-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Supporting deductive and active rules on top of a
relational DBMS

Jerry Kiernan, Christophe de Maindreville, Eric Simon

» To cite this version:

Jerry Kiernan, Christophe de Maindreville, Eric Simon. Supporting deductive and active rules on top
of a relational DBMS. [Research Report] RR-1580, INRIA. 1992. inria-00074980

HAL Id: inria-00074980
https://hal.inria.fr /inria-00074980
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50449852?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00074980
https://hal.archives-ouvertes.fr

o
A -
' 2
1 ,'
[

UNITE DE RECHERCHE

INRIA-ROCQUENCOURT

Institut National
de Recherche
en Informatique
et en Automatique

Domaine de Voluceau
¢ Rocguencourt
T BP105
78153 Le Chesnay Cedex
' France

Tel:(1)396355611

Rapports de Recherche

N° 1580

Programme 1
Architectures paralléles, Bases de données,
Réseaux et Systémes distribués

SUPPORTING DEDUCTIVE AND
ACTIVE RULES ON TOP OF A

RELATIONAL DBMS

Jerry KIERNAN
Christophe de MAINDREVILLE
Eric SIMON

Janvier 1992

R

Supporting Deductive and Active Rules
on Top of a Relational DBMS

]. Kiernan!, C. de Maindreville, E. Simon

INRIA Rocquencourt,
78153 Le Chesnay,
France
kiernan@almaden.ibm.com, {maindrev, simon}@madonna.inria.fr

Abstract: Active database systems have rules consisting of an event that causes a condition to be
evaluated, and if true, results in the execution of a predefined action. These rules, usually called
triggers, are uscful to express static and dynamic integrity constraints. However, existing trigger
languages have a few drawbacks. First, the proposed semantics do not take advantage of well known
and accepted formalisms developed for rule-based systems, and thereby do not capitalize on existing
rule-based technology (optimization, algorithms, programming environment). Second, trigger
languages arc low-level languages. These languages require that the user provides all triggering
conditions associated with rules. This makes the specification of triggers and their maintenance
eager. Our first contribution in this paper is to present an extension of a deductive database language,
namely RDLI, towards active rules. By actives, me mean rules that react to external events. Rules are
expressed at a high level: triggering conditions are derived from rules by the system. The semantics
of our rule language is formally described by means of a partial fixpoint operator which encompasses
the deductive database and active database paradigms. Our second main contribution is to propose an
architecture in which the system responsible for detecting events issued by application programs and
triggering rules, is front-ended to a relational DBMS. This approach has the advantage of being
easily portable over various kinds of DBMS. We relate our approach to systems like Hipac, Postgres,
Starburst and Alert.

1. Introduction

Integrating rules with a DBMS has been the focus of research on active database systems
[Han89, SJGP90, WCL91, CBB+89]. Rules generally consist of an event that causes a
condition to be evaluated, and if true, results in the execution of a predefined action.
Events are usually modifications of the database, conditions correspond to database
queries, and actions perform changes to the database. Sometimes the condition is omitted.
Rules of this kind are often called triggers or Event Condition Action rules. They enable to

1 Author's present address: IBM Almaden Research center, 650 Harry Road, San Jose, CA 95120, USA.

express static and dynamic integrity constraints like: "the salary of an employee can only
increase”, or "only departments who have no employee can be deleted".

Existing trigger languages suffer from two main drawbacks. First, the semantics of an
active database rule system is not well understood. Different rule system semantics have
been proposed [WCL91, SJGP90, McD89, Han89] using descriptions ranging from natural
language to pseudo-code procedures. A Petri-net model is used in [ZB90] to formally
compare the semantics of active database systems, but the model essentially concentrates
on couplings between events and conditions and actions of rules. More recently, an
imperative database programming language has been used in [H]91] to describe the
semantics of rules in active database systems (e.g., Starburst). Nevertheless, the proposed
semantics do not take advantage of well known and well accepted formalisms developed
for rule-based systems such as production systems in Al (e.g., OPS5 or KEE), logic
programming languages (e.g., Prolog), or deductive databases (Datalog-like languages).
Hence, active database systems do not capitalize on existing rule-based technology
(optimization techniques, algorithms, programming environments and methodologies)
and important issues like: when rules should be fired ?, how they should be fired ?, how
their effects should be combined ?, are not given a uniform and formal treatment.

A second weakness of existing active database rule languages is that triggers are very
similar to daemons or database procedures, as specified for instance in {Cod73], i.e., trigger
languages are low-level languages. This makes the specification of triggers and their
maintenance eager. It is difficult to have a global view of what tasks are performing a set
of triggers, because a user-level "management rule” (e.g., an integrity constraint) is
translated into many triggers. For instance, consider the two relations:

Emp (name, salary, dept_no, emp_no)

Dept (dept_no, mgr_no)

The referential integrity constraint saying that: "every employee works in a department”
will be generally specified by several rules respectively triggered by insertions into Emp,
updates to Emp or Dept, and deletions from Dept.

Our starting point is that deductive database languages provide a good basis for defining
an active database rule language. Deduction rules are declarative statements expressed in a
Datalog language, which enable to derive intensional data from existing (stored) data
[U1189]. These languages have a simple and fairly well understood semantics, formally
defined using fixpoint operators [U1189]. Efficient implementation techniques have been
developed, including optimization algorithms [UI1189]. Finally, various extensions of
Datalog have been proposed to obtain powerful (sometimes complete) languages [NT89,
AV89]. These languages provide a formal basis to many rule-based languages like OPS5 or
Prolog. Examples of deductive database systems are described in [NT89, PDR91, KMS90,

BF89].

Deduction rules can always be translated into triggers. One solution, described in [W91], is
to materialize all intensional data defined by deduction rules, and specify triggers for

maintaining these data whenever extensional data are updatedZ. On the other hand,
triggers cannot always be mapped into deduction rules. A major reason is that deductive
database systems are not designed to manage events (like delete or update operations), and
deduction rules cannot refer to the event's effects.

Our first contribution in this paper, is to extend a deductive database rule language,
namely RDL1 {KMS90], towards an active database rule language, thereby capitalizing on
deductive database technology. As a result, our language offers three main features
compared to existing trigger languages. First, rules are expressed at a higher level. For
instance, a static integrity constraint does not need to be decomposed into as many triggers
as the number of events that can violate it3. Second, the meaning of a set of rules is
formally described by two distinct aspects: (i) the coupling between rules and events
(including transaction boundaries), and (ii) the semantics of rules, (on which database
state are rule executed ?, how are they executed ?). The second aspect is common to both
deductive and active database rule languages. Therefore, we take advantage of the well
understood formalisms developed within the framework of deductive databases to
formally characterize rule application semantics. Finally, our rule language facilitates the
integration of deduction rules with active rules. By active rules, we mean rules that react
to events. We provide a single uniform notion of rule and our rule semantics covers both
the deductive database and active database paradigms. In particular, a module of rules
whose evaluation is triggered by some events may use rules that deduce data in order to
perform intermediate computations. Also, active rules can be associated with changes on
deduced data.

