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Abstract. An increasing tree is a labelled rooted tree in which labels along any branch from the root go
in increasing order. Under various guises, such trees have surfaced as tree representations of permutations,
as data structures in computer science, and as probabilistic models in diverse applications.

We present a unified generating function approach to the enumeration of parameters on such trees.
The counting generating functions for several basic parameters are shown to be related to a simple
ordinary differential equation which is non linear and autonomous.

Singularity analysis applied to the intervening generating functions then permits to analyze asymp-
totically a number of parameters of the trees, like: root degree, number of leaves, path length, and level
of nodes. In this way it is found that various models share common features: path length is O(nlogn),
the distributions of node levels and number of leaves are asymptotically normal, etc.

Variétés d’arbres croissants

Résumé. Un arbre croissant est un arbre enraciné et étiqueté dans lequel les étiquettes le long de
toute branche issue de la racine vont en ordre croissant. Sous des déguisements divers, de tels arbres
sont apparus comme représentations arborescentes des permutations, comme structures de données en
informatique et comme modéles probabilistes dans diverses applications.

L’on présente ici une approche unifiée fondée sur les séries génératrices a ’analyse de paramétres sur
de tels arbres. Les séries énumératives sont liées étroitement a une équation différentielle autonome et
non linéaire.

L’analyse de singularités s’applique naturellement a de telles séries, ce qui permet ’analyse asympto-
tique d’un grand nombre de parameétres d’arbres, tels que degré de la racine, nombre de feuilles, longueur
de cheminement, ou niveaux des sommets. De la sorte, il est établi que divers modéles possédent des
traits communs: la longueur de cheminement moyenne est en O(nlogn), les distributions des niveaux et
des nombres de feuilles sont asymptotiquement normales, etc.

*Communication at the Colloquium in Trees in Algebra and Programming, Rennes, February 1992. Proceedings
published as CAAP’92, in Lecture Notes in Computer Science, Jean—Claude Raoult Editor (1992).
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Abstract

An increasing tree is a labelled rooted tree in which labels along any branch from the root
go in increasing order. Under various guises, such trees have surfaced as tree representations
of permutations, as data structures in computer science, and as probabilistic models in
diverse applications.

We present a unified generating function approach to the enumeration of parameters on
such trees. The counting generating functions for several basic parameters are shown to be
related to a simple ordinary differential equation,

d
TV (2) = 6V ()

which is non linear and autonomous.

Singularity analysis applied to the intervening generating functions then permits to ana-
lyze asymptotically a number of parameters of the trees, like: root degree, number of leaves,
path length, and level of nodes. In this way it is found that various models share common
features: path length is O(nlogn), the distributions of node levels and number of leaves are
asymptotically normal, etc.

Introduction

A labelled tree of size n is a rooted tree comprising n nodes that are labelled by distinct integers
of the set {1,...,n}. An increasing tree is a labelled tree such that the sequence of labels along
any branch starting at the root is increasing.

The enumeration of trees is a major branch of combinatorial analysis. A classical result due
to Arthur Cayley in 1889 states that the number of labelled non-plane trees with n nodes is n”~*.
For plane trees, the corresponding count is (n — 1)! (2:__12) since the number of unlabelled plane
trees is the Catalan number %(2””__12) and there are n! possible labellings given a fixed traversal
order of trees, e.g., preorder. On this and other standard combinatorial analysis results, we refer

the reader to the treatises of Comtet [5], Goulden and Jackson [18], or Bergeron et al. [3].

This paper concerns the enumeration of parameters on various families of increasing trees.
The families to be considered are of two types: (i) non-plane trees, which are taken in the graph
theoretic sense so that subtrees stemming from a node are not ordered between themselves;
(ii) plane trees, where a plane embedding is specified so that subtrees stemming from a node are
ordered between themselves. Rather arbitrary conditions can be imposed on the node degrees
that are allowed.

Definition 1 Let {s,}°2, be a sequence of non negative integers, such that sp # 0 and s, # 0
for some r > 2. The variety of trees associated to {s,} and the specification of an element of



{Plane, Non-plane} is the collection of all increasing trees (plane or non plane depending on the
specification) with s, sorts of nodes of outdegree (arity) r for all r.

The degree function of a variety of trees associated with {s,} is defined as follows.

In the plane case: plw) = Z spw'.
r>0
w"’
In the non-plane case: plw) = Z Sr—-
r!
r>0

The degree function condenses all the information needed for the analysis of tree parameters
considered in this paper. We denote the coefficients of the degree function ¢(w) by ¢,, so that
plw) = Y2y ppw", with ¢, = s, in the plane case, while ¢, = s,/7! in the non plane case.
Whenever the collection of node types allowed is finite, ¢(w) is a polynomial. In that case we
call the variety a polynomial variety and let d denote the degree of ¢(w); the integer d is then
the maximum node degree allowed in the variety, and we call it the degree of the variety.

Our treatment is directed towards asymptotic estimates via generating functions (GF’s). It
aims at global results applicable across varieties of increasing trees. In that sense, it can be
viewed as a transposition to increasing trees of a programme carried out by Meir and Moon
who extensively studied so—called simple families of trees, see for instance [31]. However, due to
the constraint of increasing labels, we are typically facing algebraic differential equations rather
than plain algebraic equations. The key analytic method employed here is that of singularity
analysis, developed by Flajolet and Odlyzko [10], though Darboux’s method [5, p. 277] could
have been employed instead in a few places at perhaps the expense of a little more work.

As a byproduct, the generating function approach sometimes provides explicit form for var-
ious tree counting problems, in the case of ezxactly solvable models. In this way we are able to
unify several results that have appeared scattered in the literature.

For combinatorial counting purposes, we appeal to exponential generaling funclions: let
{fn}n>0 be a sequence of numbers; the exponential generating function (EGF) of the sequence
is defined as n

1= 1 1)
n>0
(Note that we use the same letters for a sequence and its EGF. We shall henceforth adhere
to this convention, except for a few explicitly indicated situations where we have to resort to
different types of generating functions.)

Our main results are as follows. Fix a variety of trees Y, i.e., the degree function ¢(w). Let

Y, be the number of trees of size n in the variety. The EGF of the variety of trees,

Yo=Y %, )

is defined implicitly by
0 cb(w) =z ( )
The inversion problem is solvable in terms of special functions in a few particular cases of interest
and we then call the corresponding models solvable.
Under fairly general conditions—most notably whenever ¢(w) is a polynomial, which means
a finite set of allowed degrees—the equation (3) can be analyzed near its dominant singularity.
For polynomial varieties, this leads to an asymptotic counting result of the form

Y, " * dw
K- 2) @2/ ' — bl
. K <,0) n with p /0 o(w) (4)



where K = K is a constant that depends on ¢ alone, and d is the degree of the variety. The
quantity p appears to be always a logarithmic form in algebraic numbers.

