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The function f(z) = 1(2z—1/2) is the Newton map associated with the quadratic polynomial 2% + 1. The
iterated dynamics of f on R is usually studied by exploiting the conjugacy between f and the function
z2. In this paper we show how to use the technique of nested sntervals to yield a direct analysis of the
dynamics. We also show how to use the same technique to analyze the dynamics of the function z —1/z.
The results covered by this paper fall under Mathematical Reviews Mathematical Subject Classification
number 40A05 (Convergence and divergence of series and integrals).

1 Introduction

In this note we will show how to utilize the technique of nested intervals to examine the iterated dynamics
of two related functions that map R, the set of real numbers, to itself. The two functions are

fi(2) = 5= 1/2) (1)

and
fa(z)=z2-1/z (2)

By studying the iterated dynamics of a function f we mean studying the infinite sequences generated by
iterating the function f on initial seeds g, i.e.

20,1‘1:f(.2‘0), zng(xl),...,xng(:c;_l),... (3)

This sequence is sometimes known as the forward orbit of zo. For f = fi this sequence has already been
extensively studied because f; is the Newton map used to find the roots of the quadratic function g(z) =
z% + 1. That is, given an initial seed, zo, the sequence (3) will usually converge to either 7 or —i, the two
roots of g. The set containing all 2o for which the sequence (3) does not converge is the Julia set associated
with f. The Julia set associated with both f; and f; is the real line .

The usual method of analyzing the iterated dynamics of (1) uses the fact that f, considered as a mapping
on the Riemann sphere, is conjugate under a linear fractional transformation to the function z2. The purpose
of this note is to illustrate how to analyze the dynamics directly without using the conjugacy relationship.
The only tools we use are simple ones from elementary calculus and point-set topology. We exhibit a one-one

*This research was supported in part by National Science Foundation grant DCR-8605962 and Office of Naval Research grant
N00014-87-K-0460. It was later supported by a Chateaubriand fellowship from the French Ministére des Affaires Etrangeres
and by the European Community, Esprit 11 Basic Research Action Number 3075 (ALCOM). Author’s current address: Projet
Algo, INRIA Rocquencourt, 78153 Le Chesnay, France.
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correspondence between points in ® and integer sequences of alternating sign, e.g 5, —7, 4, —6, .... This
correspondence has nice properties such as: if the sequence associated with zq is periodic/bounded then
(3) is also periodic/bounded. Furthermore if the associated sequences of a serics of points converges to the
sequence associated with z then the points themselves converge to . We will use these properties to analyze
the dynamics of f = fi. We will also show how this analysis, slightly modified, can be used to analyze the
dynamics of fs.

In section 2 we quickly review Newton’s method for finding the roots of polynomials. We also briefly
sketch the conjugacy mapping which forms the basis for the usual analysis of f;. In section 3 we explain
what we mean by nested intervals. We then show how to use nested intervals to define the behavior of a
point under f; in such a way that there is a one-to-one correspondence between points in R and possible
behaviors. This correspondence will yield immediate proofs of the standard facts about the iterated behavior
of f. As an example, it will show that the preimages of any point in R are dense in R. It will also show that
the set of points which have bounded forward orbits is ‘Cantorlike.” Finally, in section 4, we will show how
to modify the analysis of section 3 so that it can be applied to the iterated behavior of f;.

2 Newton’s Method

In this section we provide a quick review of Newton’s (Cayley’s) method for finding the roots of a jjolynomial
For a more complete explanation see [5]. Let g(z) = Y, @iz* be an n-th degree polynomial. The Newton's
map associated with g is -

9(z)

f(z) =2~ 7 (1)

Newton’s method for finding a root of g is to choose an initial seed zo and iterate f on xq constructing
the infinite sequence
zg, 1 = f(zo), 22 = f(®1), ..,z = f(ziz1), - . .. (5)
Later we will occasionally, need a more flexible notation: we set f(°)(z) = x and inductively definc f(z) =
F(f¢=1(z)) for i > 1. In this new notation (5) is written as

0, f(.’ro), f(Z)(IO)’ ceey f(i)(IO)) ceee (6)

It is known that if z; is close enough to a root a of g then the sequence z; will converge to the a. The
set containing all points 2o € R for which this sequence doesn’t converge to some root of g is the Julia set
associated with f [4].