The second contribution of this paper is to propose an architecture in which the system
responsible for detecting events and triggering rules is tightly coupled with a relational
DBMS. Most existing architectures for active database systems integrate a rule-based
system within a DBMS (e.g., Postgres, Starburst, Alert). Our approach does not require any
change to an existing DBMS. Rules, or more generally modules of rules, can be
dynamically defined. A newly defined module is first compiled into an executable C/SQL
procedure. It also yields an incremental compilation of an environment initialization
procedure. These two procedure codes are then assembled together within a specific
Toolbox. The resulting system, called Trigger Monitor, is activated whenever an
application program is connecting to the database system. It analyzes the successive
database commands issued by the application program and automatically triggers the
evaluation of rules. This coupling approach has the advantage of being flexible,
maintainable, and portable on various kinds of DBMSs. However, this approach can be
less efficient than the integrated one because it cannot take advantage of low-level system
features provided by the DBMS.

The paper is organized as follows. Sections 2 and 3 respectively present the syntax and
semantics of our rule language. In Section 4, we describe the process and functional
architectures of the Trigger monitor. The Toolbox we have implemented at INRIA is then

< Practically, this simulation entails a clear space-time tradeoff.

3 A notable exception is Ariel [Han89), which also has this feature.

-3-

described in Section 5. Comparisons with related work are reported in Section 6. The last
section concludes.

2. A Language for Active rules

In this section, we describe how we extended a deductive database language, namely RDL1
[KMS90], towards a language that supports active rules?. The extension is simple: the
syntax of rules has been augmented so that rules can refer to events, and couplings
between rules and events can be specified. We first specify our meaning of events and
introduce the notion of delta relations. Then, the couplings between rules and events is
defined. Finally, the general syntax of rules is given and illustrated by means of examples.

2.1 Events and Delta Relations.

Throughout this paper, we shall consider that rule processing is part of the execution of a
given transaction which can either be embedded into an application program or
interactively produced by a user. That is, rules are activated and executed as a result of
operations issued by a transaction. We view a transaction as a stream of operations
consisting of SQL commands (like select, insert, delete, commit, ...) and non SQL database
commands (e.g., C procedure calls).

Currently, we restricted non database events to assignments of global variables within an
application program®. The statement "LET <variable name> = <value>", used in an
application program, assigns a value to a main memory variable occuring in some rules.
For instance, a variable upper_limit might record the sum of all salaries in a department.
This variable may occur in some rules that are expected to react whenever the variable is
modified.

Most existing trigger languages require that rules are explicitely attached to events to
which they are susceptible to react, using a specific statement (e.g.,, "WHEN <events> ...")
preceding the specification of the rule. In our language, triggering events do not have to
be specified by the user when he defines rules. Instead, they are implicit in rule definitions
and will be derived by the system at the time rules are compiled. We simply provide
system-defined relations, called delta relations, that enable to refer to the effect of database
events within rules's conditions. These relations record the net effects of database changes
performed by SQL commands: insert, update, delete. Similar kind of relations are used in
[WF90, HJ91, RCBB89]. We follow a syntax close to [WCL91] to denote our delta relations.

* Delta relations: If T (A1,...,An) is a relation schema, then the delta relations associated
with T have the following schemas:

inserted_T (Al,...,An)

4 We shall use the words active rule instead of the word trigger to denote a rule in our active database

system. In our mind, triggers correspond to low-level (i.e., more operational) rules.

2 The reason is that our current implementation is limited to handle this type of events. More complex

events require additional implementation mechanisms, as noted in [SPAM91].

-4-

deleted T (Al,...,An)
updated_T (oldAl, ..., oldAn, Al,..,An)

Intuitively, inserted T (Al,...,An) refers to the tuples currently inserted into T, deleted T
(A1l,...,An) refers to the tuples currently deleted from T, and updated_T (oldA1, ..., oldAn,
Al,..,An) refers to the tuples currently updated in T with their new value.

* Properties of Delta relations: We impose that delta relations satisfy the following:
1. inserted_T ~ deleted_T = &;
2. deleted_T N oidA1, .., oldAn (updated_T) = &, and
deleted_T N TlAj, .. An (updated_T) = O;
3. inserted_T N IIA1, .., An (updated_T) = &, and
inserted_T N TlgldAT1, ..., oldAn (updated_T) = G;
4. The current value of T is defined to be:

T - [deleted_T U TldAt,....0ldAn (updated_T)]

v [inserted_T U fA1,.. An (updated_T)]
0

2.2 Coupling Rules with Events and Transaction Boundaries

As noted in [ZB90], a crucial point in the specification of triggers, is to express how rule
execution relates to events, including those that mark the transaction boundaries.
Different coupling modes can be envisaged, like stating when the condition (or the action)
of a rule is evaluated relative to the transaction in which the triggering event is signaled.

A single coupling mode is defined in our rule system. It specifies if a rule must be
evaluated either when the triggering event occurs or when the transaction reaches a
commit point. In the former case, we say that the evaluation is immediate relative to the
event that triggered it, otherwise we say that the evaluation of the rule is deferred until
the end of the transaction. We do not provide means to specify a coupling mode in which
rule evaluation is decoupled from the triggering transaction as in Hipac (see [ZB90]).

Both immediate and deferred rules are useful. Immediate rules enable to detect an
inconsistent intermediate database state as soon as it occurs. An immediate decision can
be taken, like aborting the transaction, or issuing some compensating actions in order to
restablish database consistency. For instance, the constraint saying that: "the salary of an
employee cannot decrease” can be checked immediately. Other rules need to be checked at
the end of the transaction because they are interested in the final database state reached by
the transaction (intermediate inconsistent states w.r.t the rule are allowed). The
referential integrity constraint between EMP and DEPT mentioned before is an example of
deferred rule. Deferred rules can also be checked before the end of the transaction at
integrity checkpoints [Ast76, SV87] (also called assertion points in [ANSI]). We introduce a
"CHECKPOINT" command that can be used within a transaction to trigger the evaluation
of all deferred rules.

2.3 General Syntax of Rules

The syntax of our rules is based on the syntax of RDL1 [KMS90], and incorporates
procedural extensions described in [KM91]. A rule consists of an if-then statement, where
the if-part (also called condition) is an extended tuple relational calculus expression. The
then-part (also called action) of the rule is a set of elementary actions, each of which being
either a database update or a variable assignment or a procedural call (that does not
involve any database update).

Rules are encapsulated into rule modules. A module contains a relation declaration
section which defines input, output, base, and deduced relations. Base relations
correspond to relations that are physically stored in the database. Input relations can be
passed as arguments to a module, which computes as a result a set of Ouput relations.
Input and output relations are always extensional. Deduced relations are temporary (i.e.,
intensional) relations computed by a module which do not persist after execution. We
refer to [KMS90] and [KM91] for a more detailed presentation of the rule language®.

To support the declaration of active rules, the RDL1 syntax is enriched in two ways. First,
the coupling mode, immediate or deferred, can be specified at the module level or at the
individual rule level. Two key words, IMMEDIATE and DEFERRED, can be used just after
the key word RULES, or the key-word IS, as shown in the examples below. Second,
system-defined relations can be referenced in the condition part of rules.

We now present examples of rule modules and give their intuitive semantics.

Example 2.1: The first module defines a referential integrity constraint between the
employee and department relations.

module ref_constraint_emp_dept;

base EMP (name string, emp_no integer, dept_no integer, salary integer);
DEPT (mgr_no integer, dept_no integer),

rules

r is DEFERRED

if EMP (x) and not exists y in DEPT (x.dept_no = y.dept_no)

then - EMP (x);

end module

Intuitively, this module defines an active rule that is activated whenever the EMP or
DEPT relations are modified. Here, EMP and DEPT always refer to the current values of
the employee and department relations. Thus, if an employee with no department is
inserted it will be rejected (i.e., deleted from the set of employees to be inserted). If a
department that has employees working in it is deleted then all its employees will be
deleted. As said before, triggering events are not specified by the user but are rather
implicit. A crucial point is to determine how triggering events (e.g., insert to EMP, delete

6 An abstract of the RDL1 syntax is given in Appendix .

-6-

to DEPT) can be derived from rule conditions. We claim that this must be the role of an
optimizer and discuss it in Section 5.3.