(Technically, this approach is analogous to the analytic method used by Meir and Moon
in [32], where the authors enumerate recursive trees without unary nodes.)

Let s[.] be a tree function that admits an inductive definition. Path length or the number

of leaves in the tree are typical examples, and the precise meaning is explained below. Let S(z)
be the associated EGF,

S(Z) = Es[t]W7

tey

where as usual |¢| represents the size of {. Then it is found that S(z) is expressible as a sort of

integral transform , :/d di
S(z)=Y (2)/0 <%F(t)) ) Y’—(t) (5)

The fact that this transform is determined by the variety ) under consideration is materialized
by the occurrences of Y’, while F reflects in a direct manner the inductive definition of the
parameter s[.] under consideration.

In solvable models where Y (z) admits an explicit expression, the transform (5) is itself
explicit. For instance, for binary increasing trees, and an inductive parameter

s[t] = fie + sltiefe] + S[tright]s

it becomes S - ﬁ [fo N /OZ (%F(t)) (1 —1)? dt] , (6)

where F'(t) is in this particular case the ordinary generating function of the number sequence
{fn}, F(t) =3, fut”. In this way, for solvable models, we can get exact EGF’s for parameters
like path length, number of leaves, and so forth, on the trees.

However, in general, the solution is asymptotic rather than exact. It consists in viewing
Eq. (5) as a “singularity transformer”. We find, for finite families and for the other classical
families, that path length is on average Anlog n, that the expected number of leaves is asymptotic
to an, for some constants A, a dependent upon ¢.

A variation of this scheme in line with Bender’s work [2] and with [11, 12] leads to limit
distributions. For instance, the distribution of nodes in strata of a tree or the number of leaves
both asymptotically conform to a Gaussian law.

Most existing works (with the notable exception of Meir and Moon’s studies [31, 32]) appeal
to special recurrence relation, often based on the insertion of a new node, and to the existence
of closed—form solutions. In contrast, in this work, we resort to a combination of algebraic
and analytic generating function methods which is versatile and widely applicable. In this way,
it becomes possible to cast into a unifying framework a number of existing analyses concern-
ing increasing trees and also to vastly extend the range of problems and models amenable to
asymptotic analysis.

1 Classical Tree Models.

We review here some of the models arising from diverse areas that constitute varieties of in-
creasing trees.



Binary increasing trees. Any permutation o of n elements can be written as a word o
whose ith letter is o(¢); if min(o) is the minimal element of o, then, as a word, o can be
decomposed into oleg; - Min(0) - Oright, Where lefe (Oright) designates the factors that appear to
the left (resp. right) of the minimal element. One can construct a binary tree, T(o), by repeated
use of this decomposition:

The root of the tree T(o¢) is min(o), with the left and right root subtrees being
constructed recursively as T(0lefe) and T(opgne); the tree associated to the empty
permutation is the empty tree.

In this way, we associate bijectively to each permutation of {1,2,...,n} a labelled tree with n
labelled internal nodes and n + 1 unlabelled external nodes.

FEquivalently, by eliminating the unlabelled external nodes, we obtain a labelled unary—binary
tree with two sorts of unary nodes, the left branching nodes and the right branching nodes. Thus,
the binary increasing trees associated to permutations correspond to a plane family defined by
so = 1,81 = 2,85 = 1, so that ¢(w) = 1 + 2w + w?. From the correspondence, there results in
particular that the number of binary increasing trees of size n is n!.

This construction is recalled in Stanley’s book [34, pp. 23-41] who attributes it “to the
French”. Here, we refer to Frangon’s work (see [14] and references therein) which is based in
part on earlier methods developed by Foata and Schiitzenberger and in part on a pioneering
paper [4] written by Burge in 1972.

Now, a number of classical permutation parameters have direct translations into basic tree
parameters. For instance, the distribution of the number of nodes on the leftmost branch of
the tree (i.e., the number of left-to-right minima in the permutation) is given by the Stirling
numbers of the first kind; the distribution of the number of nodes with a left son in the tree
(the descents in the permutation) is given by the Eulerian numbers, etc. Some of these classical
results appear here as corollaries in Section 5

Binary increasing trees (under the alternative names of heap ordered trees or tournament
trees) can also be used as a data structure to represent mergeable priority queues, with algorithms
that can be precisely analyzed, see especially Burge’s paper and Vuillemin’s survey in [38], or
[17, 37] for an overview. Finally, this model is of special importance since it is isomorphic
to the analytic models of standard binary search tree and the Quicksort algorithm, see, e.g.,
[4, 8, 14, 20, 23, 28, 37, 38]. There, the model is equivalent to a splitting process in which n
elements are split into a “root” and into two subgroups of cardinalities K and n — 1 — K, with
the distribution of the random variable K being uniform over its range, Pr{K = k} = 1/n for

all k € {0,...,n —1}.

Strict binary increasing trees. They correspond to binary increasing trees in which each
node has either 0 or 2 soms, so that ¢(w) = 1+ w?. By the standard correspondence with
permutations described above, these trees give rise to allernating permutations, also called up-
and-down, that are of the form ¢ = 0y02...0, with o1 > 09 < 03 > 04---. By implicitly
using such a construction, Desiré André obtained in 1881 that the number of such trees over
2n + 1 nodes is equal the Taylor coefficient® (2n + 1)![2%"T!] tan(z). (This number is known
as a tangent number or Euler number.) The use of this principle in enumerating alternating
permutations is detailed for instance in [18, p. 169].

Recursive trees. Meir and Moon [31] define recursive trees as the variety of non-plane
increasing trees such that all node degrees are allowed. Thus, the degree function is ¢(w) =

exp(w).

! As usual, [2"] f(z) denotes the coefficient of 2™ in the expansion of f(z) into powers of z, see [19, §5.4].



This model lies at the basis of Burge’s sorting method of [4]. It was proposed as a statistical
model in philology for problems related to the identification of terminal copies of manuscript-
s [33]; it has also been used for the legal assessment of chain letters and pyramids [16]. Its basic
property for applications is that it can be generated by successive insertions of nodes, where at
each stage each node is taken with equal likelihood as the father of the new node inserted.

All authors have noticed a close connection between recursive trees and permutations, the
number of increasing trees of size n being (n — 1)!. It is however a little less known (though it
is already explicit in [4]) that this model is equivalent to that of binary increasing trees by the
following remarks.

1). Take a recursive tree of size n. 2). Make it into a special plane increasing tree by
ordering brother subtrees at each place in the tree from left to right according to increasing
values of their roots. 3). Chop off the root of the tree and apply the classical rotation
correspondence [22, Sec. 2.3.2] that transforms a forest into a binary tree. The resulting
tree is isomorphic to a binary increasing tree labelled on {2,...,n}, itself isomorphic to a
similar tree canonically labelled on {1,...,n — 1}.

From this correspondence and the observations above regarding binary increasing trees, one gets
directly that the distribution of root degrees is given by Stirling numbers of the first kind, that
the distribution of the number of leaves is Fulerian, and that path length is on average ~ nlogn.
We rederive these and other properties in Section 5.

