GEN-PTIME
and GEN-PSPACE. (There are minor differences due to the presence of invented object identifiers in
the result).

It can be shown that, in agreement with our intuition, even is a hard query relative to the notion
of generic complexity provided by GM. Indeed, it is in GEN-EXPSPACE but not in GEN-PSPACE. Such
results formalize the trade-off between complexity and computing with an abstract interface without
order. In general, the generic complexity of a query is at least as high as its Turing complexity. We
claim that the generic complexity is a more realistic complexity measure for languages using solely
the abstract interface to the database. Indeed, the possibly lower Turing complexity is generally not
realizable by uniform compilation of queries expressed in such a language.

Note that one can add as primitives to any “purely generic” language, any finite number of
oracle queries with high generic complexity but low Turing complexity, such as even, or various
forms of counting [I87b, 189]. One way to view the problem of capturing PTIME is as follows: is
there a choice of such oracles which yields a language expressing exactly PTIME? We believe that
the results on generic complexity provide useful tools for approaching this question.

23

5 Non-Determinism

As discussed in Section 3, a major difficulty in langnage design is to obtain deterministic languages
which express low complexity classes of queries. For instance, it is conjectured that there is no
deterministic language expressing exactly the queries computable in polynomial time, or, indeed,
any class below polynomial time. This suggests that, for any tractable deterministic query language,
there will be “easy” queries which the language will not express. The typical example of such query
is the even query.

Recall that even becomes easy if order is available, or if the language provides a non-deterministic
construct allowing to pick an arbitrary element from an unordered set. Indeed, it turns out that
non-determinism offers one solution to the limitations in expressive power of deterministic languages,
in the form of a trade-off: one gives up the guarantee of determinism in exchange for the ability to
express “nice” classes of queries. In this section, we exhibit non-deterministic languages expressing
exactly the (deterministic and non-deterministic) queries computable in polynomial time. Analogous
results can be shown for lower complexity classes of queries.

There are many different ways to introduce non-determinism in a language. We will describe
briefly two families of non-deterministic languages. One family consists of rule-based languages
which are variations of Datalog™ and Datalog™ with fixpoint semantics. The non-determinism
results from firing the rules one-by-one, based on a non-deterministic choice. A second family of
languages consists of non-deterministic extensions of FO+u and FO+u'". The non-determinism is
provided by an operator called witness, based on the idea of choosing an arbitrary element from a
set. It yields formulas with several different interpretations for each given structure. This provides a
uniform way of obtaining non-deterministic counterparts for traditional deterministic logics. It was
shown in [AV88, AV89] that the two families of languages are strongly related.

5.1 Non-deterministic Fixpoint Logics

The non-deterministic extensions of the fixpoint logics allow formulas that define several relations
for each given structure. This is achieved by a non-deterministic operator on formulas, called the
witness operator® (W). Intuitively, WZ¢(Z, §) indicates that one “witness” Iy is chosen for each 7
satisfying 3 & ¢(Z, §). For example, if R= {[1,1],[2,1],[3,2]}, the formula Wz (R(z,y)) denotes the
set of two relations {[1,1},(3,2]} and {{2,1),[3,2]}. More precisely, for each formula ¢(Z, §)) (where &
and ¥ are vectors of the variables which are free in ¢), WZ¢(Z, %)) is a formula (where the & remain
free) defining the set of relations I such that for some J defined by ¢: I C J; and for each 7 for
which [Z, §] is in J for some Z, there exists a unique Z, such that [Z,, 3] isin L.

It is also possible to describe the semantics of the W operator using functional dependencies:
for each instance J defined by ¢(Z,7), WZ(¢(Z,5)) defines all maximal sub-instances I of J such that
the attributes corresponding to the variables in § form a key in L.

Note that, in general, Wz(Wy¢(z,y)) is not equivalent® to Wzyé(z,y); also, Wz(Wyd(z,y))
is not equivalent to Wy(Wzé¢(z,y)). To see the latter, let ¢ = R(z,y), where R is interpreted as
{{0,1],{2,1],(2,3]}. Note first that {[0,1],(2,1]} and {[0,1},[2,3]} are the only possible interpretations
of WyR(z,y), and {[0,1]}, {[2,1]} and {[0,1],[2,3]} the only possible interpretations of

Wz(WyR(z,y)).
5The witness operator is related to Hilbert's e-symbol [Le69]. Its semantics is quite different. In particular, the

e-symbol does not yield non-determinism.
6Two formulas are equivalent iff they define the same set of relations for each given structure.