Example 2.2: This example is borrowed from [WCL91]. We test if any inserted or updated
employee has a salary greater than 100. If true, the action sets the salaries of all inserted
employees to 50 and reduces each existing employee's salary by 10% if its is greater than
100.

module salary_control;
var integer change;
base EMP (name string, emp_no integer, dept_no integer, salary integer);
rules DEFERRED
rl is if (exists z in Inserted_EMP (z.salary > 100))
or (exists z in updated_EMP (z. salary > 100))
thenonce change = 1;

r2 is if inserted_EMP (x) (change = 1) then -/+ EMP (x; salary = 50);

r3is if EMP (x) (change = 1 and and x.salary > 100)
then -/+ EMP (x; salary = .9 * x.salary);

control block (r1, r2, r3)
init {change = 0;}
end module

We use a global variable, change, to enable and disable the changes to EMP performed by
r2 and r3. The variable is initialized in the "init" section, and then updated in the action
part of rule rl. In fact, this variable simulates a rule r1 saying: "if <rl's condition> then
execute r2; execute r3;". Anticipating the description of our procedural control language in
Section 3.3, the control string "block(rl, r2, r3)" indicates that the three rules must be
executed sequentially in their specified order. If the module executes, rule rl is fired once
and then disabled because of the use of the "thenonce” key-word. Rule r2 is also fired once
because after firing, relation inserted_EMP becomes empty (as we shall see, rules are set-
oriented). Thus, the only recursive rule is r3. Notice that here again, triggering events are
not specified by the user.

A single Starburst rule is used in [WCL91] to express this module. Their rule has a
condition equivalent to our first rule. The action part of their rule consists of two SQL
update statements that correspond to our two rules r2 and r3. Note that the single
Starburst rule is recursive and a priori requires the evaluation of its condition at each
firing (i.e., the equivalent of our first rule).

The last example combines both deduction and reaction to database events.

Example 2.3 : We wish to ensure that an emplovee cannot earn more than the average
salary of all his managers. A deduced relation Manages (sup, sub) is defined to contain the
management hierarchy of the company using the rules r1 and r2 (transitive closure of a

relation obtained by joining relations EMP and DEPT). Then, rule r3 rollbacks any
transaction which yields an inconsistency using the key-word rollback.

module recursive_constraint ;
base EMP (name string, emp_no integer, dept_no integer, salary integer);
DEPT (mgr_no integer, dept_no integer);
deduced MANAGES (sup integer, sub integer) ;
rules DEFERRED
rlis if DEPT (x) and EMP (y) (x.dept_no = y.dept_no)
then + MANAGES (sup = x.mgr_no, sub = y.emp_no) ;
12 is if MANAGES (x) and MANAGES (y) (x.sub = y.sup)
then + MANAGES (sup = x.sup, sub = y.sub) ;

r3 is if MANAGES (x) and EMP(y) and EMP (z) (x.sub = y.emp_no and x.sup =
z.emp_no and avg (z.sal) < y.sal)

then rollback ;
end module

A change (insertion, deletion, update) to EMP or DEPT may activate the execution of this
module at the end of the transaction (rules are declared DEFERRED). The correct
execution ordering is inferred by the system: the deduced relation is first computed using
rules r1 and r2, and then used in the third rule. On the other hand, like in RDL1 [KMS90],
an SQL select operation on MANAGES will immediately activate the two first rules. This
example shows that there is a single notion of rule covering both the deductive database
and active database paradigms.

3. Semantics of Rules

As mentioned before, rules are activated and executed as a result of events issued by a
transaction. The semantics of our rule system is described in three steps. First, in Section
3.1, we describe when rules are activated with respect to the events of the transaction.
Second, in Section 3.2, we define how a given set of activated rules is executed using a
partial fixpoint operator. Finally, the notion of procedural control over a set of rules is
introduced in Section 3.3 and a control language is presented.

3.1 Activation of rules

The way rules are activated with respect to the events of a transaction is described by a
recursive function evaluate, which takes as parameters a stream of events and a database
state. The execute_imm function computes the partial fixpoint’ of a database instance
using some immediate rules. Finally, the execute_diff function computes the fixpoint of a
database instance using some deferred rules. In the following, we use the abbreviations: T
for a transaction, R for a rule base, and [for a database instance (including delta relations).
Also, we denote e(I) the database instance where delta relations in [have been updated

7 Indeed, this is a partial fixpoint because neither the termination of the execution nor the unicity of the
result can be guaranteed for general rule programs [AS91]. For simplicity, we shall abusively use the word

fixpoint instcad of partial fixpoint.

-8-

accordingly to event e, the notation x.5, means that x is the first element of a stream S, and
{] denotes the empty stream.

evaluate ([], I) = execute_diff (R, I)
evaluate (e.Ty, I) = evaluate (Ty, execute_imm (R, e(I))) .

% at each invokation of the recursive function:
% event e is processed
% immediate rules are evaluated

The evaluation process can be depicted using a graphical notation close to the one of
[WF90). Let Ig stand for the initial database state, we denote Ej the ith event of transaction
T, and fix (R, Ij), a fixpoint of Ij using rules in R (if rule execution terminates). We
assume that Tr contains p events and that Rj denotes the set of rules actually activated by
event Ej. If Ep is the event associated with the “commit” action of Ty, then Rp is the set of
deferred rules. If i # p then Rj is the set of immediate rules.

E1 E2 :
lo — g 11 g fix(R1,11) — g 12 — _ = fix(Rp, Ip)

On this diagram, event Ej maps the initial state into a new state I; in which delta
relations, initially empty, may contain some tuples (if the event is an SQL select then Iy =
I1). Then, all immediate rules are used to compute the fixpoint of I1. Next event is then
processed, and so on so forth, until the end of the transaction is reached.

3.2 Partial Fixpoint Semantics of rules

In this section, we concentrate on the meaning of a set of rule modules. We first define
the notion of immediate consequence of a database state using a rule instantiation. Let [be
a database state, and r be a rule. An instantiation of r, henceforth r', is a rule in which
every free variable ranging over a relation T has been substituted by a tuple in the
"current value” of T in the state I. If T is not a delta relation, then the “curent value” of T,
denoted current_T, inIis: (T - AT-) U AT+ where AT- refers to all tuples currently deleted
from T, AT+ refers to all tuples currently inserted into T. Delta relations AT+ and AT- are
required to satisfy the properties given in Section 2.1, in particular: AT- N AT+ = O.
Formally®, we shall treat an update to a relation T as a deletion from T followed by an
insertion into T.

If ' is such that its condition part is true in the state I, then the action part of r' is called an
immediate consequence of I using r'. Given a rule r, Imm_Cons (r,]) is defined to be the
set of all the immediate consequences of I using instantiations of r.