Plane recursive trees. This is a model introduced by Szymaiski [35] and further developed
by Mahmoud et al. [29, 30]. In our terminology it corresponds exactly to a variety of plane trees
with degree set @ = {0,1,2,3,...}, so that ¢(w) = 1/(1 — w). It also admits a construction
by successive insertions, where at each stage each insertion slot is taken with equal likelihood.
Alternatively, each node is selected as an insertion node with a probability proportional to its
degree. As picturesquely described by Mahmoud, this is a propagation model in which “success
brings success”. (Footnote: Some of our results of Section 5 regarding plane recursive trees have

also been independently obtained by Wen-Chin Chen and Wen—Chun Ni [39].)

2 Exact Enumeration of Varieties

We express here the basic counting problem for varieties of trees in terms of generating function-
s. This leads to a few cases of interest—the solvable models—where the generating functions
are expressible in terms of standard functions. The definition of the generating function of a
variety YV has been given in the introduction, see (2). The following result is a folk theorem.
Fascinating combinatorial variations around it form the subject of a series of papers by Leroux
and Viennot [25, 26] regarding the combinatorics of elementary calculus.

Theorem 1 The exponential generating function Y (z) of a variety of trees defined by the degree
function ¢ is given implicitly by
/ oo (1)
0

$(w)

Proof. This can be obtained from standard counting lemmas [18, 34, 40]. (Alternatively, the
reader could return to underlying recurrences.) In terms of EGF's, forming a forest of k trees
enumerated by Y (z) corresponds to the EGF Y*(z) if the forest is ordered (plane case) and to
Y*(2)/k!if it is unordered (non plane case). Appending a root with a minimal label to a forest



Name Diff. eqn. Explicit solution p
Plane o 1
d—ary v =(1+y) y(z) = =1+ [1 = (d — 1)z]~ /=D o
Plane Strict , 4 d=2 y(z) =tanz 1
d—ary y=1+y p
d>2 — d
Non plane Strict , y? d=2 y(z)=+2tan % T (d!)l/d
d—ary ! _1+E d sinZ
d>2 — d
Plane ; 9 V3 V3 T 1 273
unary-binary y=l+y+y y(2) - tan ERARd ) 5
Non plane ;L 9 B (i z) 7
unary-binary y=1+y+y/2 | y(z) =tan B + 1) 1 2
1 1
Plane “Recursive” y = T y(z) =1—-1-2z 5
(Non plane) . o
“Recursive” y' = exp(y) y =log 1_ 2 1

Table 1: Some varieties of increasing trees and solvable models. For each type, we have listed
the differential equation of the EGF, the explicit forms available, and the radius of convergence
which dictates the exponential growth, p=", of the family.

enumerated by W(z) corresponds to the EGF [ W(t)dt. Thus, with ¢(w) =

obtain
Y(z) = /0 ’ (Z quYT(t)) dt.

o0 T
r=0 ¢7=’LL Y we

From there, we derive

Y'(z)
—= 8
AV ) ¥

and the result follows by integration. O

Y(0)=0 or =1,

From Theorem 1, there results an explicit expression for the EGF of a variety of trees
provided the integral [dw/¢(w) is expressible in terms of special functions and its inverse is
reducible to special functions. This is notably the case for the classical tree varieties described
in the previous section.

Corollary 1 (i) For binary lrees, ¢(w) = (1 + w)?, we have

N

Y, =n!

(ii) For strict binary trees, ¢(w) = 1 + w?,
Y (z) = tan(z), Yoni1 = (2n + 1)1 [z2" ] tan(z2).

(iii) For recursive trees, ¢p(w) = exp(w),

1
Y(z) = log 1_2



(iv) For plane recursive trees, p(w) = (1 — w)™1,
n—1){2n -2
Y(2)=1-+v1-2z, Yn=1-3-5---(2n—3):u(" )

Proof. It only involves elementary integration.

Y dw y Y dw
/ —_— = T, / 5 = arctan(y),
0 (1 + ’w) 14y o 14+ w

Y dw _ Y dw y?
/ = 1—e v / -_— = y—- =
o exp(w) ’ o (1—w)?! T2

and all the inverse functions are explicitly computable. O

The results of Corollary 1 are each well known under one guise or another. See, e.g., [3, 18,
31, 35, 38].

A collection of explicit results is summarized in Table 1. An interesting solvable model whose
asymptotic behaviour is characteristic of polynomial families is given below.

EXAMPLE 1. d-ary trees. The class of d—ary increasing trees corresponds to ¢(w) = (1 4 w).
(It can be viewed as d-ary trees in which only internal nodes are labelled.) We have

v dw 1 1
= 1- d  Y(z)=-14[1-(d—-1)z]"/ED
/0 (I+w)@ d—1 [ (1_|_y)d—1] an (2) +1-( )z] (9
so that
1
Y, =6""(148)-(2+6)---(n—1+8) where 0= T 1 whence

&N 1 5" —146
n!  T(6)
a

ExaMPLE 2. Special ternary trees. This is a rather artificial example just meant to demonstrate
that explicit EGF’s may arise in unexpected contexts. Take ¢(w) = w® + 6w? + 11w + 6, which
corresponds to a variety of plane ternary trees with six sorts of leaves, eleven sorts of unary
nodes, six sorts of binary nodes, and one sort of ternary node. We find

2 2 23 2

5
=62+66_ 1+ 1158——|—2829()E—|—887046%—|—&c.

Y(2)= -2+ ——
(2) + 4 — 3e2z 2! 3!

3 Asymptotic Enumeration of Polynomial Varieties

In general, no exact form is available and we have to resort to asymptotic analysis. Our discussion
at this point focuses on polynomial varieties.

A preliminary observation regarding periodicity phenomena is in order here. If ¢(w) is a
function of wP for some p > 2, so that ¢(w) = ¥(wP) for some power series 1, we say that
¢(w) is periodic and the maximum possible p is called its period. Otherwise, ¢(w) is said to be
aperiodic (and we take p = 1). For strict binary trees the period is p = 2, but for unary-binary
trees p = 1. For period p > 2, we have Y (z) = 2Y*(2P), for some power series Y*; accordingly,
the non-zero coefficients Y,, are those whose index satisfies the congruence condition n = 1
(mod p). In subsequent statements, this restriction n =1 (mod p) is implicitly assumed in all
periodic cases.



Theorem 2 Let Y be a polynomial variety associated with the degree function ¢(w) = ¢pqw? +
-+ ¢g. The numberY, of elements of Y with size n satisfies*for d > 3

Y, p 1\" —146 phan  _, 1 —1-26
O S . 1
o () T e o 1o

I ,_<M>5
p_o Gb(w)’ _d_17 ’7_ 6 ’

p is the period of ¢, and hy is as defined in Lemma 2 below. In particular, if ¢ has distinct
roots, then

where

d
1
p=— Z ¢/(Cj) 1Og(_CJ)7

i=1

where the (; are the roots of ¢ and the principal determination of the logarithm is taken.