As an example, suppose that g(z) = (z — a)? where « € C is an arbitrary complex number. Then

z+a
f(z) = 7 (7)
Therefore, for all z € C,
a—z
o £ = 2521, )

the sequence z; — « irrespective of the original seed zo, and the Julia set associated with f is empty.
If g is a quadratic with two distinct roots the situation is much more interesting. Suppose, for example,
that g(z) = 22 + 1 = (2 — )(z + ¢). Then

1) = 5z = 1/2). ©)

The classical method for analyzing this f uses the fact that it is conjugate to the function h(z) = z2. By
conjugate we mean that there is some function 7" with a two sided inverse T-! such that

f(z) =T 'ohoT(2) (10)



where o is the functional composition operator. By a two sided inverse we mean that T(T~!(z)) = z and
T-Y(T(z)) = z. It is straightforward to check that equation (10) is true when T(z) = £t This T has a two
sided inverse which is T—!(z) = ¥},
Iterating (10) yields
2, =T o kD o T(2). (11)

Therefore, the behavior of the sequence (5) can be examined by studying the behavior of the sequence
2,28, 24 28,2,

First let S) = {z : |z| = 1} be the unit disc, H* = {z +iy : z,y € R, y > 0} be the half plane with
positive imaginary part and H~ = {z —iy : z,y € R, y > 0} be the half plane with negative imaginary part.
The behavior of T is summarized in the following table:

z i|—ijoo| R H* H-
T() oo [0 [1 ][5 [{z:0z]>1} | {z:]z] <1}

If |z} < 1 then 22" converges to 0. If {2} > 1 then 22" goes to infinity. If z € S;, the unit circle, then every

point in 2?" is also on Sy. If zo € H* then z = |T(zo)| > 1, 22’ tends to infinity and f()(zq) — 7. Similarly,
if 2o € H™ then z = |T(zo)| < 1, 2% tends to 0 and f()(zo) — —i. Finally, if o € R then z = T(z¢) € S)
and 22" is contained in S;. Therefore the behavior of the sequence f()(z¢) can be studied by examining the
behavior of the sequence z(2) for z € S.

In general, if g(z) = (2 — a)(z — B) is a quadratic with two roots, then the analysis given above can
be adapted to examine its associated Newton’s function f = z ~ g(z)/¢'(z) [5). For more information on
conjugacy methods and their applications to the study of iterated dynamics see [3].

In the next section we will show how to examine the dynamics of (5) without using the conjugacy
relationship.

3 Nested Intervals

A sequence of closed bounded intervals, D; = {a;, 5] C R,1=1,2,3,...is said to be nestedif D; C D;_,. An
important fact about such sequences of intervals, one which often occurs in the analysis of dynamic systems
[6], is that the intersection [); D; is a nonempty closed interval, possibly a single point.

In this section we show how to utilize the technique of nested intervals to analyze the dynamics of

=4 (- 2)

That is, for £ € R we will study the behavior of the sequence
z, fO(z), fO(), ..., fO(z),.... (12)

Examination of f shows that it is a monotonically decreasing surjective function from {1, 0o) onto [0, c0)
and a monotonically increasing one from (0, 1] to (—o00, 0]. Similarly it is a monotonically increasing surjective
function from (—o0, —1] onto (-0, 0] and a monotonically decreasing one from [—1, 0) onto [0, 00). Therefore,
the infinite sequence f{)(z), will alternate between positive decreasing and negative increasing sequences
(Figure 1) forever unless, for some i, f()(z) = 0. In this case we say that the sequence terminates since f(0)
is undefined. (Alternatively we can say that f(0) = f(co) = oo and fU)(z) = oo for j > i.)

The rest of this section will be given over to showing that there is a one-to-one correspondence between
points in R and integer sequences of alternating sign

io, il» i2, i3, e such that ijij+1 S 0,



X, x,l X; XX, x, Ix,, X, X

-1 1

Figure 1: This figure illustrates the first 9 iterates, z; = f@(z0), 0 < i < 8 of f. Notice how the the
sequence flip-flops between increasing/decreasing subsequences of positive/negative values.

eg. 1,-3,5,-7,...0r —4,6,-7,5,.... This correspondence possesses properties useful in the analysis of
the iterated sequence (12). For example, (12) is bounded if and only if the alternating integer sequence

associated with z is bounded.
We associate with each point z € R, two sets: F; and B;. F:, the forward orbit of z, is the set containing
all of the iterates f(*)(z), while B, the backward orbit of z, is the set of all preimages of x. Formally

Fe = {fO(z):i=0,1,2,..}
B, {z : 3, fO(:) =z).

A technical note: If z is a preimage of 0, (z € By, ) then there is some i such that f()(z) = 0. In this case
fG+1(2) is undefined and we define F, to be the finite set {fU)(z) : 0 < j < i}.

Definition 1 A point z € R is bounded if the forward orbit of z is bounded, i.e. there is some constant k
such that F, C [k k]

Definition 2 A point z € R is periodic if there is some integer i > 0 such that f()(z) = z.
In this section we will prove the following facts:

Fact 1. Vz € R, the sct B is dense in R.

Fact 2. The set {z : z is periodic} is dense in ®.

Fact 3. The set {z : F; is densc in R} is itself dense in £ and has cardinality R;.

Fact 4. The set {z : z is bounded} is dense in R, has cardinality R; and measure 0. In fact, it is the union
of a countable number of “Cantorlike” sets.