8 In practice, the rule system implements the relation updated T, as we mentionned before.

-9-

Note that there is a very simple way of constructing Imm_Cons (r,I). Suppose that r's
condition has q free variables ranging over relations T1, ..., Tq (not necessarily pairwise
distincts). The set of all tuples in the product T1 X T2 X ... X Tq that satisfy the condition
part of 1, is first retrieved using a relational query. This returns the set of all instantiations
of r that satisfy its condition part. Inm_Cons (r, 1) is then obtained by projecting these
instantiations on the attributes of the relations that appear in the action part of r.

* Set-oriented semantics. A set of rules R defines? a relation among database instances as
follows. For each state I,] = R(I) if for some rule r in R,] is such that10:

1. If current_T(t) is in I, and + T(t), - T(t) are both in Imm_Cons (r, 1), then
current_T(t) is in J.

2. If + T(t) is in Imm_Cons (r,I) and - T(t) is not in Imm_Cons (r,I), then:
if AT (t) is not in I and current_T(t) is not in I, then AT*(t) is in J.
if AT-(t)isin I, then AT=(t) is not in J.

3. If - T(t) is in Imm_Cons (r,I) and + T(t) is not in Imm_Cons (r,I), then:
if ATH(t) is not in I and current_T(t) is in I, then AT-(t) is in J.
if AT*(t) is in I, then AT*(t) is not in].

4. If T(t) is in [then T(t) is also in]
If the sequence R(I), R2(]), ... has a limit, it is denoted fix (R,I). (]

Intuitively, this definition reflects the facts that: (i) every relation T in the condition part
of a rule refers to the current value of T, (ii) if both a fact and its negation are produced by
some rule, the effect w.r.t. this fact is null, and (iii) the delta relations are always pairwise
disjoint sets for every relation T. Every rule is fired deterministically, but the order of
firing rules is left unspecified, thereby introducing non-determinism in the computation.
This semantics is a variant of the deterministic and non-deterministic semantics of
Datalog extensions studied in [AV89, AS91]. It also captures the semantics of set-oriented
deduction rules in RDL1 [KMS90].

From the above definition one can see that our notion of immediate rule differs from the
one used in Postgres [SJGP90]. In PRSII, immediate rules are evaluated concurrently at a
tuple level. In our semantics, immediate rules are evaluated sequentially in a set-oriented

fashion.

* Semantics of modules. A module is composed from a set of rules R. A set of modules M
= {R1, ..., Rn} defines a relation among database instances as follows. For each state],] =
M(I) if there exists j, 1 <j<n, such that] = fix (Rj,I). (]

9 We assume that all rules in R belong to a same module.

10 we denote "t" a tuple in relation T.

-10-

Thus, modules are computed sequentially and each module is computed up to saturation
before executing the next one.

3.3 Controlling the Execution of Rules

A procedural control language, derived from [MS88], specifies the execution order of rules
that belong to a triggered module. The control language includes basic symbols that are
rule names and three primitives: sequence, saturation, and disjunction. The control
language is used to declare a control string in the "CONTROL" section of a rule module.
The syntax of the control language is now given.

<exp> := <rule_name> | <sequence> | <saturation> | <disjunct>

<sequence> := seq (<exp1>, ..., <exp2>)

<saturation> := [<exp1>, ..., <expnp>]

<disjunct> := <exp1> + <exp2>

The sequence primitive means that argument expressions are evaluated in their specified
order. The saturation primitive means that argument expressions are evaluated up to
saturation in any order. Finally, the disjunct primitive specifies an exclusive "or" between
argument expressions. More formally, the semantics of these primitives is given by the
eval function below.

eval (r) = fire r if r is firable and returns r, nil otherwise

eval (seq (<exp1>, ..., <expp>)) = eval (<exp1>); ... ; eval (<expp>); ...

eval ([<exp1> ..., <expn>]) = repeat eval (<exp;>), ie {1, .., n}

until all <exp;> evaluate to nil

eval (<exp1> + <exp2>) = eval (<exp1>) or eval (<exp2>)

<exp>; nil = <exp>
Example 3.1: Consider the control string: s = seq (r1 + r2, r3). This is interpreted as: r1 or r2
is first evaluated and then 13 is evaluated.

Consider now the control string: s = [seq ([r1], r2)]. This is interpreted as repeating the
following up to saturation: rl is evaluated up to saturation, then r2 is evaluated once.
Thus, the meaning of s is that r1 has always priority on r2. (]

Because priorities between rules are often useful, we introduced a special key-word block
such that block (<exp1>, ..., <expn>) expresses that <expi> has priority on <exp2> which
has priority on ... on <expn>. Formally, block (<exp1>, ..., <expn>) is defined by:

[seq ([seq ([seq ... ([seq ([<exp1>], <exp2>)], ..., <expn>)]

<--- (n-1) times —-->

Example 3.2: The control string: s = [block (r1, r3), block (r1, r2)], expresses that r1 has
priority on both r2 and r3, but no priority exists between r2 and r3.

-11-

It is important to observe that: s = block (r1, r2, r3) is equivalent to: [seq (block (r1, r2), r3)]
and cannot be expressed in terms of block (r1, r2) and block (12, r3). []

Two kinds of default priorities between rules are allowed. First, if no control string is
specified in a rule module, rules are evaluated in their specification order and every rule
is executed up to saturation. Now, suppose that a control string s only contains some of
the rules composing the module and that rules r1 ... rk do not occur in s. The partial_eval
function is defined to evaluate such a control string. Formally, we have:

partial _eval (s) = eval (block (s, [r1] + [r2] + ... + [rk]))

Essentially, the partial_eval function enforces that the control string always has priority
on the other rules. Suppose that s is evaluated up to saturation (i.e., eval (s) returns nil),
then one of the rules r1 to rk can be executed up to saturation. After that, s will be
evaluated again.

Finally, a default ordering relationship is defined between modules triggered at the same
time. This ordering expresses that the least recently created module is executed first!l.

Our control language is more powerful than a priority system as proposed in Starburst
[ACL91, WCL91]. For instance, a simple ordering like: "fire r1 once, fire r2 once, fire r3
once, and repeat this up to saturation”, is not expressible with priorities as soon as
recursive rules are allowed. In fact, our language enables to describe any sequential
computation of a set of rules (this is shown by an easy simulation of the context-free
grammar presented in [MS88]).

A limited control language can be compensated by expressing control within rules (e.g.,
using temporary relations that play the role of control predicates). Our desire to have
control separated from rules as much as possible influenced the design of a powerful
control language. Note that in Example 2.3, we use both control within rules and control

string.
4. Implementation of The Rule System

This section presents the functionality and the architecture of the active database system
resulting from the specification of a set of rule modules. We first present the main design
decisions that guided the implementation of our system.

4.1 Basic Assumptions and Design Decisions

A number of important decisions underlies the architecture of our active database system:
(i) a rule base is compiled into an executable system called Trigger Monitor that
automatically activates and executes rules depending on the actions taken by an
application program, and (ii) the Trigger Monitor is coupled with a relational database
system.

11 A more sophisticated mechanism would cnable the user to specify priorities between modules.

-12 -

Most current implementations of active database systems integrate rule processing within
an existing DBMS (e.g., Postgres and Starburst rule systems). This has the a priori
advantage of efficiency because the implementation of rule processing can take advantage
of low level system capabilities like attachments in Starburst [WCL91], or tuple markers in
Postgres [Ston90].