Proof. We first determine the radius of convergence p of Y (z); next we analyze Y (z) in the
vicinity of z = p; finally we translate the behaviour of Y (z) into asymptotics of the coefficients
Y,, by means of the method of singularity analysis, see [10].

Recall that a dominant singularity is one of smallest modulus. By Pringsheim’s theorem [36,
§7.21] we know that one of the dominant singularities is real positive, and this singularity is
equal to the radius of convergence of Y (z).

Lemma 1 Given a degree function ¢(w) that is polynomial or entire, the dominant real positive
singularity of the function Y(z), solution to Y' = ¢(Y') and Y(0) =0, is

I
p=[ —=.
o &(y)
Furthermore, if ¢ is non periodic, then p is the only dominant singularity of Y(z). If ¢ has
period p > 2, then Y (z) = 2Y *(2?), where Y* has a unique dominant singularity at pl/P.

Proof. The integral is clearly defined since ¢(w) does not vanish on the positive real axis and
increases at least like w? at infinity. For any y with 0 < y < 400, the integral [} dw/¢(w) is
an analytic function of ¥y with a non zero derivative; it is therefore invertible. Thus we find that
Y (2) is analytic at least for all real z, with 0 < z < p. Clearly Y (z) becomes infinite as z — p~,
so that p is an actual singular point of Y(z).

Let zg = rgexp(i6), with 7o < p. Since Y has positive Taylor coefficients, we have |Y (zg)| <
Y (ro) by the triangular inequality. By a well known lemma, equality |Y (zg)| = Y (7o) is possible
for 8 # 0 only if Y(2) = 2*Y*(2?) for some integers a,p with p > 2, in which case § = 2mn/p.
(This in turn implies that ¢(w) is periodic.)

Assume first that we are in the non periodic case. Thus |Y(z)| < Y(ro). Let 1 be a
positive real such that |Y(z9)| = Y (r1); we have 71 < rg by growth of Y (z) on the positive real
axis. Consider the function ¢ solution to ¥'(z) = ¢(¢(z)), with ¥(rg) = Y(r1). Then ¢ and Y
are related by ¥(z) = Y (z — rg + 1) since the system is autonomous (i.e., there is no explicit
dependency of z). From the positivity of the problem (i.e., ¢), we then have |Y(z)| < ¥(]z]).
Thus the modulus of the solution Y(z) is upper bounded by Y (|z| — ro + r1). In plain words
a delay in the growth of Y(z) along a non real ray “propagates” along that ray. In particular,
Y (z) exists along the ray of angle 6 for |z| < p — 9 + 71, and it is analytic there.

2For d = 2, the term containing n™'~% disappears and the error after the first term is exponentially small; for
d = 3, the form of ks given in Eq. (10) has to be modified.



In the periodic case, a suitable amended form of the argument applies, with the exceptional
angles being simply the multiples of 27 /p. O

Lemma 2 Let ¢(w) = ¢+ - -+ dqw? be a polynomial degree function with degree d > 2. Then,
in a complex neighbourhood of p, the solution Y (z) of (7) is of the form

H(A(2)) where A(z) = (1 - z/p)°, (11)

and H(w) =Y °_g hypw™ is analytic at w = 0,

2d¢gpa—z — (d — 1)¢3
ho=1, hy = _de—l’ hy = — Pd¢d—2 ( . )¢d—1.
doy 2d(d+ 1)¢3
Proof. We start with the expansion of 1/¢ as w — +00,
L 1 ba P51 — Pada—2
p(w) — gaw?  Plwitl Pgwt?
By integration, we find as Y — +o0,
o0 dw 6 r—d+1 de_l —d
— = — — =Y 4. 12
v ow) i (12)
But from
/Y(Z) dw d /OO dw
—— =2z an — =y,
0 #w) o ow) "
we have
/OO dw (13)
p—z= —.
Y () ¢(w)
Therefore, by comparing (12) and (13), we get
é
_Yl—d _ — — 2
py (p—2)

Inverting this relation, leads to the singular expansion of Y (z) as a function of (p — z)'/(¢=1),
This process is purely formal. The analytic character of the resulting series H(w) is easily

established by means of the method of majorizing series or by observing that 1/¢(w) and derived

functions are analytic at oo. O

We return to the proof of Theorem 2. The bare principle of singularity analysis consists in
applying the following rules,

V()= (1- 2/p)" = W~ 1400
V) =0((1-2/p)) = [#V()= O,

inside the local asymptotic expansion of a function which is singular at z = p. These two rules
are applied to the expansion (11) of Y'(2).

Validity of the process in the aperiodic case is ensured because Y (z) exists in a domain larger
than the disk of convergence as guaranteed by the two lemmas (see [10]). In the periodic case,
contributions from the p dominant singularities must be added, which accounts for the extra
factor of p.

This concludes the proof of Theorem 2. O



EXAMPLE 3. Strict ternary trees. For the variety of strict ternary trees, we have ¢(w) = 1+w?>.
Thus, Y(z) satisfies

= Z.

1 1 1 2y — 1 T
“log(1+Y)— =log(l —Y +Y?)+ —arctan +
5 log( ) = g los( ) 7 ( 7 ) 6v3

This relation is not explicitly solvable for Y(z). However, the singularity is easily determined

to be p = 21v/3/9, and
1

Y(2) = ———=——=+ha(1-2/p)+ O((1 - z/p)’?)
\/5 273/5 — 2
so that 12
Y, 1 (2nyB\TT 1 1 s
— = —| — 1-— 4+ — .
n  Ver ( 9 ) P gt g H O
Full expansions are readily obtained. a

4 Inductive Parameters

We show here how a fairly general theory of cost measures on varieties of trees can be developed,
based on the algebraic and analytic methods used for basic tree enumerations. In order not to
obscure the line of reasoning too much we have limited the discussion to “inductive maps”
defined below, and to a particular “elementary” subclass with interesting analytic properties.

4.1 Exact Generating Functions.

Definition 2 A function from trees to complex numbers is called an inductive map if it is

definable by a relation
sl = S+ > sl

Tt
for some number sequence {f,}, where the sum is over all root subtrees 7 of ¢ (noted 7 o t).
Given a tree function s[.] and a variety Y, the generating function of s[.] (over Y) is

P
S(z)=> s[t] T

T
tey |t|

Typical examples of inductive maps are tree size (f, = 1), number of leaves (f,, = 6,,1) and
path length (f, = n). The GF S(z) is an EGF of cumulated values since n![2"]5(z) = 3=, s[t]-

Theorem 3 Let s[t] be an inductive map,
sl = fi + > sl7l.
Tt
The generating function of s[t], on a variety Y, is computable by
zZ/d dt
=Y’ / (—F t ) 14
56 =v'e) [ (570) 3 (14)

where F(z) is defined from {f,} and Y by

Fz)=Y fnYnZ—T;. (15)

n>0

10



Proof. The bivariate generating function
Y(z,u) = E w1
tey

is easily seen to satisfy

Y(z,u) = S, YeuZo 4 [F3502 6, Y7 (¢, u)dt

16
= Y. YaulhZ 4 [Fo(Y(tw))dt. (16)

The argument is of the same type as that used for equation (7): the contribution to Y (z,u)
comes either from the root (the first sum), or—when the root has degree r—from one of the r
root subtrees with multiplicity ¢,.