Notice that Fact 1 implies that the system that we are studying is chaotic. That is, it tells us that
specifving a point z to a very high degree of precision isn’t enough to tell us how z behaves under iteration.

We define a set of intervals that partition the real line. First, for any given z the equation f(z) = z has
exactly two solutions: z4 = ¢ & V22 + 1. Furthermore f(—~1/z) = f(2) so 2. = —1/z,. Thus one of z4 has
absolute value greater than or equal to 1 while the other has the opposite sign and absolute value less than
or equal to 1. We will denote these two solutions by g(z) and h(z). These functions are defined in such a
way that (for z # 0) g(—z) = —g¢(z) and h(-z) = -h(z).

(z) = z+Vzi4+1 220 h(z) = z—vVzl+4+1 >0
TI=Z e -vVEZ+1 2<0 T lz+Ver+l z<0

Notice that g is monotonically increasing when z > 0 and monotonically decreasing when z < 0. Analo-
gously, h is monotonically decreasing when z > 0 and monotonically increasing when z < 0. Thus, if D is a
bounded interval not containing 0 then both g(D) and A(D) will be bounded intervals that do not contain
0. These facts will be important later.
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Figure 2: The top figure illustrates the location of the a;: ap = 0, aiy1 = g(a;), ¢ > 0 and a_; = —a;. The
intervals, I;, i > O are defined as I; = (a;_1, ;). with I_; = —I;. The bottom figure illustrates the first cight
applications of f on the point z = zo. We have set z; = f()(z). The behavior of the sequence associated
with 215 2,-3,3,-1,....

Next, we define a doubly infinite sequence a;
ag =0, a; = g(ai-1), 1>0, a; = —a_;, t<0.
This permits us to define a set of intervals that partition R : We set Iy = [0, 0] and

o (a.-_l,a.-] i>0
“{[%mﬁ)i<o (13)

Note that I; = —I_;. See Figure 2. The functions f, g, and h, operate rather remarkably on the intervals
I;. Recall that f is a monotonically decreasing function from [1, 00) onto [0, 00) and f(a;) = a;_; for i > i..
It follows that f(I;) = i, for i > 1. (We use the notation f(S) = {f(z) : z € S} where S is an arbitrary
set.) Symmetrically, f(I;) = L4 for i < 1. As examples note that f(I5) = I4 and f(I_5) = I_4. There are
similar results for ¢ and h. We summarize them in the following table:

1 =1 =— >1 (<=1
f(Ii) = ] (=00,0) | (0,00) | iy | Ligy 14
g(l) = I Iy | Ly | L (14)
h(L;) C I I_y L | I

Since the I; partition ® we can associate with every £ € R a unique interval I; that contains it and thus
with the iterated sequence .
z, f(z), fO(z), ..., f9=), ...

we can associate a unique sequence of integers

10,11,12...i,'



such that fU)(z) € I;;. As an example the point z = z¢ pictured in Figure 2 has the associated sequence
2,1,-3,-2,-1,3,2,1,-1... (15)

because = € I, f(z) € I, f(f(z)) € I_3, etc.. If z € By then its associated integer sequence is finite and
ends at 0 since Iy = {0} and f(0) is undefined. For example, if z = g(g(h(as))) then its associated sequence

1S
-3,-2,-1,5,4,3,2,1,0. (16)

If z ¢ By then the sequence associated with z is infinite.

Notice that both (15) and (16) share a peculiar property: they are composed of concatenations of positive
subsequences that step down by one to 1 and negative subsequences that step up by one to —1. Furthermore
these subsequences have opposite signs. This property is a direct result of the first row of (14). More
specifically: if z € I;, i > 1 then f(z) € Li_y,...f0~Y(z) € I and f¥)(z) € I; where j < 0. Symmetrically
ifzel;, i <1then f(2) € Livr,... fO1=-D(z) eI, and f(l‘l)(:r) € I; where j > 0. The process terminates
if and only if i = 0 since then z = 0 and f(0) is undefined.

What we have just described is just a more detailed description of the “flip-flopping” behavior illustrated
in Figure 1. In the next few pages (culminating in Theorem 1) we shall show that there is a one to one
correspondence between sequences of flip-flops and points in ®. We will then use this correspondence to
prove Facts 1, 2, 3 and 4.

Thus, given £ € I;, the first iterate of f on z whose location is unknown is f{i)(z). The sequence
associated with z can therefore be reconstructed from a sequence containing only the first elements of the
increasing (decreasing) sequences e.g. 2, —3, 3, —1 ... in place of (15) and -3, 5, 0 in place of (16). We
will call this abbreviated sequence the behavior of the sequence associated with = or simply, the behavior of
z. We denote the behavior by S;. The formal definition of S; is

Definition 3 For a point r € R ils behavior, S;, is the sequence defined recursively as follows. Let iy be
the indez of the interval contatining z, z € I;,.