However, based on our previous experience in developing an integrated deductive rule
system [KMS90], we think that the integrated approach suffers from two drawbacks. First,
the integrated system is hard to maintain and to change because its implementation is
specific to the extended DBMS. Active database rule languages differ significantly in their
semantics, and no sufficient experience has been gained in order to agree on a common
semantics!2. Existing rule languages are then evolving and changing their semantics may
require considerable changes in the implementation if it is made too dependent on the
usage of low level system features. A second point is heterogeneity. The integrated
approach has the drawback of being not portable. On the contrary, the coupled approach
facilitates the implementation of a rule system on different DBMSs that accept a common
interface protocol like SQL (which is the case of relational DBMSs and some object-
oriented DBMSs). This way, one may envisage to use this rule system to define and
enforce integrity of interconnected databases supported by different (e.g., relational)
DBMS's.

We assume a client-server architecture where an application program is linked with a
library of communication procedures to interface a DBMS server. We consider a typical
library including procedures like SqlConnect, SqlDisconnect, SqlRead, and SqlExec. The
SqlConnect and SqlDisconnect procedures respectively open and close a connection
between the application process and a DBMS process. The SglExec procedure takes an SQL
command as input and transmits it to the corresponding DBMS process. Such
communication procedures may vary from one DBMS to the other. However, our library
can be easily simulated on existing DBMS.

Our active database system essentially results from the compilation of a rule base. The
choice of a compiled approach is due to efficiency. A strong advantage is that rules do not
need to be accessed dynamically which save a significant overhead (about 20% of the
average execution time of simple modules in the RDL1 system [KMS90]). On the other
hand, an advantage of the interpreted approach, where rules would be kept into a storage
structure and accessed when needed, is flexibility (e.g., to support incremental changes).

Incremental compilation is required to efficiently perform changes to the rule base (add,
delete, or change rules in a rule module) without having to recompile the entire rule
base. This decision has some consequences on the kind of rule processing optimization
that can be performed. Essentially, optimization must be performed at the module level.

2
12 we may even cxpect that a given semantics will be appropriate for some applications and not for other.

-13-

4.2 Process Architecture of The Trigger Monitor

The Trigger Monitor is an executable program that automatically activates and executes
rule modules according to the operations performed by an application program. This
program results from the compilation of a rule base as explained in Section 5. In this
section, we describe the process architecture.

Since we assume no change on the underlying DBMS, the communication between an
application process and a DBMS process must be intercepted by the Trigger Monitor. This
is achieved by using renamed communication procedures to establish and relax the
connection between the application and the DBMS. The SqlConnect procedure call is
replaced by an SqlConnect* procedure call that creates a Trigger Monitor process instead of
a DBMS process, at application start-up time. Communication with a local or remote
DBMS process is then established by the Trigger Monitor. Thereafter, the Trigger Monitor
intercepts all commands issued by the application to the DBMS. A Trigger Monitor
process is then created for every application process and interfaced with the DBMS process
to which the application process should communicate.

The Trigger Monitor and the application processes reside on the same client workstation.
To fix ideas, assuming a UNIX environment, the communication between the two
processes is achieved using a standard pipe mechanism, whereas interprocess
communication with the DBMS is achieved by sockets. Figure 4.1 depicts the run-time
process architecture.

Shared Database

DBMS
|
| Lomm. Sonware |
LAN
| Comm. Sotftware | [Comm.I Software |
1
Trigger monitor Trigger monitor

Client Application | Client Application

Figure 4.1 : Run-time Process Architecture.

-14-

4.3 Functional Architecture of the Trigger Monitor
4.3.1 General Structure

The Trigger Monitor is functionnally decomposed into three main components: the
environment initialization, the event handler, and the rule evaluator. The pseudo-code
procedure below describes the logical structure of the Trigger Monitor.

Trigger Monitor
begin
create DBMS process():
init_Environment () ;
while (an SQL EXIT cammand is not issued by the application) do
event = read Client Event():
Handle Event();
send Result to Client();
endwhile
end

Figure 4.2: Structure of the Trigger Monitor

The Init_environment procedure performs two tasks. First, it builds a data structure
describing all the delta relations that should be managed for executing rules in the rule
base. For instance, if there is a rule referencing the inserted_EMP relation, this delta
relation must be managed whenever an insertion into EMP occurs. On the other hand, if
no deleted_EMP relation is used in the rules, no delta relation needs to be managed when
deletions to EMP occur. The second task is to build a data structure containing the names
of all the rule modules that make the rule base.

The read_Client_Event procedure is a (simplified) SQL parser that analyzes incoming
database statements (e.g., Sql_Exec). The parser isolates the SQL command. If the
command updates the database, it determines which relation is updated and which
relations participate in the command.

4.3.2 The Event Handler

The Event Handler performs a case analysis of the SQL commands read by the
read_client_Event procedure. If the command is a SELECT involving deduced relations,
then all modules participating in the definition of the deduced relations are executed. A
modified SELECT statement in which deduced relations are replaced by the temporary
relations containing their extensions, is send to the DBMS. If the SELECT only involves
base relations, it is issued to the DBMS and the result is returned to the client application.
If the command is an UPDATE, it is sent to the DBMS. We assume that the result of an
SQL data manipulation command can be stored as a temporary relation; a special
command "NAME" assigns a relation name to the last query result. In the case of an
UPDATE command, the temporary relation returned by the system only contains the
updated tuples. A specific treatment is then necessary to build the delta relation associated
with updates. When the command "NAME" is used, a specific variable indicates the
number of tuples in the temporary relation created by the command. This number
indicates if an update has changed the database state. If so, the Manage_Update procedure

-15-

updates the corresponding delta relations, if any, according to the set-oriented semantics
described in Section 3.2. Then, the Rule Evaluator executes immediate rules.

If the command issued by the application program is a COMMIT or a CHECKPOINT,
deferred rules are evaluated and then the query is sent to the DBMS (only in the case of a
COMMIT).

Non-database events are also allowed. If a command LET is received by the Event
Handler, it first updates a data structure containing the value of all variables known to the
Trigger Monitor, and determines if the value has changed. Then, all modules containing
references to the modified variable are executed. Below, we give a pseudo-code description
of the analysis performed by the Event Handler.

Handle_ Event (event) {
switch (event.type)
case UPDATE:
send Query to DBMS():
receive_Result From DBMS ()
if (event.result.tupleCount > 0) {
manage_Update (event .updatedRelation, UPDATE):
evaluate_rules(event):
}
case DELETE:
/* similar to UPDATE */
case INSERT:
/* similar to UPDATE */
case SELECT:
if (query involves deduced relations) {
evaluate_rules(event) ;modify query;}
send Query to DBMS({):
receive_Result From DBMS():
case LET:
' update_variable table(event.var_name);
evaluate_rules (event};
case COMMIT:
execute_deferred rules;
send_Query to DBMS():
receive_Result From DBMS ()
reset All Events({):
case CHECKPOINT:
/* similar to COMMIT */
case ROLLBACK:
send Query To_ DBMS ()
receive_Result From DBMS():
reset All Events({);
case EXIT:
send Query To DBMS():
receive_Result From DBMS():
mark the end of the DBMS session;
default:
send Query To DBMS ()
receive_Result From DBMS();

Figure 4.3 : Structure of the Event Handler

-16 -

4.3.3 Evaluation of Rules

The evaluation of rules is part of the evaluate_rules and execute_deferred_rules
procedures. We essentially describe the former procedure since evaluation of rules is done
similarly in the second procedure. The evaluate_rules procedure cycles over the set of
compiled rule modules and successively invokes the program resulting from the
compilation of each rule module (by the Rule Compiler) until the database does not
change. Below is a pseudo-code description of the evaluate_rules procedure.

evaluate rules (E: event);
/* E is represented by the delta relations */
while the database changes {

execute _module[i] (E), for all modules i:

}

We now detail the execution of a module. Three phases are distinguished. First, the
sensitivity of the module with respect to the current cumulated event is tested. This event
is represented by the state of the delta relations, and the state of the variable assignment
table. For instance, if there is a non empty delta relation associated with relation T and T
occurs in a rule r, then the module is sensitive to the event. Notice that T may either
occur in the condition or action part of r. This test is produced by inspection of the rules in
the module at the time the module is compiled by the Rule Compiler.