24

It is easily seen that {[2,3]} belongs to the set of predicates defined by
Wy(WzR(z,y)),
so Wa(WyR(z,y)) and Wy(WzR(z,y)) are not equivalent.

The extension based on the witness operator is orthogonal to the fixpoint extensions of first-
order logic corresponding to the deterministic languages. Thus, we will consider extensions of the
FO+p*™ and FO+ fixpoint logics with the W operator, denoted FO+u*™ 4+ W and FO+u+W,
respectively. We note that each “deterministic” logic has a natural W-extension. Thus, one can
consider W-extensions of first-order logic, Horn clause logic (Datalog), etc. Following is a simple
example in FO+pu+1V:

Example 5.1 Let G be a symmetric, binary relation. Consider the formula p(¢(G),G)(z,y) where

#(z,y) = [G(z,y) A ~Wzy(G(z,y) A G(y, 2))].

It defines the set of orientations G’ of G, where one edge [z,y] is retained for each [z,y] and [y,z] in
G. One “redundant” edge is removed from G at each iteration. Note that an orientation G’ of G
cannot generally be defined by deterministic means, since a non-deterministic choice of the edges to
be removed is generally required. O

5.2 Non-deterministic Rule-Based Languages

The non-deterministic rule-based languages we consider are extensions of Datalog. The Datalog
extensions allow for the use of negation in bodies and heads of rules. Negations in heads of rules are
interpreted as deletions. Rules are fired one instantiation at a time, until a fixpoint is reached. The
non-deterministic choice of instantiation yields non-determinism. For instance, the program:

ﬂG(-'L', y) - G(Z, y)) G(y) I)‘

computes one of several possible orientations for the graph G. Each orientation of G is a possible
outcome of the program. Note that one can obtain deterministic semantics to such programs by
firing all applicable instantiations of rules simultaneously. With this semantics, the above program
removes from G all cycles of length two.

We next define the syntax of this non-deterministic language, denoted A'-Datalog™. Note that
heads of rules may contain several literals, and equality can be used in bodies. (It can be shown that
these features would be redundant with the deterministic semantics.) An instantiation of a rule can
only be fired if its head is consistent, i.e. it contains no literal together with its negation.

Definition 5.2 A N-Datalog™* program is a finite set of rules of the form
Al, ...,Ak — Bl, veny Bn
(k > 1, n > 0), where each Aj is a literal of the form (=) Q(z1,...,2m) (m > 0), and each B; is a

literal of the same form, or (-} z; = z; (the z;’s are variables or constants). It is required that each
variable occurring in the head of a rule also occur positively bound in the body. O

If the literals in heads are all positive, the program is also a A'-Datalog™ program.

25

5.3 Equivalence of Languages

In [AV8R, AV89] the expressive power of the non-deterministic Datalog-like languages and fixpoint
logics is characterized. In particular, it was shown that the Dalalog languages are strongly re-
lated to their fixpoint counterparts. Indeed, the non-inflationary languages FO+u+W and N-
Datalog™, are equivalent. The symmetry between the Datalog-like languages and the fixpoint
languages breaks down in the inflationary, non-deterministic case. Indeed, A'-Datalog™ is strictly
weaker than FO+u™ +W; however, it can be augmented to compensate for the loss of expressive
power in the following fashion. Universal quantification is allowed in bodies of rules and yields
the language N -Datalog™V. For example, the query P — m4(Q) (which cannot be expressed in
N -Datalog™) is computed by the A/-Datalog™V¥ program:

T(z) — Yy[P(z), ~Q(z, y))-

It was shown that A'-Datelog™V is equivalent to FO+u*™ +W.

5.4 Expressive Power

The non-deterministic languages considered here express both deterministic and non-deterministic
queries. One can extend classical complexity classes C to corresponding classes A'—C of deterministic
and non-deterministic queries computable by (non-deterministic) Turing Machines with complexity
C. The non-determinism in the Turing Machine is used here simply to produce the various possible
outcomes of the query. Note that this is different from the traditional use of non-determinism in
defining complexity classes of deterministic mappings. For instance, the non-deterministic analog of
PTIME is denoted A-PTIME. This is not to be confused with Np!

The power of the languages considered here w.r.t. their ability to express both deterministic
and non-deterministic queries, is given by the following.

Theorem 5.3 (i) FO+u+W and N-Datalog™ express precisely A/-PSPACE; and,
(i) V-Datalog™V and FO+u'™ +W express precisely N-PTIME.