1. Ifig = 0 then S; is the one ilem sequence 0.
2 Ifip # 0 then S; = ip, S!u.n(,).
For a given point  we will denote S,
Sz =15, 41,43, ...

From the definition we see that
f(li5|+|"fl+~~+|if._lI)(x) el .

Definition 4 A scquence of non-zero integers, io, i1, f2,... (finite or infinite) alternates if sign(ij) =
—sign(ij41), 7=0,1,2....

For example: 1,-1,1,—1 and —1,2,-3,4,~5,6,... alternate but 1,1,1,1 doesn’t.

Definition 5 An integer sequence S that salisfies one of the following two conditions will be called a legal
behavior.

1. S is an infinite alternating sequence

2 orS=2U5,0 where S’ is a finite alternaling sequence.

For example S = 1,—-1,1,0 and 1,-2,3, -4,5, -6, ... are legal behaviors but 1,--1 and 1,1,1,1,1,... are
not. We will use the notation S = 1y, i, 3,13, . . . to represent the component integers of S Thus the behavior
S=1,-2,3,-4,5—6,... can be expressed by writing if = (—=1)*(k+ 1),k > 0.
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Definition 6 Let ig, ¢y, ..., ¢, be a finite alternating sequence. We set

D(io,i], ...,in): {2? . l: =ik OSkSn}
D(io, i1, ..., in) is the set of all x such that the first n4+1 components of S, are identical with iy, iy, ..., i,.
For example, D(2,—3,3) contains all points z € I, such that f®)(z) € I_3 and f(**3) € ;. This is
illustrated in Figure 3. The D() can be constructed explicitly as follows: first note that D(ip) = {z : z €
L,} = I;,. We also have the following lemma:
Lemma 1 Suppose ig, 11, ..., i, is an alternaling sequence Then
.. . _ D(io + 1,42, ..., 14,), 90>0
9(D(io, &1, -, in)) = { D(io = 1, s, ..., in), 0 <0 17)
and D( 1 . . . ) . 0
. . . — =1, 1,12,..., %), 10>
(Do, iy, -, #n)) = { D(1,4g, iz ..., in), . ig < 0. (18)
Proof: This lemma is a direct consequence of (14). We only prove
g(D(ig,il,...,in))=D(io+l,i2,...,in), 19 > 0.
The proofs of the other three relationships are similar.
z € D(ig, iy, ...,1n) = i =1, 0<k<n
=3 P =Z41=ig+1, P =F =i, 1<k<n
= g(z)e€D(io+1, 14z, ..., 1)
and therefore
g(D(io,il,...,in))gD(io-i-l,iz,...,fn), o > 0. (19)
In the other direction
IED(io-{-l,iz,...,in) = ig:io-*-l, i::ik, 0<k<n
= 4 =4, 0<k<n
= f(z) € D(ig, i1, ..., ip)
=> IE€ g(D(io, f, ..., 1,,))
where the last line is a consequence of f(g(z)) = z. Therefore
9(D(io, 41, ..., in)) D D(io + 1, i2, ..., ia), io >0
and we have finished the proof. ]
An immediate application of Lemma (1) is that, for i, 7y, ..., i, an alternating sequence,
D(ig, i1, ..., in) = gll=D(R(D(i\, iz,.. ., in))) (20)

As an example we show how to apply the lemma to construct the intervals illustrated in Figure 3.

[ 4 D(?) = 12.

o D(=3) = I_3 so D(2,-3) = g(h(I-3)).



D(2)

D(-3) D(2,-3)

D(-:3,3) D@2.-33) D@3)

Figure 3: This figure exhibits how the nested intervals converge to a point. In the example we show the first
three steps in the process of finding a point, z, with S; = 2,-3,3,.... The top row shows D(2), the middle
row D(2,-3) and the bottom row D(2,-3,2).

o D(3) = I3 so D(~3,3) = ¢D(h(I3)) and D(2,-3,3) = g(h(D(-3,3))) = g(h(¢® (h(I5))))-
In general, to explicitly construct D(ip, %1, ..., in) we set
to(z) =z, ta(2) = th_y 0 glin-11=D o p(z). (21)
and repeated application of (20) yields
D(lo, i1, - .., 1n) = ta(D(ip)) = ta(li,).

As mentioned before, if D is an interval not containing 0 then so are k(D) and ¢(D); thus t,,(D) is as well.
This proves that D(i, 41, ..., in) is an interval that doesn’t contain 0. Furthermore, h and g are one-one
functions so t,, is a one-one function that maps I, onto D(ig, {1, ..., i5). This will be important in the proof
of Theorem 1.

Another consequence of Lemma 1 is an upper bound on the size of D(ig, iy, ..., i,) that decreases
geometrically with n. We use u(D) to denote the standard Lebesgue measure of set D.