If a module is pertinent, then the second phase consists of building a specific data
structure, called Production Compilation Network (PCN) in main memory. This
structure, derived from Predicate Transition Nets and introduced in [MS88], describes the
relationships between relations, main memory variables, and rule's conditions.

The third phase is the execution of rules using the PCN structure. A rule is selected
according to the control strategy specified in the module (or the default strategy if no
strategy has been specified) and evaluated. If the rule is fired then delta relations,
temporary relations, and main memory variables assigned in the rule are updated. A next
rule is then selected and fired until no more rule is firable. Contextual data structures
(temporary relations, PCN) are updated, and procedural C code associated with the
module (specified in the WRAPUP section of the rule module) is executed (if any).

This processing is summarized below.

execute_module[i] (E: event); {
test_module relevance (E):
init PCN ()

init_Control {):
select_firable rule ();
while there exists a firable (immediate or deferred) rule
/* the choice between immediate and deferred depends */
/* on the event E */
{fire_rule ():
update_delta_relations ()
monitor changes to main memory variables:
select_firable rule ():
}

-17 -

free temporary relations no longer needed;
maintain PCN ();
execute_wrapup code ():

}

Suppose that a module which has already been executed is considered again for execution.
The system (in the evaluate_rules procedure) checks whether the database state over
which the module executes has changed since its last execution. If not, the system
considers the next module.

5. The Toolbox

5.1 Functional Architecture

The Toolbox consists of several software components. Two levels of compilation are used
to generate a Trigger Monitor from a set of rule modules. At the first level, a Rule
Compiler compiles each source module into a C/SQL procedure, and an Environment
Compiler generates the Init_Environment procedure mentioned before. The second level
of compilation then follows. A standard makefile facility is used to generate a Trigger
Monitor from the outputs of the first compilation phase, the Event Handler, the Interface
Procedures (like SqlConnect* described before), and user-supplied procedures invoked in
rule modules.

Changes to a rule requires to rebuild the Trigger Monitor. Since rules are organized into
modules, only those modules which have been updated need to be recompiled. The
initialization procedure has also to be recompiled. The Trigger Monitor is then
reassembled from linking together the set of compiled modules.

The functional architecture of the Toolbox is depicted on Figure 5.1. Square boxes
represent the compilers and the makefile facility. Bold circle boxes represent the input

components.
Rule Source Rule Source
Module 1 Module N
Rule Compiler

Rule Object
Module 1
C
Event
Make Handler

Interface
Procedures

[Env. Compiler]

Y
Init_Environ.)
Procedure

Rule Object
Module N

Trigger
Monitor

Figure 5.1: Functional Architecture of the Toolbox.

-18-

5.2 The Rule Compiler

This compiler translates a rule module into a C procedure containing SQL statements
embedded into SqlExec procedure calls. It is derived from the RDL compiler presented in
[KM91].

Each code produced by the Rule Compiler contains the following elements: a sensitivity
test containing triggereing conditions, a skeleton version of each rule; main memory rule
program variables, a set of initialization procedures for meta-control, links between rules
and relations, links between rules and main memory variables, run-time validation of
base relation schemas, run-time validation of virtual relation schemas, and the rule
evaluator.

A rule is compiled into a procedure which calculates a set of tuples for each relation
involved in the action part of the rule. The name of the procedure is the name of the rule.
First, an SQL SELECT statement whose FROM and WHERE clauses are obtained from the
condition part of the rule is generated. This query returns a relation having all attributes
involved in the action part of the rule. Then one SQL SELECT statement is generated for
every relation occuring in the action part of the rule. Actually, the SQL statements are
skeletons because relation names (corresponding to temporary relations) and attribute
names may change during program execution (e.g., in the case of recursion). Hence, these
names appear as variables that are instantiated before each SglExec invocation. Also,
variable expressions are replaced by their values at this time.

5.3 Optimization Using Program Rewriting Techniques

Optimization of rule modules is concerned with (i) deriving triggering events from rules,
and (ii) optimizing the execution of rules. Database query optimization typically
distinguishes rewriting from optimization. Rewriting is heuristic-based and proceeds by
applying transformations to the initial query. No selection among alternatives is
involved because the heuristics are always considered worth applying. On the contrary,
optimization proceeds by applying actions whose effect is measured by a cost function in
order to select an optimal solution. This requires to have an accurate cost model of the
underlying DBMS. Because, our system is designed to be front-ended to various kinds of
DBMS, we only intend to use rewriting techniques.

Several techniques have been proposed in the field of integrity constraint simplification
methods to derive triggering events from the syntactic analysis of constraints [Sto75,
Nic82, SV87, BDM90]. The heuristics relies on the assumption that delta relations are
always much smaller than stored database relations. These techniques can be quite directly
applied to our framework. A precedent for this approach is described in [WC90]. We give
below a simple example of program rewriting.

Example 5.1: Consider the module given in Example 2.1. The optimizer would rewrite
rule rl as:

r1l is if inserted_EMP (x) and not exists y in DEPT (x.dept_no = y.dept_no)
then - EMP (x);
r12 is if EMP (x) and deleted _DEPT (y) (x.dept_no = y.dept_no)

-19-

then - EMP (x);
r13 is if updated_EMP (x) and not exists y in DEPT (x.dept_no = y.dept_no)

then - updated_EMP (x);
r14 is if EMP (x) and updated_DEPT (y) (x.dept_no = y.olddept_no and not exists z in
updated_DEPT (x.dept_no = z.dept_no))

then - EMP (x);

Rewriting techniques like Magic Set and other have also been proposed to optimize the
execution of a set of rules using the heuristic that only relevant data should be produced
during program computation (see [Ul189] for a panorama). Finally, differential techniques
have been proposed in [WCL91] to avoid doing duplicate work during rule processing.
Here again, these techniques apply to our framework.

With a similar argument that pushing selections through recursion should not be the
responsibility of the programmer, we believe that associating explicitely triggering events
with rules should be done by the system. We plan to implement an optimizer based on
this strategy.

6. Comparisons With Related Work

This section briefly surveys previous work on active database systems and relates our
work.

Alert is an extension architecture designed for transforming a passive SQL DBMS into an
active DBMS [SPAMS91]. Alert rules are SQL queries (called active queries) which are
defined over active tables. Active tables are append-only tables created by the user in order
to record events. Therefore, events can be general and are not limited to built-in
operations like SQL insert, ... Active queries differ from usual SQL queries in their cursor
behaviour. When a cursor is opened for an active query, tuples added to the underlying
active table after the cursor was opened contribute to the query. Thus, rules wait for tuples
to be appended to the active table and are instantiated with each new tuple (i.e., a rule is
executed in a tuple-oriented fashion). Unlike our system, format of events must be
declared by the user (in active tables) and rules are explicitely attached to these events.
Alert provides several coupling modes between events and rules. Rules can run in the
same or in separate transactions as the triggering transaction. The triggering transaction
can be halted for the execution of triggered transaction or it can be run in parallel. Finally,
a rule can be immediate or deferred. Coupling modes are specified separately from the
rules using a command activate. Thus, a rule can be activated with different coupling
modes. Changes made to the active tables are detected by a Monitor which selects triggered
rules. Selected rules are passed to a conflict resolver which is responsible for managing the
execution of rules according to the coupling modes associated with the rules. Unlike our
system, rules are executed in a tuple-oriented fashion. however, the semantics of a set of
rules is not formally defined and interaction between rules is not clear. Therefore it is not
easy to see how an arbitrary rule system could be supported by the Alert architecture.