As a consequence, the set of deterministic queries expressed by the languages N-Datalog™V¥
and FO+u*™ +W is precisely PTIME. Similarly, the set of deterministic queries expressible by
N-Datalog™ and FO+u+W is precisely PSPACE.

The above does not provide languages that express precisely PTIME, PSPACE since non-deterministic
queries can also be expressed and, as shown in [ASV90], it is undecidable if a program is determin-
istic. Instead, the result shows the power of non-deterministic constructs. Thus, augmenting a
deterministic language L with the witness operator may allow expressing more deterministic queries
than in L. Thus, FO+u'Y +W can express all the PTIME queries, while FO+u"Y alone cannot
express the simple even query.

6 Expressiveness Above NP

Our discussion of expressiveness dealt so far with complexity classes of PTIME and below. We have
seen that, for these classes, there are no known expressiveness results. That is, there are no known
languages which capture them precisely. Using the even query, we argued that these limitations

26

in the expressiveness of query languages are due to the difficulty of computing generically without
order.

It turns out that the situation changes dramatically for complexity classes above Np. Indecd,
expressiveness results abound in this range of complexity. This qualitative difference can again be
explained by the impact of order. While for classes below PTIME the explicit presence of order
results in increased expressive power, for classes above NP the presence of order is irrelevant. To
understand this, consider again the query even on an unordered set. One can reduce the problem to
that for an ordered set by constructing all orderings of elements in the set, then checking the parity
by traversing the orderings. This is too expensive to be done within PTIME, but can be done within
NP, by non-deterministically guessing an arbitrary ordering. Thus, if ¢(succ) is a query making use
of an ordering succ, one first guesses the relation suce, then one runs ¢(suce) using suce.

SO and 350. We mention two classical results characterizing NP [F74] and the polynomial hier-
archy, PH [ST7). The class NP is characterized by ezistential second-order logic, 3SO. These are
formulas of the form 3R¢(R), where R is a relation, and ¢(R) a first-order formula using R. This
matches the intuition that the inputs accepted by a non-deterministic Turing Machine can be de-
scribed as follows: “there erists a sequence of non-deterministic choices in the computation, such
that the input is accepted”.

Extending the above result, the polynomial hierarchy is characterized by the full second order
logic (SO), which allows arbitrary quantifications over relations.
Theorem 6.1 (i) 3SO expresses NP; (ii) SO expresses PH.
Note that an 3SO formula can be used to define orderings which may be needed in the compu-
tation. Thus, the presence of succ can be simulated as follows:
3 succ ((succ is an ordering) A ¢(succ)).
The sentence “succ is an ordering” is clearly expressible in FO.

Complex objects. Recently, the use of complez objects has gained prominence, in the context of
object-oriented databases. Complex objects are built recursively from atomic constants using a set
nesting construct, and a fuple construct. Set nesting subsumes the power of the quantification on
sets provided in SO. We briefly discuss languages with complex objects and some expressiveness
results.

Complex objects are typed objects. We assume the existence of the following countably infinite
and pairwise disjoint sets of atomic elements: relation names { Ry, Ry, ...}, attributes {4;, Ao, ...},

constants D = {d;,dz,...}. The abstract syntax 7 and the interpretation l[r]] of sorts are given by:
1.7 =D | [Bi:7,...B:7] | {r) (k>0, By, ..., B; distinct attributes),
2. [0] = 0, [{7)] = (o1, nvi} lui € [i = 1,5},
3. [[Bl 171, e B : r,,]]] ={[Br1:v1,....,Br:v] | v; € I[rj]], J=1,...,k}.

An element of a sort is called a complex object.

An example of a complex object database is given next.

27

A B
A B
A A,
—_— A A A
4 |4, 4| | |[-AA_As R
d3 dy d, dy d d, dy ds
AL Ay dy d3 d, s dq
d, ds d4 d] ds ds d5 ds
ds d dy dy dy o
Ay Ag d2 d2 d4 d? dl d3
dy dy ds d2 dq
dy dy
J(Ry) J(R2) J(Ra)

Figure 1: A database instance

Example 6.2 Figure 1 shows an instance J of ({ Ry, Rz, R3},S) where

S(Ry)=S(R3)=[A:D,B:{[A:D,A;:D]}] and
S(R;)=[A:D,A, : D,A,: D).O

Algebra, calculus and deductive languages for complex objects have been proposed. We describe
informally the calculus, first defined in [KV84], based on an earlier proposal of [J82]. Other variations
have been defined in [AB87, HS88, KRS85]. The calculus uses typed variables and typed relation
symbols. Tuple (} and set { } constructors are provided. Furthermore, besides equality, a new
logical predicate is used, namely set inclusion C. If restricted to a single level of set nesting, the
calculus yields exactly the power of SO [HS88].