Lemma 2 Set r =1 — (a? + 1)~Y/2 x~ .6173. For iy, i1, ..., in an alternating sequence
/J(D(lo, 1y, .. oy 1',)) < 2""' L

Proof: Our main tool will be the following variant of the the mean value theorem: if D is an interval and
s a continuously differentiable function that maps intervals to intervals then

p(s(D)) = |§'(€)] - (D) for some £ € D. (22)

As a first application notice that h o go f(z) = h(~1/z) for 0 < = < 1. Since, for z # 0, we have
R(z)=1- 7{%, we immediately find that for all 0 < z < 1

Vi+zz-1 < Vi4z2-1 <

1
z2/1 4 z2 z? =9

(hogof)(z)=

8
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Applying the mean value theorem gives that for any interval D C (0,1) :

1
#(hogo f(D)) < 5u(D). (23)
To begin let i > 0. Then from Lemma 1 and the equality f(h(z)) = z we have

D(-1,%) = RI)
h(gC=D(1;))
= (hogo HU-ND(A(L)).

An immediate consequence is that u(D(—~1,7)) < 2'~%. Since D(~1,1) = —D(1, —i) we have just proven
that for ig, 7, alternating, ip = %1,

]

#(D(io, iy)) < 241 (24)

Next, let ig, i1, ..., in be an alternating sequence with 5 = —1. Again using Lemma 1 we can write

hogli=(D(1, iz, ..., i)
= (hogo ) "D(A(DQ, iy, ..., in))).

D(=1, i1, ..., in)

]

Therefore ‘

u(D(=1, iy, ..., in)) < 220 u(h((D(1, iz, . .., in))))- (25)
B'ut W(z)=1- 7L=L711: and D(1, 1z, ..., 1,) C [a,-l“ a‘—) so another application of the mean value theorem
gives

u(h(D(L, iz, .. in))) < [1 . —1—] WD, i, ..., in)). (26)
1/“?g+1 +1

Plugging this back into (25) and taking symmetry into account we have just proven that, for iy, 45, ..., i,
an alternating sequence with ig = %1,

(l = (a1 + 1)—1/2)
olir|-1

w(Dio, ir, ..., in)) < ,‘(D(%, iz, i3, ..., in)). (27)

We unravel this inequality by recursively applying it to its own right hand side n — 1 times and then
apply (24) once: this yields

. N 1
p(D(£1, i1, iz, ...,14,)) < H gt [ 1
2<j<n-2 \/m

We now examine this product on a term by term basis: if |i;| = 1 then 1 — (aﬁ,”“ +1)=1/2 = 5 while if
lij} > 1 then 21-lisl < 1/2 < r. Therefore

p(D (%1, i1, iz, ..., in)) < 7771,

Until now we assumed that iy = 1. We conclude the proof of the lemma by noting that, for arbitrary
iO)
Dig, i1, .., in) = g0~ (D (1, iy, da, ..., in)).

For all z # 0 we have ¢'(z) = 1 +|z]/v1 + 2% < 2. The lemma therefore follows from another application of
the mean value theorem. =



Definition 7 Let S = i, iy, i3, ... be an infinite legal behavior. Let S* = S* =% % & . . be a sequence
of (finite or infinite) behaviors. We say that Sk converges 10 S, (S" — S, ) if the Si converge to S component-
wise, i.e.

Vi 3N; such that Vk > N;,Vj' <j i, =i}

F
Example: let S be the sequence S; = (-1 (j + 1) and Sk the sequences Sf = (=1)/ ((j (mod k)) + 1) e.g.

S = 1,-2,3,-4,5-6,...

st o= 1,-1,1,-1,1,-1,1,-1, ...
S? = 1,-2,1,-2,1,-2,1,-2,...
S = 1,-2,3,-1,2,-3,1,-2,...

Then Sy — S.

We now formulate and prove our main theorem

Theorem 1 The correspondence
z e S

is a one-one onto mapping between R and legal behaviors. Furthermore if z is a point and z; is a sequence
of poinis such that S;, — S;, then z; — z.

Proof: To prove the first part we must show that for every legal behavior S there is a unique point z such
that S; = S. We will treat the two cases S finite and S infinite separately.

First assume that S is a finite alternating sequence
S=1g,41,...,1,0.
Recall the function ¢,, defined in (21): it is a one-one function with the property
D(to, 41, ..., n) = ta(L;,)-

We now claim that ¢ = t,(a;,) is the unique point such that S; = S. This z satisfies S; = S because
z € D(ip, iy, -- -, in) and fU8sD(a; ) = 0. Suppose now that z # t,(a;,) is another point such that S, = S.
Then z € D(io, 4y, ..., in) so there is a unique z’ € I;_ such that z = t(2'). Furthermore we must have
fUiaD(2') = 0. The unique z' that satisfies this last condition is z’ = a;_. Therefore z = t,(a;_) is the unique
point which satisfies S, = S.