From equation (16) and the fact that Y (2,1) = Y(2) and 0Y/du(z,1) = S(z), we obtain by
differentiation

S(z) = F(=) + /0 SOV (1)) dt. (17)
Eq. (17) next translates into a linear differential equation
§'(2) = F'(=) + S()8/(Y (2)),  5(0) = 0.

First solve the associated homogeneous equation, which yields S(z) = CY’(z). Then solve the
inhomogeneous equation by the variation-of-parameter method, which gives

() = Y'(2) 02 5_8 dat. (18)

4.2 Asymptotic Estimates.

Definition 3 An inductive map s[.] is called elementary when the associated number sequence
{fn} is of the form
Jn=Cn%log™n,

for some real C, a and non-negative r. The triple (C, a, ) is called the parameter of the map.

Theorem 4 Lel s be an elementary map with parameter (C, o, r) defined on a polynomial vari-
ely Y. Then the average value S, of s on the elements of Y with size n satisfies asymplotically:

1. if a < 1, then

— I 2
Sp~An with A= L () dt;
pJo Y'(1)
2. if a =1, then
S, ~ Anlog™n with A= M;
r+1
3. ifa>1, then
S, ~ An“log'n with A= ¢ 1(a+(5).
a —

11



Proof. The result follows from singularity analysis and from the analysis of Y (z) already
effected in the proof of Theorem 2. We assume without loss of generality that ) is non periodic.
The major steps are as follows.

A. It is a priori clear from growth conditions, namely S, = O(Y,n**?) = O(p~"no+1/2),
that S(z) has z = p as a dominant singularity. We must therefore analyse S(z) locally there.

B. The modified generating function F(z) = 3" f,Y,2" is a Hadamard product (a “termwise”
product) of Y (z) with the ordinary generating function F = Y o2, f,2". With the standard
notation of Hadamard products (©®), we have

F(z)=F(2) 0 Y(2).
The analysis of F(z) associated with f, = Cn®log"n is then effected by the following steps.

F(z) is analytically continuable and has the expected asymptotic expansion—it has an
algebraic—logarithmic singularity—when z — 1 in the complex plane. This results from
classical complex integral representations, see for instance Ford’s book [13] or Evgrafov [7,
p. 165].

Hadamard products preserve analytic continuation. (This is Hadamard’s celebrated theo-
rem on composition of singularities by Hadamard products.)

Hadamard products preserve algebraic-logarithmic singularities. This theorem is due to
Pélya, see [41] for a discussion relevant to our goals.

C. Once the singular behaviour of F' is known, the corresponding analysis for § is done me-
chanically using rules for differentiation, integration, and usual Cauchy products. The necessary
expansions are summarized by the following lemma.

Lemma 3 If s has parameter (C,a,r) then the singular expansion of S(z) near p is given by

S(2) ~ ML= 2/p)"00(z), = —p,

where X\ is a constant and

1 if a < 1,
P(z) = log™ if a=1,
(1—2z/p)t— 1og7°1_12/p if a> 1.

Proof. First, F has an isolated singularity at z = 1 as follows from integral representations [13, 7]. Next,
F has an algebraic-logarithmic singularity at z = p: by Theorem 2, its coeflicients grow as

C

nl'(é)

and by the closure theorems discussed by Wilson [41], F(z) has the corresponding singularity. Then,

—nna—1+6 logr n,

—o—1— 1 . CT(a+6+1)
F'(t) ~ Xg(1 —t a=1=0]og" t th Ag= ——————~
() 0( /p) og 1—t/p ( _>P) wi 0 np F((S)
Thus, the integrand in (14) grows like
np oy L
Ao—(1—1 “log" ——, t
o5 (1=1/p) ¢ Ty, TP

and several cases need to be distinguished.

12



1. If @ < 1, then the integral is convergent and we get the statement of the lemma with

= o (o) vy

2. if @ = 1, then integrating by parts, we get the statement with A = Agp/(r + 1);
3. if & > 1, then again integrating by parts, we get the statement with A = Agp/(a — 1).

This completes the evaluation of S(z) near p and the lemma is established. O

From the last lemma and singularity analysis applied to 5(z), the proof of Theorem 4 is in
turn completed. O

Theorem 4 admits a number of extensions. For instance, the same methodology accommo-
dates exponentially decaying f, like 8"n®, with § < 1, boundary condition terms like 6, or
0,1, and any finite linear combinations. In all these cases, and more generally whenever the
generating function F(z) is analytic in a disk that properly contains the unit disk, the formula
of case 1 of Theorem 4 applies. Quantities f,, that are asymptotically equivalent (rather than
equal) to n®log"n are also amenable to these methods.

5 Characteristics of Increasing Trees

The estimates presented here illustrate direct consequences of the theorems and methods intro-
duced in the last section, when specialized to a few classical tree parameters. This concerns
statistics on path length, mean number of leaves, and root degree.

In addition, extensions of the method lead to asymptotic probability distributions for levels
and number of leaves, which are proved to be Gaussian in the limit.

5.1 Path length

Path length of a tree ¢ is by definition the sum of the distances of all nodes in ¢ to the root
of t, distances being measured by number of nodes® on the connecting branch. An alternative
inductive definition is thus

s[t] = [t|+ Y slr].

Tt
Path length is directly amenable to techniques of the last section, and in this case, function F
introduced in Theorem 3 takes the explicit form F(z) = zY'(2).

Theorem 5 Let the variety of trees YV be defined by the degree function ¢. The generating
function of path length S(z) is given by
2Y'(t) + tY"(1)
$(z) =Y / LT g,
(=1 [
Asymptotically, for a polynomial variety of degree d, we have
Sn
Y,

_ 1
S, = (6 + Dnlogn + Cn + O(——2"
n

min(0,26—1) )’

with
Y't) 6+1

' 1 P
C:—l—w(5)+;/0 [1‘”1//(15) T 1—t/p

where ¥ is the logarithmic derivative of Fuler’s I function.

di,

?Path length is sometimes defined by measuring the distance to the root as the number of connecting edges.
This variant of path length, s*[t] satisfies s*[t] = s[t] — |¢|, so that S} = S, — n.