An example of a query in the complex object calculus is given next.
Example 6.3 Consider the schema and the instance of Example 6.2. One can verify that J(R;) is
the answer to the following query applied to J(R;):

{z|3y,2,2,u,v,w(Ri(y) Ay=[A:2,B:2]
Az=[A:z,A;:v,A2: w]A[A; : v, Az : w] € 2)}.

Recall that the transitive closure of a binary relation cannot be computed in relational alge-
bra/calculus. On the other hand, it can be computed in the complex object algebra/calculus. In
the algebra, this is achieved using a powerset operation.

Example 6.4 Consider the database schema consisting of a single relation Ry of sort 7 = [A4 :
D, B : D). A query expressing the transitive closure of Ry can be expressed as follows:

1. {y|Vz(closed(z) A containsRo(z) = y € z)}; with

2. closed(z) =
Yy,z,u,v,wly€zAz€xAy=[A:uy,B:v]JAz=[A:v,B:w)=>[A:u,B:w]€z);

28

3. containsRo(z) = Vy(Ro(y) => y €)
where sori(r) = {7}, sort(y) = sort(z) = r and sort(u) = sort{v) = sort{w) = D. O

There has been much work on complex object languages (see the survey [AK89]). Most work
on expressiveness of languages with complex objects has focused on their ability to express queries
from flat databases to flat databascs, using the complex objects only in the computation. It turns
out that the calculus, algebra and the deductive languages have equivalent expressive power [AB87].
Furthermore, they all yield the class of “elementary queries” [HS88, KV88]. (A database query is
elemeniary if it has eclementary-recursive data complexity.) The expressive power is due essentially
to the set nesting. Indeed, no additional power beyond FO is obtained without it [PG88].

Several investigations {11S88, KV88, GV91] deal with controlling the complexity of queries by
restricting the set height of the types of variables used in the query. In particular, a hierarchy based
on the set height of the variables used in queries was exhibited in [HS88], and an alternative hierarchy
based on set height and quantification pattern is provided in [KV88]. Exact expressiveness results
for similarly restricted languages are obtained in [GV91] using extensions of the fixpoint operators
to the complex object calculus.

Acknowledgement: We are grateful to Seymour Ginsburg for his dedication and thoroughness
while serving as the authors’ PhD advisor, and for his willingness to pass on some of his professional
insight. The example of scientific rigor and integrity that he provided continues to be an inspiration
to us. Of course, Professor Ginsburg shares the responsibility for the mistakes in the two theses and
in all subsequent papers by the authors.

References

[AB87] S. Abiteboul, C. Beeri. On the power of languages for the manipulation of complex objects,
INRIA Research Report 846, (1988). Abstract in Proc. International Workshop on Theory
and Applications of Nested Relations and Complex Objects, Darmstadt (1987).

[ABWS86] Apt, K., H.Blair, A.Walker, Towards a theory of declarative knowledge, Proc. Workshop
on Foundations of Deductive Databases and Logic Programming, Washington, D.C. (1986),
pp- 546-629.

[ACY91] Afrati, F., S. Cosmadakis, M. Yannakakis, On Datalog vs. polynomial-time, Proc. 10th
ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems (1991), pp. 13-
25.

[AK90] S. Abiteboul and P. Kanellakis, Query languages for complex object databases, Database
Theory Column, SIGACT News, Vol. 21, No3 (1990)

[AK89] S. Abiteboul and P. Kanellakis, Object identity as a query language primitive, Proc. ACM
SIGMOD Int’l. Conf. on Management of Data (1989), full version to appear in JACM.

[AG89] Ajtai, M., Y. Gurevich, Datalog vs. first-order logic, Proc. 30th IEEE Symp. on Foundations
of Computer Science, (1989), pp. 142-147.

[AU79]) Aho, A.V.,J. Ullman, Universality of data retrieval languages, 6th ACM Symp. on Principles
of Programming Languages (1979), pp. 110-117.

29

[AV88] Abhiteboul, S., V. Vianu, Datalog extensions for database updates and queries, LN.R.L.A.
Technical Report No.715 (1988). To appear in JCSS.