Now assume that S =1g, 11, ..., 2, ... is infinite. By definition

S:=S &> z€[]D(o, i1, ...,in).

To simplify our notation we will set D, = D(ig, #y, ..., in). We have already seen that the D, are nested
intervals with p(D,) | 0. If the intervals were also closed then, as mentioned in the first paragraph in this
section, there would be a unique z such that N, D, = {z} and we would be finished.

The D,, are not closed; they are half-open, half-closed intervals, e.g., D(5) = Is = (a4, as). Thus the D,,,
the closures of the D,,, are nested closed intervals e.g., D(5) = [a4, as]. Furthermore u(D,,) = u(D,) | 0 so
there is a unique z such that N, D,, = {z}. To prove that there is a unique z, S: = S, it will therefore suffice
to prove that Ny Dy = NpD,.

Recall that D(ip, 13, ..., i) = ta(I;,). where

to(@) =2,  ta(2) =ta_y 0 g2V o h(2).
The function t,, is the repeated composition of the functions A and g. Both of these functions are continuous

and map R to R\ {0}. Thus

10



-~

Do, iy, ... i) = tu(l;)
= tu_yoglhinaal=Do (1)
= ooy o gUi=—=D(R(T;)).

Our next step is to calculate h(I;) for all i # 0. If ¢ > 0 then I; = (ai~1,a;] so h(L;) = (—al,— 1 ] . Thus

Gy41
h(I;) = h(;) U {—;‘—} A similar calculation shows that this remains true even when ¢ < 0. Therefore we
have found that

D(io, i1r - in) = Do, i1, ..y in) U {taoy 0 g{lin=11=1 6 h(w,))
where u,, = —f—.
We can rewrite this as D, = DaU{za} where z,, = ty_y 0 g1'~=11=D o h(w,). By definition we have that
f(l'.0|+|il'+“'+|'n-2|+|"n—ll_1)(2:") = u, (28)

and thus z,, € By, the set of preimages of 0.

Suppose now that N D, # N, Dy. Because the D, aren_ested there must be some integer N and some
point y such that, for all n > N, we have z, = y and y € D,, but y € D,,. From what we have seen above
we know that y = zy € By so Sy is finite. Thus there is some m such that f(™)(y) = 0; any further iterate
of y will be undefined. In particular f(fol+lil+-+inal+limD)(y) will be undefined. But this contradicts (28)
so we must have N,, D, = N, D, and thus, for every S, there is a unique point z with $; = S.

We now prove that if S;, — 5, then z; — r. We must show that for every ¢ > 0 there is an N such
that for all n > N, |z, — z| < €. This is straightforward. Given s let j be the first integer such that
w(D(ig, 31, ..., 3;)) < €. Lemma 2 tells us that such a j must exist. Since S;; — S; there must be an N
such that for all n > N, Vk < j, i~ = if. Therefore z,,,z € D(io, i3, ..., ij) so |z, — z| < ¢.

u

The theorem lets us derive properties describing the iterated dynamics of f. We use the fact that if S, is
a suffiz of S; then y € F; and = € By. By suffix we mean that there is some n > 0 such that ¥ = iny; for
all j > 0. Theorem 1 tells us that for a given & and fixed n there is a unique y that fulfills this condition.
The definition of S tells us that y = fllol#lisl4-+linsD(z) Thus y € F; and z € By,

As an example suppose that

Sy

Sz

Then S, is a suffix of S:. '
Recall that a point is periodic if there is some j such that fU)(z) = z. The discussion in the previous

paragraph implies that if S; is periodic in the sense that there is some n > 0 such that if =
7 > 0, i.e. z is periodic (the converse is almost but not quite true). Thus we can prove Fact 1:

1,-2,3,-4,5,-6,7,-8,9,-10,11,-12, ...
13,-13,13,-13,1,-2,3,-4,5,-6,7, -8, .. ..

i 4n for all

Lemma 3 Let P = {z : 3j fU)(z) =z} be the set of periodic points. Then P is dense in R.

Proof: We will actually show that P is dense in the set of all points with infinite behaviors, ® \ By. Since
By is countable the proof will follow. The general idea is to construct a sequence of periodic behaviors S;,
that converge to S;. For example if

5:=1,-2,3,-4,5,-6,7,-8,9,-10, ...

then we might choose z, so that

Sey = 1,-2,1,-2,1,-2,1,-2,1,-2,...
Sy, = 1,-2,3,-4,1,-2,3,-4,1,-2,...
Ssy = 1,-2,3,-4,5,-6,1,-2,3,~4,...

11
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Formally let £ € R\ By with S; = 1§, i7, .... By choice S; is infinite. For n > 0 let z,, be the unique
point that satisfies i;~ = i mod(2n) *

T 2 T T .z
an_10'117""120—1’10’21"“’12"—1""

(The modulus is taken 2n and not n to ensure that S;_ alternates.) By definition z, € P. It is not hard to
see that Sy, — Sz so z,, — z and we have finished the proof. n

We use the same technique to prove Fact 2, that the set of preimages of any point is dense in R.