13



Proof. A direct application of Theorem 4 to the case f, = n, plus some extra care for the
subdominant terms. O

Corollary 2 (i) For binary lrees, ¢(w) = (1 + w)?, we have

Sn=2nlogn+ (2y —3)n+2logn+2y+ 1+ 0(1/n).
(ii) For strict binary trees, (w) = 1 + w?,

— L L
n=2nl 2 — 2log: 294+1—- —— 1/n).
S = Inlogn (27 + 3+ 55+ ogg )+ 2logn + (27 1= g5 = ggp) + 00 /n)
(iii) For recursive trees, ¢p(w) = exp(w),
_ 1
S, =nlogn +yn+ 2 + O(1/n).
(iv) For plane recursive trees, ¢(w) = (1 — w)™!,
— 1 v+1 1 2log?2
Snzﬁnlogn—l—(logQ—l— ;-2|- )n—Zlogn—%ﬁ—l—O(l/n).

Proof. The GF S(z) is determined by integration, and we find the four expressions:

2log(1 — )7t — 2 /Z log(1—2)"t  2z+1log(l —22)7t
14 2ttant) dt
(1—2)? " ocos?z Jo (1+2ttant)dt, (1-2) 7 4(1 — 22)1/2

This corresponds to more or less complicated explicit forms, e.g. 5, = nH, for recursive trees
and the asymptotic forms follow by singularity analysis. O

Variance. From equation (16), we can compute the variance of a general inductive map
by
2
2" 25Y (2,1 -
o2 = ozl o o
Y,
The second derivative is obtained in a way similar to the first one,

0 vy [FHI) + (Y (1)S*()
Y (1) =Y (z)/o o0 i,

where

H(z) = Y Vafulfu— 1)y = ¥(2) 0 (F(2) © F(2) — F(2))

From this equation, using the same arguments as in the proof of Theorem 4, it is possible
to attain a classification of the possible variances in the polynomial case, and a similar but
complicated process would yield moments of higher order.

In the particular case of path length, we have f, = n, and

H(z)= n(n- 1)Yn% = 22Y"(2),
n>0 ’

so that 8827}2/(2, 1) reduces to

oy [F 2+ Y "() + ¢"(Y (1) S*(1)
Y'(2) /0 0 dt.

This has a singularity at p, and in the polynomial case, the local behaviour yields the following.

14



Corollary 3 The variance of path length on a polynomial variety Y is asymptotic to A\n?, with

A=¢(5+1)(5+1)(25+4—27?)—1&’(6—%1)(6+1)2—|—2(6+1)(6+2)—47?4_6;;27

and C as in Theorem 5.

This result is well known in the case of quicksort and path length in binary search trees for
which A = 7 - 27,

5.2 Node Sorts

The next example shows a parameter that does not strictly speaking falls in the general category
treated by Theorem 4, though exactly the same method of proof applies.

Theorem 6 Let s[t] be the number of nodes of outdegree i in a random tree t of size n from a
variety defined by ¢p(w). With ¢; = [w']¢(w), the generating function of s|.] is

z }/i(t)
o Y'(1)

S(2) = ¢:Y'(2) dt. (19)

For a polynomial family, the mean number of i—nodes is

e —5 ¢i [P Y(1)
Sn=Ain[l + O0(n™°)] where A = ; Y

Proof. The parameter s[t] which represents the number of nodes of degree i satisfies

dt.

s[t] = 1degree(root(t)):i + Z s[u].

u ot

Hence, the integral equation for the EGF 5(z):

S = [ Yiwdt [ swe ),
whose solution is vi
()= o) [ 1)

The dominant singularities of S are therefore those of Y, and the singular behaviour at p is

dt.

¢ib . —-1-6 'OYZ(t)
A Ol R

the integral being convergent. From there we get the coefficients via singularity analysis. O

Corollary 4 (i) For binary trees, ¢(w) = (1 + w)?, the expected numbers of nodes of degrees
0,1,2 are equal to
n+1 n+l1l n-—-2
3 7 3 7 37
(ii) For recursive trees, ¢(w) = exp(w), the expected number of nodes of outdegree i is asymptotic
to

1
A where A= ST
(iii) For plane recursive trees, ¢(w) = (1 —w)™!, the ezpected number of nodes of ouldegree i is

asymptotic to
2

G+ D)(E+2)(i+3)

An where A=

15



Proof. For binary trees, the result follows by elementary integration. (For strict binary trees,
the problem is degenerate!) For the other two cases, one estimates simultaneously all the A; by
means of their ordinary generating function, A(z) = 3, A\;a’.

For recursive trees, we find

A(z)

* gt -1
— 1 —1%)log" —— dt
;i!/o( Jlog' 7

-y [t
N /0 (1—t)zdt_l2—x] T o2—g

0

For plane recursive trees, we find

o = [T
T =
o T az(l—VI-20)
o (1—w)? 1 3z —2
B 3 IOgl—m—I_ 222

dt

O

The result for binary trees is of course classical. For recursive trees, the result appears in [1,
Thm 3.3] in the combinatorial literature but seems to have been first noted by Gastwirth [15].

5.3 Root degree

Let r[t] denote the root degree of tree t. Then the EGF of trees with root degree j is clearly

8 / i) dr. (20)

The bivariate generating function for the distribution of root degree in trees in a variety } is

defined by
[¢]
R(z,u) =Y WHE

T
tey |t|

Theorem 7 The bivariate generating function of root degrees, R(z,u), is given by
R(z,u) = / S(uY (1)) d.
0

Let S(z) = Ry(z,1) and T(2) = Ryu(z,1) be the generating functions of the first and second
factorial moments of root degree. Then

(21)

For a polynomial variety of degree d, almost all trees of size n have root degree equal to d.
The probability m,; thal a lree of size n has rootl degree j, with 1 < j <d, is

_ p%i T(9)

o qip1(E-1)8 ; :
Tnj ~ QN with Qj = ——7 =
=1 L(56)
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Proof. The bivariate generating function follows from (20). For computational purposes, it is
advantageous to deal with 88—2R(z, u) from which the forms of 5 and T follow.

The case of polynomial varieties results immediately from singularity analysis. O

Corollary 5 (i) For recursive trees, p(w) = exp(w), the number of trees with size n and root
degree k is s,_1. The mean root degree is H,_;.

(ii) For plane recursive trees, ¢(w) = (1 — w)™1, the number of trees with size n and root
degree k is
(2n -3 —k)!
m=l=k(p—1—-Fk)V

The mean root degree is \/Tn + O(1).

Proof. The theorem provides the generating functions

1—2)7v—1 1—+v/1-2 1-—
L and i + ulog(l—u—l—uvl—Qz),
u—1 U u?
from which the results are deduced. O

The result for recursive trees is classical, at least under equivalent formulations (see the
section on models). The mean for plane recursive trees constitutes Thm 1 of Mahmoud et al.’s
paper [30]. The distribution result appears to be new and the expression is related to ballot
numbers.