[AV89] Abiteboul, S., V. Vianu, Fixpoint extensions of first-order logic and Datalog-like languages,
Proc. Fourth Annual Symposium on Logic in Computer Science, Asilomar, California (1989)
pp. 71-79.

[AV90] Abitcboul, S., V. Vianu, Procedural languages for database queries and updates, JCSS, 41,2
(1990) pp. 181-229.

[ASV90] Abiteboul, S., E. Simon, and V. Vianu, Nondeterministic languages to express deterministic
transformations, Proc. 9th ACM Symp. on Principles of Database Systems (1990), pp. 218-
229.

[AV91a] Abiteboul, S. V. Vianu, Generic computation and its complexity, Proc. ACM Symposium
on Theory of Computing, 1991.

[AVO1b] Abiteboul, S. V. Vianu, Computing with first-order logic, to appear in JCSS.

[C81] Chandra, A.K., Programming primitives for database languages, Proc. ACM Symposium on
Principles of Programming Languages, Williamsburg (1981), pp. 50-62.

[C88] Chandra, A.K., Theory of database queries, Proc. 7th ACM Symp. on Principles of Database
Systems (1988), pp. 1-9.

[CH80] Chandra, A.K., D. Harel, Computable queries for relational databases, Journal of Computer
and System Sciences 21:2 (1980), 156-178.

[CH82] Chandra, A.K., D. Harel, Structure and complexity of relational queries, Journal of Com-
puter and System Sciences 25:1 (1982), 99-128.

[CH85) Chandra, A.K., D. Harel, Horn clause queries and generalizations, J. Logic Programming
2,1 (1985), pp. 1-15.

[CM77] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in re-
lational data bases, Proc. ACM SIGACT Symp. on the Theory of Computing (1977), pp.
77-90.

[Co88] Compton, K.J., 0-1 laws in logic and combinatorics, Proc. 1987 NATO Adv. Study Inst. on
algorithms and order, Reidel (1988), pp. 353-383.

[D87] Dahlhaus, E., Skolem normal forms concerning the least fixpoint, in Computation Theory
and Logic, E. Borger ed., Lecture Notes in Computer Science 270, Springer-Verlag (1987),
pp- 101-106.

[DV91] Denninghof, K., V. Vianu, The power of methods with parallel semantics, Proc. Int’l. Conf.
on Very Large Data Bases (1991), Barcelona, to appear.

[E61] Ehrenfeucht, A., An application of games to the completeness problem for formalized theories,
Fund. Math, 49, 1961.

[F74] Fagin R., Generalized first-order spectra and polynomial-time recognizable sets, in Complezity
of Computation, ed. R.Karp, STAM-AMS Proc. 7 (1974), pp. 43-73.

[F76] Fagin R., Probabilities on finite models, J. of Symbolic Logic, 41(1):50-58 (March 1976).
{F90] Fagin R., Finite-Model Theory—a personal perspective, Proc. Int’l. Conf. on Database The-
ory (1990).

30

[F54] Fraissé, R., Sur les classifications des systeémes de relations, Publ. Sci. Univ Alger, I:1, 1954.

[GV91] Grumbach, S., V. Vianu, Tractable query languages for complex object databases, Proc.
10th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems (1991),
pp. 315-327.

[G88] Gurevich, Y., Logic and the challenge of computer science, Trends in Theoretical Computer
Science, (E.Borger), Computer Science Press (1988). pp.1-57.

[G84] Gurevich, Y., Toward logic taylored for computational complexity, Computation and Proof
Theory, ed. M.M.Richter et al. Springer Verlag Lecture Notes in Math. 1104 (1984), 175-216.

[GS85] Gurevich Y., S. Shelah, Fixed-Point Extensions of first-order logic, 26th IEEE FOCS (1985),
pp. 346-353.

[GS86] Gurevich, Y., and S.Shelah: Fixed-point extensions of first-order logic, Annals of Pure and
Apllied Logic 32, North Holland (1986), 265-280. Also in 26th Symp. on Found. of Computer
Science (1985), 346-353.

(H80] Harel, D., On folk theorems, CACM 23 (1980), 379-385.

[HS88] R. Hull, J. Su. On the expressive power of database queries with intermediate types”. Proc.
7th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems (1988), pp.
39-51.

(I86] Immerman N., Relational queries computable in polynomial time, Information and Control
68 (1986), pp. 86-104.