Triggers in Starburst [WCL91] are expressed using set-oriented production rules where
conditions are relational expressions and actions consist of sequences of SQL commands.
Triggering events are associated with the built-in operations: update, insert, delete, and
they are explicitely attached to each rule. Unlike our language, all rules are deferred and

-20-

evaluated at the end and as part of the triggering transaction. Events are implemented
using transition tables that are similar to our delta relations. A rule is executed with
respect to the net effects of the transaction (including the effects of rules already executed).
However, unlike Hipac and our system, the net effects are computed separately for each
rule according to the last time the rule was executed. The idea is to prevent a rule from
being fired twice with the same tuples in transition tables. This semantics is very similar
to the notion of refraction used in OPS5 [BFMK85]. Our language enables to simulate this
behaviour using the special key-word "thenonce". Finally, control between rules is
expressed using a priority mechanism [ACL91].

In Hipac [DBB+88, CBB+89], triggers are specified as event-condition-action statements.
Events can be built-in (including timing events, hardware signals), or user-defined.
Events can be composed using a specific event language. Changes made by database
operations in a transaction are kept into delta relations similar to ours. Like in our system,
delta relations record the net effects of database changes. Hipac also offers a rich variety of
coupling modes (including those of Alert) [ZB90]. Howewer, as noted in [SPAM91], it is
not clear to see which coupling modes are essential and which ones simulate some form
of control over rules. Hipac's execution model consists of a nested transaction model, and
an assignment of condition evaluation and action execution to transactions based on
coupling modes. As a result, there is no conflict resolution policy that chooses a single
rule to fire, or a serial order to fire the rules. Instead, all the rules fire concurrently as
subtransactions [ZB90]. This semantics makes the expression of control between rules
difficult to express.

The Postgres rule language PRSII has a syntax quite close to that of Starburst [SJGP90]. Like
in Hipac, rules consist of event-condition-action triples and are low-level statements. Like
in Starburst, events correspond to built-in database operations: select, insert, delete, ...
PRSII allows a single coupling mode between rules and events: rules are immediate and
they are executed within the triggering transaction. Unlike Starburst and Hipac, but like
Alert, rules are tuple-oriented. When an individual tuple is accessed, updated, inserted or
deleted in a transaction, then the transaction appropriately instantiate the triggered rules
and execute them concurrently. A special algorithm uses special locks to mark tuples or
table columns whose changes or retrievals would trigger one or more rules. Thus, there is
no notion of delta relations. Unlike our system, PRSII does not provide a control language
over rules, or a priority system like in Starburst. PRSIl enables to define a rule as an
exception to another rule.

7. Conclusions

We have presented an extension of a deductive database language, namely RDL1, towards
rules that react to external events. Events consist of built-in database operations (select,
insert, delete, update), and global variable assignments in application programs. The net
effects of database operations are recorded into delta relations. These relations can be used
in rule's conditions. Our language has the following features. First, unlike Hipac, Alert,
Starburst and PRSI, our rules are expressed at a high level. Triggering events are not
provided by the user but are instead derived from rules by the system. High level rules
can then be translated into lower level triggers by a compiler/optimizer using rule
rewriting techniques. Second, our rule system is formally described by means of a partial
fixpoint operator, which encompasses both the deductive database and active database

-21-

paradigms. Hence, a rule module may consist of rules that deduce data and rules that
modify the database by reaction to external events. In this formal framework, existing
work on rule-based systems can be reused (language properties, optimization algorithms,
programming environment and methodology). Finally, we presented a control language
that enables to specify a rich variety of rule execution orderings.

In this paper, we also presented a system architecture in which the system responsible for
detecting events issued by application programs and triggering rules is front-ended to an
existing relational database system. This approach can be used over any relational DBMS
which supports run-time interpretation of SQL commands. No rule base needs to be
managed by the DBMS. A compiler translates rule modules into C procedures which are
then linked with an Event Handler which contains all the code necessary to trap events
and trigger rules. The resulting system, called Trigger Monitor, runs as a separate process
between a client and a server..

Three major future research topics are envisioned. One is the development of an
optimizer integrated within our Rule Compiler. We wish to adapt existing techniques
proposed for rule optimization and integrity constraint compilation. Second, we would
like to extend the language to support object-oriented modeling concepts. Eventually, our
objective is to compile rule modules into several Trigger Monitors interfaced with
relational and object-oriented DBMS.

Acknowledgements: We would like to thank Rakesh Agrawal and Jennifer Widom for
their detailed comments and suggestions that greatly contributed to improve the paper.

References

[Ast76] M. Astrahan et al.: "System R: Relational Approach to Database Management”, ACM
TODS, Vol. 1, No. 2, June 1976, pp 97-137.

[ANSI] ISO-ANSI Working Draft: Database Language SQL2 and SQL3; X3H2/90/398; 1SO/IEC
JTC1/5C21/WG3, 1990.

[AS91] S. Abiteboul, E. Simon : "Fundamental Propertics of Deterministic and Non-deterministic
Extensions of Datalog", Journal of Theoretical Computer Science, 78, pp 137-158, 1991.

[AV89] S. Abiteboul, V. Vianu : "Fixpoint Extensions of First-order Logic and Datalog-like
Languages ", Proc. of IEEE Int. Conf. on Logic in Computer Science, 1989.

(BF89] |. Bocca, J. C. Freytag : "Rules for Implementing Very Large Knowledge Base Systems”,
Sigmod Record, 18(3): , Sept. 89.

[BFKMS85] L. Brownston, R. Farrel, E. Kant, N. Martin: "Programming Expert Systems in OPS5: An
introduction to Rule-Based Programming”, Addison-Wesley, 1985.

[BDM88} F. Bry, H. Decker, R. Manthey: "A uniform Approach to Constraint Satisfaction and
Constraint Satisfiability in deductive Databases”, Proc. Int. Conf. on EDBT, Venice, ltaly,
1988.

[CBB+89] S. Chakravarthy, B. Blaustein, A. Buchmann et al. : "HIPAC : A Research Project in
Active, Time-Constrained Database Management. Final Technical Report, Xerox Advanced
Information Technology, May 1989.

[CW90] S. Ceri,]. Widom : "Deriving Production Rules for Constraint Maintenance”, in Proc. of Int.
Conf. on VLDB, Brisbane, Australia, Aug. 1990.

-2

[}

[Cod73] CODASYL Data Description Language Committee, CODASYL Data Description Language
Joumnal of Development, June 1973

{DBB+88] U. Dayal, B. Blaustein, A. Buchmann et al. : " The HiPAC Project : Combining Active
Databases and Timing Constraints", ACM SIGMOD RECORD Vol. 17, N°1, March 1988.