Lemma 4 For all £ € R the sel B, is dense in R.

Proof: Fix z € R. The behavior S; = 1§, if, ... can be finite or infinite As in the previous lemma it will be
enough to show that B, is dense in % \ By.
Let y be an arbitrary point in ®\ Bo : Sy = #,4}, ... is infinite. We construct a sequence of points z,,

such that S;, — S,. Furthermore S; will be a suffix of each of the S;, so z, € B;. The proof of the lemma
will follow from Theorem 1. As an example suppose that

S = 1,-1,1,-1,1,-1,1,~1,1,-1,...
S, = 1,-2,3,-4,5,-6,7,-8,9,-10,.....

We can choose the z, such that

S;, = 1,-2,1,-1,1,-1,1,-1,1-1, ...
S., = 1,-2,3,-4,1,-1,1,-1,1-,1,...
S;y = 1,-2,3,-4,5,~6,1,—1,1—,1,...
S;, = 1,-2,1,-1,5,~6,7,-8,1—,1,...

Formally, we construct the z, so that S, starts out as Sy but ends as S.. To do tlis we define a
parameter é that ensures that the copies of S; commence at locations in the S, that have the proper parity.

5= 0 if sign(if) = sign(if)
1 if sign(if) # sign(i})
where sign(i) = i/[i|.
We now set z,, to be the unique point such that

= i 0<k<2n+$
T e k>2n46

The points z,, are all in B; and Sz, — Sy, therefore z,, — y and we have finished the proof. ]
Utilizing the same technique yet again we prove Fact 3:

Lemma 5 The set
D = {z : F; is dense in R}

is ttself dense in R and has cardinalily R,.

Proof: We start by showing how to construct a point z € D. Let A be the set of all finite alternating
sequences with odd length whose first element is positive, It includes sequences such as @ = 1,-3,5. If
is a sequence we use —a to denote the sequence whose elements are the negatives of those in a. For the
given example —~a = —1,3,—-5. Now, A is a countable set 8o we can enumerate all the sequences in A as
aq, ag,.... Let S be the concatenation of all of the pairs oy, —a;. That is

S= oy, —oy, a3, —Q3, g, —Qg, ....

12
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Let z be the unique point with S; = 5. We claim that F is dense in R.

Let y € R\ By and ¢ > 0. We must show that there is some i such that [f¢)(z) — y| < €. From Lemma 2
we know that there is some n such that if y € D(i{, ¢, ..., %) then |y — y| < . Now, by definition, if the
sequence i, i, ..., i¥, appears anywhere in S; then there is some i such that f)(z) € D(d, i, ..., &%).
By construction we know that every finite alternating sequence appears somewhere in S;. Thus there is some
i such that |f(")(:c) — y| < €. Since y and € were chosen arbitrarily we have just shown that F; is dense in R.

It is easy to modify the construction to show that D has cardinality R;. For each i =1, 2, 3, ... choose
B; to be one of the two sequences 1, —1 or 2, —2. Let S be the concatenation of all of the triplets o, —a;, 5;.
That is

S =y, —ay, B, az, —az, B2, as, —az, Ps, ...

Let z be the unique point with S; = S. The analysis of the previous paragraph shows that F, is dense in .
Since there are R; possible choices of the sequences By, B2, Ba, ... there are at least R, points z with F, € D.

It remains to show that D itself is dense in ®. This is trivial. If 2 € D then f(z) € D so F, C D. Since
F; is dense in R so is D. n

We conclude this section by analyzing the structure of the set of all bounded points. This set will be
shown to be the union of a countable number of sets, each possessing a structure sirmilar to that of the Cantor

set (Fact 4).
Theorem 2 The sel of bounded points
S={z :3c>0,F: C[—cc]}
has cardinality R, and measure 0.
Proof: We define S,,,, the set of points whose forward orbit is in [—am, am] :
Sm={z : Fz C[~am,an]}. (29)

Since a,, 1 0o we have that S; C S C S3... and § = US,,. We will prove ihat the c:zdinality of S,
is N; and therefore so is the cardinality of S. We will also prove that, for every m, (Sm) = 0 and thus
w(8) = p(UnSm) = 0 because the countable union of sets of measure 0 has measure 0.

Our main tool will again be the correspondence z — S;. As before, for z € ® we denote

S =13, 17,45, ...
With this notation it is easy to sce that (29) can be rewritten as
Sm ={z : Vj, |f] < m}. (30)
For example S; = {z, —z} where z is the unique point such that
S:=1,-1,1,-1,1,-1,...:

z = 1/V/3. (This point z can be found by solving f(z) = —z.)