5.4 Profiles of trees

Consider the quantity L, representing the expected number of nodes at depth k£ on all trees of
a variety Y with size n. (By convention the depth of the root is taken to be 0.) For fixed n, the
sequence {L, 1 }}_, describes the mean “profile” of trees in the variety (see [31]). Let L(z,u) be
the bivariate generating function,

Theorem 8 The bivariate generating function L(z,u) of node levels satisfies

z

L(zw) = (V)" [ (0w)' ™ d. (22)
0

Let Q,, be the depth of a random node in a random tree of Y with size n, i.e.,

_ Lnk

Yk Lw

For a polynomial variety of degree d, the mean u, and the variance o% of Q,, satisfy

Pr(Q, =k)

prn = (6 +1)logn +0O(1) and o2 =(§+1)logn+ O(1).
The distribution of Q,, is asymptotically normal,
(R = pn)/on — N(05 1),

in the sense of convergence in distribution.

17



depth(v)

Proof. Define s[t], the level polynomial of a tree ¢, to be the sum ), u taken over all

nodes v of t. Then s[t] is inductively defined by
1 if [t =1
slt] =4 E s[T] otherwise.

Algebraically, the generating polynomial L,(u) =", L,u* behaves like the expectation of an
inductive parameter. Using the same reasoning as for counting trees in Section 2 or for inductive
maps, we get the equation

Lz ) = Y(2) +u / L(t, )¢ (Y (1)) dt,
0
which translates into a linear differential equation
Y'Y (2)Y'(2)
o(Y(z))

Integrating the homogeneous equation first, we get the solution

9 L(zu) = Y(2) + ul(z,) L(0,u) = 1.
exp(ulogV'(2)) = (Y'(2)".

The integral form of L(z,u) is then obtained by the variation-of-parameter method.
In the case of a polynomial ¢, using Lemma 2, we determine

logY'(2) = (6 +1)log +C +0[(1-2/p)¥].

1
1-=z/p

A theorem of Flajolet and Soria [11] states that a bivariate scheme of the form exp(uL(z)) for
some function L(z) with a dominant logarithmic singularity induces Gaussian distributions in
the asymptotic limit. It applies here to (Y'(2))* = exp(ulogY'(2)).

In the case of L(z,u) in Eq. (22), the integral is convergent for » in a complex neighbourhood
of 1 and |z| < p so that it plays the role of an unessential perturbation. A simply amended form
of the main result of [11] then applies. O

The result for p, is also consistent with the estimate of expected path length which is
precisely np, + n.

Corollary 6 (i) For binary lrees, ¢(w) = (1 + w)?, we have

Q-2 -(1-2)"

Lz ) = 2u— 1 ’

2 2
fn = 2logn + 2y —4 4 O(logn/n), o2 =2logn+4+ 2y — % + O(log*n/n).

(ii) For recursive trees, ¢p(w) = exp(w),

2
fn =logn+y—14+0(1/n), o2=logn+v-— 7%—I—O(l/n).

18



(iii) For plane recursive trees, ¢(w) = (1 — w)™1,

1—22)"%/2 _ (1 - 22)1/2
o

1 v 1 s 1 A 1 72 9
fn = 210gn+ 5 + log 2 5 + O(logn/n), o) = 210gn+ 5 +log 2 173 + O(log“n/n).
For binary trees, the distribution has been given by a number of authors independently in
the 1980’s, see [27]; for recursive trees, it was found by Devroye [6] using the theory of records.
Both explicit forms and limit distributions are derivable from these GF’s. For recursive trees
we find the coefficients s, r41, while the two other ones give rise to convolution of Stirling
numbers of the first kind. (We recall that the Stirling number of the first kind, s, is defined as

[uF] w(u+1)(u+2) -+ (u+n—1); Stirling numbers are ubiquitous in this category of problems.)

5.5 Distribution of the number of leaves

In order to approach the distribution of the number of leaves and more generally of nodes by
sorts, we introduce

d(uyy) = drusy’,
r=0

a series involving in general infinitely many indeterminates, (u,). Let N(ng,n1,...) be the
number of trees of size n (in the variety defined by ¢) that have ng leaves, ny; nodes of degree 1,
etc. The multivariate GF

smotna+o

(o + 71 £ )}

Y(u;z)= E N(ng,n1,...)upui* ...

/Y(ll;z) di
—  —
0 B(u;t)

This function condenses all the distribution information of all node sorts in a variety. In

particular, it specializes to the bivariate GF for the distribution of the number of leaves,
Y(u;2) =Y(u,1,1,...;2).

satisfies

Theorem 9 The bivariate generating function for leaves Y (u; z) is defined implicitly by

/Y dt _.
o (u—1)go+o(t)

For random trees of size n in a polynomial variety, the number of leaves lends to a Gaussian
limit (in the sense of convergence in distribution).

Proof. (Sketch) The argument for the Gaussian limit is based on analyzing the “perturbation”
caused by the variable w in the non linear differential equation Y’ = ¢(Y), with u near 1. We
consider some fixed u close enough to 1.

First, the radius of convergence of Y (u;z) is

B dt
= T DaTa
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We have

o dt 1
p(u) —p(1) = o 0 (H%%q)
= _(U—1)¢0 Ooo¢j—(tt)‘|‘(u—1)2¢3/ooo¢j_(tt)_...‘ (23)

The singular exponent of Y (u; z) is still §, and we have
Y (u;2) = Ho(u)(1— 2/p(u))~% + Hy(u) + ete.

By a suitable use of majorizing series arguments, a uniform version of this expansion is estab-
lished, when u lies in a real neighbourhood of 1. It is known from Bender’s work that similar
analytic schemas lead to Gaussian laws [2]. Here, we use a slightly stronger form of Bender’s
theorem discussed in [12]. In this way, the result is established. O

Let Y, denote the number of trees of size n having k leaves in variety Y.

Corollary 7 (i). For binary trees, (w) = (14 w)?, Y,k is a pseudo-Fulerian number,

~ JEtan(€z) 4+ 1
=¢ € — tan(£z)

(ii). For recursive lrees, Y, i is a shifted Fulerian number,

Yo i = n![ukgn]Y(u; z) where Y (u;z) —1 and €= (u— 1)1/2.

1—u

_ o B 1Ta K n—1 _ - - -
Ymk = An—l,k = (TL 1)[U z ](U 1 + 1— uez(l_")

).

(iii). For plane recursive trees, Y, ; is a second order Eulerian number,

Clue e (=) = C(ue™) > 2"
— ko n _ n—1
Y,k = nlu”z"] P , where C(z) = nEZI -

1s Cayley’s function.
In all three cases, the distribution is Gaussian in the limil.

Proof. The generating functions follow from straight integration. In the case of recursive trees,
we get a modified GF for the Eulerian numbers in the form

1—u

For plane recursive trees, we arrive at second order Eulerian numbers (for a definition, see [19,
p. 256]). Cayley’s function arises through inversion of Ce’ = 2.