[Han89) E.H. Hanson : "An initial report on the design of Ariel : A DBMS with an integrated
production rule system” ACM SIGMOD Record, 18(3):12-19, Sept 1989.

[H]91] R. Hull, D. Jacobs : "Language Constructs for Programming Active Databases”, Proc of Int.
Conf. on VLDB, Barcelona, Spain, Sept. 1991.

[KMS90] G. Kiernan, C. de Maindreville, E. Simon : "Making Deductive Database a Practical
Technology: A Step Forward", Proc. of Int. Conf. SIGMOD, Atlantic City, June. 1990.

[KM91] G. Kiernan, C. de Maindreville : "Compiling a Rule Database Program into a C/SQL
Application” Proc of 7th international Conference on Data Engineering, Kobe Japan, 1991.

[McD89] D. McCarthy, U. Dayal: "The Architecture of an Active Database Management System”,
Prac. of Int. Conf. SIGMOD, June 89

(MS88] C. de Maindreville, E. Simon : "Modelling non-deterministic Queries and Updates in a
Deductive Database”, Proc. of Int. Conf. on VLDB, Los Angeles, Aug. 1988.

[Nic82} JM. Nicolas : "Logic for Improving Integrity Checking in Relational Databases”, Acta
Informatica, July 1982.

[NT89] S. Nagqvi, S. Tsur : "A language for Data and Knowledge Bases”, book, W.H. Freeman, 1989.

[PRD91] G. Phipps, M.A. Derr, K.A. Ross :"Glue-Nail : A Deductive Database System”, Proc. of Int.
Conf. SIGMOD, Denver, Colorado, May 1991.

[RCBB89] A. Rosenthal, S. Chakravarthy, B. Blaustein, J. Blakeley : "Situation Monitoring for
Active Databascs”, in Proc. Int. Conf. on VLDB, Amsterdam, Aug. 1989.

[Sto75] M. Stonebraker : "Implementation of Integrity Constraints and Views by Query
Maodification”, Proc. ACM SICMOD Int. Conf., San Jose, 1975.

[SJCP90] M. Stoncbraker, A. Jhingran,]. Goh, S. Potamianos : " On Rules, Procedures, Caching and
Views in Data Base Systems”,Proc. of SIGMOD, Atlantic City, June. 1990.

[SPAMI1] U. Schreier, H. Pirahesh, R. Agrawal, C. Mohan : "Alert : An Architecture for
Transforming a Passive DBMS into an Active DBMS", Proc of Int. Conf. on VLDB,
Barcelona, Spain, Sept. 1991.

[SV87] E. Simon, P. Valduriez, "Design and Analysis of a Relational Integrity Subsystem”, MCC
Technical Report, DB-O15-87, 1987

[UN89]].D. Ullman : "Database and Knowledge-Base Systems”, Book, Vol 1 & 2, Computer Science
Press, 1989.

[WF90] J. Widom, S. Finkelstein : “A Syntax and Semantics for Set Oriented Production Rules in
Relational Databases, " Proc. of Int. Conf. SIGMOD, Atlantic City, June. 1990.

[WCL91] J. Widom,R.]. Cochrane, B.G. Lindsay : "Implementing set-oriented production rules as an
extension to Starburst”, Proc of Int. Conf. on VLDB, Barcclona, Spain, Sept. 1991.

[W91] J. Widom : "Deduction in the Starburst Production Rule System” IBM Almaden Research
Report, May 1991.

[ZB90] D.R. Zertuche, A. Buchmann : "Execution Models for Active Database Systems: A
Comparison”. GTE Research Report TM-0238-01-90-165.

-23-

Appendix : Syntax of the RDL Language

The general syntax of a rule module is :

module mocule name ;

base base relation declaration ;

[deduced deduced relation declaration ;]
(input input relation declaration ;)

{ output output relation declaration ;]

{ var variable declaration] ;

rules [event coupling mode]

rule nare is {event coupling rode]

if condition then action { c_code; }:

[control control string ;]
[init c_code:}

[wrapup c_code;]

end module

Below, we give a simplified version of the BNF of a rule condition

Condition : range condition and sub formula :
range condition : range predicate
NOT range predicate

| range condition AND range_condition ;
sub_formula : expression

| NOT expression

| sub formla AND sub fommla ;
expression : quant_formula

| camparaison_expression ;
quant_formula : QUANT var IN relation name quant formula

| QUANT var IN relation name camparaison expression ;

Following is the BNF for the action part of a rule :

actions : action
| actions action
action : insertion
| deletion
| update
| variable assignement ;
| side effect
insertion : + relation name '(' projection liste')' ;
deletion : - relation name '(' projection liste')' ;
update : -=/+ relation name ‘(' tuple var; projection liste')’ ;
variable assignemen : var = proc_name (varl, ..., vam)
| var = const ;
side effect : proc name (projection liste)

-24 -

[}

¥

Le Support de Triggers et de Régles de Déduction au
dessus d'un SGBD Relationnel

Jerry Kiernan, Christophe de Maindreville, Eric Simon
INRIA Rocquencourt, 78153 Le Chesnay,France

Résumé: Les systémes de bases de données actives supportent des régles qui consistent en un événement,
une condition A évaluer et une action a exécuter en cas d'évaluation positive de la condition. Ces
régles appelées triggers, peuvent étre utilisées pour exprimer des contraintes d'intégrité statiques et
dynamiques. La sémantique des langages de triggers qui ont été proposés dans la littérature n'a pas
été définie formellement a l'aide des formalismes classiques qui ont été développés pour les langages
de bases de données déductives. Ces langages de triggers sont fortement procéduraux. Par exemple, ils
requirent des utilisateurs la spécification complete des événements qui sont associés aux régles. La
premigre contribution de ce rapport est de proposer une extension du langage déductif RDL1 afin de
supporter des triggers. Cette extension permet de spécifier des triggers dans un langage déclaratif de
haut niveau. La sémantique du langage est donnée en terme de point fixe partiel qui étend la
sémantique définie pour le langage RDL1. La deuxiéme contribution du rapport est de détailler une
architecture qui a été utilisée pour implémenter ce langage de triggers. Cette approche permet de
rendre le langage portable au dessus de divers systémes relationnels. Notre langage et notre systéme
sont comparés a des approches étudiées dans des projets tels que Hipac, Postgres, Starburst et Alert.

Supporting Deductive and Active Rules
on Top of a Relational DBMS

Jerry Kiernan, Christophe de Maindreville, Eric Simon

Abstract: Active database systems have rules consisting of an event that causes a condition to be
evaluated, and if true, results in the execution of a predefined action. These rules, usually called
triggers, are useful to express static and dynamic integrity constraints. However, existing trigger
languages have a few drawbacks. First, the proposed semantics do not take advantage of well known
and accepted formalisms developed for rule-based systems, and thereby do not capitalize on existing
rule-based technology. Second, trigger languages are low-level languages. This makes the
specification of triggers and their maintenance eager. Our first contribution in this paper is to present
an extension of a deductive database language, namely RDL1, towards active rules. Rules are
expressed at a high level: triggering conditions are derived from rules by the system. The semantics
of our rule language is formally described by means of a partial fixpoint operator which encompasses
the deductive database and active database paradigms. Our second main contribution is to propose
an architecture in which the system responsible for detecting events issued by application programs
and triggering rules, is front-ended to a relational DBMS. This approach has the advantage of being
easily portable over various kinds of DBMS. We relate our approach to systems like Hipac,
Postgres, Starburst and Alert.

ISSN 0249-6399