That S, (and therefore S) has cardinality ®; follows from Theorem 1 together with the fact that the set
of infinite alternating sequences that can be constructed utilizing the integers 1, —1, 2, —2 has cardinality R,.
The second part, that u(Sy,) = 0, will be more difficult to prove.

For the rest of the proof we assume that m > 1 is fixed. We set

D, = U Do, i1, ..., in)
101311 -rrbm

Yisn,  |ii<m

where the union is taken over all alternating sequences of length n + 1. With this definition S, =, Dn so
it will be enough to show that u(D,) — 0.
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Figure 4: This figure illustrates the first three steps in the construction of S3, the set of all points whose
forward iterations are in the bounded interval [—a3, a3]. The unshaded area in the top diagram is Dy, in the
middle Dy, and in the bottom D;. At each step Dp41 = Dy \ Ch.

In Figure 4 we illustrate Do, Dy, and D; for the case m = 3. Notice how D, 4, is constructed by erasing
m subintervals from each interval in D,. This can be thought of as a generalization of the construction of
the standard Cantor set.

To proceed we define

C(io, il,...,i")z{z:i;=ij, ,OSan, lif,+1|>m}

and
Co= |J  Clioir, ..., in)

(TR R in

Vign, lij|g¢m

That is, Cy, is the set of points in D,, that are not in Dy,4,.
With this definition we have C,, C Dy, and Dy 4) = D, \ C,. We will show that there is a constant u > 0

such that
#(Cn)

#(Dn)
This will prove our assertion since it implies that

#(Dn) = p(Dn-1) = p(Ca-1) £ (1 = v)pp(Dn1) < -+ - < (1 — u)"u(Dy),

> u. (31)

and p(Dy,) | 0.
We will actually prove something stronger: that for any alternating sequence o, i, ..., i,

B(Clio, 31, - .-, in))
#(D(io, i1, ..., in)) 24

and (31) will follow because the D() partition D, and the C() partition C,.




We again use our old trick of constructing

D(iO, ily (AR in) = g(liol—l)(h(D(il’ i2! ct i")))' (32)

Similarly .
Clio, i1, .-, in) = gMI=D(R(C(iy, B2, .- ., in)))- (33)
We already saw that D(io, i1, ..., in) is an interval. Similarly C(io, 1y, ..., in) is an interval, i.e. this

follows from (33) and the fact that C(i) is an interval. We can therefore apply (22) twice to get
p(C(io, %1, ...y in)) _ w(C(iy, i3, ..., in)) ‘ v'($1)
I‘(D(lOy ill sy in)) /‘(D(ila i2) ceey 1")) vI(CQ)

where v(z) = ¢U1=D(h(2)).
Both g(z) and h(z) are doubly continuously differentiable bounded functions with bounded first and
second derivatives when z # 0 so v(z) has the same properties. Therefore, Taylor’s theorem with remainder

gives
v'(C1) = (G2 [1 - O(I61 = ¢e)]-
Lemma 2 tells us that [¢; — (2] = O(r™). If we set

€1,¢2 € D(ig, 11, .. -, i) (34)

_ . pw(Cig, iy, ..., in))
U i iw B(D(i0) 31, o1 in))
then this bound together with equation (34) tells us that
tn > un_1(1 = O(r")) = uo [J (1 - O(+*))

t<n

where the constant implicit in the O() notation is only dependent upon m and not on the sequence
ig, 91, ..., in. (At first glance this constant might look dependent on |ip| but [ip| has only 2m — 1 pos-
sible values. Hence we can take the maximum constant associated with any of the possibilities.)

The sum 3, O(r') converges; therefore the product [,(1 — O(r*)) converges to some constant greater
than 0. Furthermore, we know that for all n, u, > 0. Therefore u = inf u,, exists and is greater than 0. =

To quickly review: in this section we showed that there is a one-to-one correspondence between sequences
of alternating integers and points on the real axis. This correspondence, given by Theorem 1, was used to
derive many properties of the iterated dynamics of f. Basically, the theorem showed that a point is uniquely
defined by its dynamic behavior and that there is a point which corresponds to every behavior.

4 f(zzz—l

z

In this section we sketch how to modify the analysis of the previous section to analyze the iterates of
1
f@)=z~ p (35)

The analysis is almost the same as that of 1 (z — 1). The only difference is in the definition of the
functions g(z) and h(z). The inverses of (35) are

z 2: 4 .’520 2—2:: 4 220
g(x): . h(z):
2=VZTH gz Qb@ z<0

Otherwise the analysis is exactly the same (although some of the constants are different). Figure 5 shows
the partition R by the I; under the new definitions. Notice that whereas in the previous section u(I;) ~ 2lil
here g(I;) ~ In|i|. This does not cause any changes in the analysis.

Acknowledgments: The authors thank Ronald Graham [1] for bringing the question of the dynamics of
f(2) = z = 1/z to their attention.
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Figure 5: This figure illustrates how the intervals I; partition ® when f(z) -z — 1/z.
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