The result for binary trees is classical. The one for recursive trees was found independently
by several authors, an early reference being [33]. Mahmoud et al. [30] discovered the connection
with second order Eulerian numbers. The EGF given above does not seem to have appeared in
the literature however. The Gaussian law in this case is in [30] where it is derived from limit
theorems on Pdlya urn models.

Similar limit distribution results hold for other sorts of nodes, like i—nodes.
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6 Extensions

Results in this paper can be extended in various directions. On the algebraic side, variants of
our basic algebraic schemes may be considered. On the analytic side, we may treat varieties
defined by degree functions that are either entire or have singularities at a finite distance.

6.1 Algebraic Schemes
The basic scheme of Thm. 1,

arises with ¢ being rather generally the GF of a “species” of structures in the sense of Joyal [3, 21].
For instance, we can fit into our algebraic framework the cases of

o(w) =1+ log ﬁ, p(w) = tan(w).

The first case corresponds to “mobiles” where subtrees dangling from a node are arranged in
cyclic order and thus constitute a freely rotating cycle. The second case corresponds to “festoon”
trees in which labels of the sons of a node go up an down, forming an alternating permutation.
(Of course the increasing tree property is still assumed in these constructions.)

The algebra of such series is indistinguishable from that of increasing trees varieties consid-
ered earlier. The analysis, as we discuss below, can be treated along similar lines.

6.2 Analytic Schemes

The principles of analysis employed generalize to either entire functions or functions with sin-
gularities at a finite distance. The argument runs as follows.

The singular behaviour of Y (z) is obtained by inverting the singular expansion of
[ dw/¢(w) near its smallest positive singularity. The asymptotic form of the coeffi-
cients of Y (z) derives from that singular behaviour by means of singularity analysis.

Assume that ¢(w) which has positive coefficients becomes singular at o > 0. We have either
0 = 400 or 0 < oo depending on whether ¢ is entire or not. In both cases, however, the
argument employed in the proof of Thm. 2 generalizes, and the radius of convergence of Y'(z) is

7 dw
=1, aw (24)

Eq. (24) is consistent with what we have found (see Cor. 1) for recursive trees, where ¢(w)
exp(w) so that ¢ = 4+oc, and for plane recursive trees where ¢(w) = (1 — w)~! so that ¢ =
In these two cases, we have

1.

+0o0 1
p:/ e Vdw=1 and p:/(l—w)dw:—.
0 0

Singularity at a finite distance. Consider the typical case of
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with P a polynomial. In this case, the equation P(Y)Y’ = 1 has the integral Q(Y) = z,
with @' = P and Q(0) = 0. Thus Y is an algebraic function and its coefficients are a priori of
the asymptotic form Cp~"nP/? for some rational p/q. The singularity of Y(z) is at

p= | Py = Qo).

where o is the smallest positive root of P. The singular expansion of Y is then found by inverting

p= [, Py = Qo) - QY ()
In the generic case, P'(0) # 0, and we obtain the singular expansion
2(p — 2)

Y(2)=0— W—I—O(p—z), z—p,

& _ P —nn—3/2 n
) \/77r|P’(a)|p [14+0(1/n)].

Thus the particular explicit form obtained for plane recursive trees is indeed attached to a fairly
general scheme.

from which we deduce

ExaMPLE 4. Special plane trees and festoon trees. As an illustration, consider plane recursive
trees in which nodes degrees are all multiples of a fixed integer ¢, so that ¢(w) = (1 — w?)~!. In
this case, the equation for Y, which is Y'(1 — Y?) = 1 leads to

Yt-}—l
E
The trinomial equation is solvable by Lagrange inversion, from which we find

() [n(t+1)
Yees = (t+ 1)n( n )

zZ.

a formula that generalizes that of plane recursive trees and is also in agreement with the asymp-
totic estimates above.

Festoon trees already discussed correspond to ¢(w) = tan(w), so that ¢ = 7. We find
p = 7§, and asymptotically, by a direct extension of the situation of rational functions, Y, /n! ~
C(4/7)"n=3/2, for some C > 0. O

ExampLe 5. Mobile trees. They correspond to ¢(w) = 1 + log(1 — w)~!. The asymptotic
analysis takes us a little out of beaten tracks. The radius of convergence p is

00 e—t 00 (_1)n—1
= dt=1"-214+3! -4+ ... = — ——— =~ 0.59634 73623.
P /0 111 + + e’y—l—enz::l —

The local expansion of Y(z) is provided by inverting the famous divergent series of Euler,

(p — z)(loglog(1 — Z/p)‘l)z)
log(1 = z/p) '
This type of singular expansion itself necessitates the full power of singularity analysis, and we

find

Y(z)=1-(p—2)log

1 1
1_Z/p+(p—2)10g10g1_Z/p+0(

1 1 1
n?  nllogn n?log?n

1-n

Y.=p
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Entire functions. The same principles apply. If ¢(w) ~ Kw™e", for some constant K
and integer m, when w — 400, then

* dw 1
y ¢(w) KeYym’

p—z=
so that Y (z) is dominated by a logarithmic term at z = p, and
=~ pmpmh (25)

ExaMPLE 6. Even and Odd Trees. Non plane even trees have all their nodes of even degree,
so that ¢(w) = cosh(w). Odd trees have all their non leaf nodes of odd degree, so that ¢(w) =
1 + sinh(w). The EGF’s are explicitly computable in both cases, and we find:

(VZ+1)(eV* +1)

Y(z) = log tan(i + E) , yodd — log[

2 4 3422 — V2
The corresponding singularities are at
T 2
peven — 5’ podd — glog(if n 2\/5)
The coefficients obey Eq. (25). o

The example of ¢(w) = €* — w is treated in full detail by Meir and Moon [32]. Their main
result,

which is Thm. 3 of [32], also matches with our Eq. (25).

7 Conclusion

We have demonstrated here a fairly general approach to the analysis of tree parameters where
a basic equation for trees is studied from the point of view of its singularities. Here, we have
been dealing with a non linear autonomous differential equation or order 1, Y’ = ¢(Y).

Major characteristic parameters of trees have GF’s that are expressible in terms of the basic
GF Y (z) by means of transformations (here integrals). Once we view these expressions as
“singularity transformers”, it becomes possible to study a large number of statistical problems
in a unified manner. In this context, composition theorems for singularities of analytic functions
prove especially valuable.

The techniques developed here are not restricted to varieties of increasing trees. Notably,
Knuth and Pittel’s results regarding union—find trees [24] are amenable to analytic techniques
based on singularity analysis instead of recurrences, this being done along the very same steps
as in this paper.

The perturbation techniques used here in order to derive limit distributions by means of
bivariate analytic schemes of a general nature certainly deserve further attention. For in-
stance, some counterparts in linear cases have already proved useful in analyzing distributions
of quadtrees [9]. Quite clearly general bivariate analytic schemes on differential equations are
conducive to Gaussian laws under quite a wide range of conditions.
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