(187] Immerman N., Languages which capture complexity classes, SIAM J. Comp., 16,4 (1987) pp.
760-778.

(I87b] Immerman N., Expressibility as a complexity measure: results and directions, Yale Univ.
Res. Rep. DCS-TR-538, (1987).

(189] Cai J.-W., M. Fiirer, N. Immerman, An optimal lower bound on the number of variables
for graph identification, Proc. IEEE Symp. on Foundations of Computer Science (1989), pp.
612-617.

[382] Jacobs, B., On database logic, J. of the ACM, 29,2, (1982), pp. 310-332.

[K91] Kanellakis, P.C., Elements of Relational Database Theory, Handbook of Theoretical Com-
puter Science, North-Holland (1991).

[K87] Kolaitis, P.G., The expressive power of stratified logic programs, to appear in Information
and Computation.

[KP88] Kolaitis, P., C. Papadimitriou, Why not negation by fixpoint? Proc. ACM SIGACT-
SIGMOD-SIGART Symp. on Principles of Database Systems, (1988), pp. 231-239.

[KV89] Kolaitis, P., M. Vardi, The decision problem for the probabilities of higher-order properties,
Proc. 19th ACM Symp. on Theory of Computing, (1987), pp. 425-435.

[KRS85] Korth, H.F., M.A.Roth, A. Silberschatz, Extended algebra and calculus for not INF rela-
tional databases, Technical Report, Dept. of Comp. Sci., Univ. of Texas at Austin (1985).

[KV84] G.M. Kuper, M.Y. Vardi. A new approach to database logic, Proc. 3rd ACM Symp. on
Principles of Database Systems (1984), pp. 86-96.

31

[KV88] G.M. Kuper, M.Y. Vardi. On the complexity of queries in the logical data model”. Proc.
2nd Int’l. Conf. on Database Theory, pp. 267-280 (1988).

[KV90a] Kolaitis, P., M. Vardi, 0-1 laws and decision problems for fragments of second-order logic,
Information and Computation, 87:302-338 (1990).

[KV90b] Kolaitis, P., M. Vardi, 0-1 laws for infinitary logics, Proc. 5th IEEE Symp. on Logic in
Computer Science, (1990), pp. 156-167.

[Le88] Leivant, D., Inductive definitions over finite structures, draft (1988).
[Le69] Leisenring, A.C., Mathematical Logic and Hilbert’s e-symbol. Gordon and Breach ed. (1969).

[LP82] Lewis, H., C.H.Papadimitriou, Symmetric space bounded computation, Theoretical Comp.
Sci. 19 (1982), pp. 161-188.

[M74] Moschovakis, Y., Elementary induction on abstract structures, North Holland, 1974.

(MW88] Manchanda, S., D.S. Warren, A logic-based language for database updates, in Foundations
of Logic Programming and Deductive Databases, ed. J.Minker, Morgan-Kaufman, Los Altos
(1988).

[N86] Nagqvi, S., A logic for negation in database systems, Proc. Workshop on Logic in Databases,
Washington, D.C. (1986).

[NK88] Nagqvi, S., R. Krishnamurthy, Database updates in logic programming, Proc. 7th ACM
SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems (1988) pp. 251-262.

[PG88] Paredaens, J., D. Van Gucht, Possibilities and limitations of using flat operators in nested
algebra expressions, Proc. 7th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of
Database Systems (1988), pp. 29-38.

[S77] Stockmayer, L.J., The Polynomial Hierarchy, Theoretical Comp. Sci. 3 (1977) pp.1-22.

(U88] Ullman, J.D., Principles of Database and Knowledge Base Systems, Computer Science Press
(1988).

[VG86] Van Gelder, A., Negation as failure using tight derivations for general logic programs, 3rd
IEEE Symp. on Logic Programming (1986), pp. 127-139.

[VRS88] Van Gelder, A., K.Ross, J.Schlipf, Unfounded sets and well-founded semantics for gen-
eral logic programs, 7th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database
Systems, (1988), pp. 221-230.

(V82] Vardi, M.Y., The complexity of relational query languages, Proc. 14th ACM Symp. on Theory
of Computing (1982), pp. 137-1486.

[Vi89] Vianu, V., Expressive power of query languages, Tutorial at the 8th ACM SIGACT-SIGMOD-
SIGART Symp. on Principles of Database Systems, (1989).

Imprimé en France
ar
.I'Institut National de Recherche en Informatique et en Automatique,

-ISSN 0249 - 6399

