-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

The Origins of lambda-calculus and term rewriting
systems
Yves Bertot

» To cite this version:

Yves Bertot. The Origins of lambda-calculus and term rewriting systems. [Research Report] RR~1543,
INRIA. 1991, pp.19. inria-00075019

HAL Id: inria-00075019
https://hal.inria.fr /inria-00075019
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50449814?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00075019
https://hal.archives-ouvertes.fr

RININ

UNITE DE RECHERCHE
INRIA-SOPHIA ANTIPOLIS

Institut National
de Recherche
en Informatique
et en Automatique

Domaine de Voluceau
Rocquencourt
BP105
/8153 Le Chesnay Cedex

: France

1él:(1) 39635511

Rapports de Recherche

N° 1543

Programme 2
Calcul Symbolique, Programmation
et Génie logiciel

THE ORIGINS OF A-CALCULUS
AND TERM REWRITING SYSTEMS

Yves BERTOT

Octobre 1991

R

*

The Origins of A-calculus and Term Rewriting Systems
Yves Bertot
INRIA Sophia-Antipolis
e-mail: bertot@mirsa.inria.fr

Abstract

We use Origin functions to describe the notions of descendance and residuals in reduction
systems such as the A-calculus and linear term rewriting systems. We compare the origin functions
for the A-calculus and for term rewriting systems that implement this calculus, Ag and AEnv. We
show that the notions of origin do not correspond exactly, but we describe an extension of the
notion of origin that permits the correct computation of A-calculus origins for derivations of AEnv.
We show that this extension is not sufficient to give the same result for Ac and we give another
extension for that system. This work is interesting as it provides with a distinction between the
two term rewriting systems. This work has applications in the debugging of languages based on
the A-calculus or environments.

Keywords: A-calculus, Term Rewriting Systems, Residuals, Descendance, Origins.

Les Origines du A-calcul et des Systémes de Réécriture

Résumé

Nous utilisons des fonctions d’origine pour décrire les notions de descendance et de résidu dans
des systemes de réduction tels que le A-calcul et les systémes de réécriture linéaires. Nous comparons
les fonctions d’origine pour le A-calcul et pour des systémes de réécriture qui le représentent, Ao et
AEnv. Nous montrons que les origines ne se correspondent pas exactement, mais nous décrivons une
extension de la notion d’origine qui permet de calculer correctement les origines du A-calcul pour
les derivations de AEnv. Nous montrons que cette extension n’est pas suffisante pour le systeme
Ao. Nous donnons néanmoins une extension supplémentaire pour résoudre ce probleme pour ce
systeme. Ce travail a des applications dans la mise au point des langages basés sur le A-calcul et
les environnements.

Mots-clés : A-calcul, Systémes de Réécriture, Résidus, Descendance, Origines.

The Origins of A-calculus and Term Rewriting Systems
Yves Bertot
INRIA Sophia-Antipolis
e-mail: bertot@mirsa.inria.fr

We use Origin functions to describe the notions of descendance and residuals in reduction
systems such as the A-calculus and linear term rewriting systems. We compare the origin functions
for the A-calculus and for term rewriting systems that implement this calculus, Ao and AEnv. We
show that the notions of origin do not correspond exactly, but we describe an extension of the
notion of origin that permits the correct computation of A-calculus origins for derivations of AEnv.
We show that this extension is not sufficient to give the same result for Ao and we give another
extension for that system. This work is interesting as it provides a distinction between the two
term rewriting systems. This work has applications in the debugging of languages based on the
A-calculus or environments.

1. Introduction.

1.1. Motivation and Related Work.

The main motivation of this work is source-level debugging of programming languages.

With modern compilers, this is usually achieved by providing a debug option. The produced
code is then modified to contain extra instructions and pointers to the source program, for use
by a symbolic debugger. This debug option is most often incompatible with code optimization.
This problem can be turned around as in [Tolmach&Appel90], where one proposes to implement
debugging by source instrumentation. This permits to avoid turning off optimization, but the
resulting code is not as optimized, since debugging actions are interspersed in it. With the concept
of origin functions, we take a different point of view: we avoid interfering with the optimization
process, but we observe this process to compute a “map” (the origin function) of the resulting code.
We focus our attention on term rewriting systems because optimization is often implemented by
rewriting. In this field, origin functions are closely related to the well-known notions of descendance
and residuals.

The descendance relation or residual relation associated to a reduction system is usually studied
using labeled or marked systems, as in [Morris68], [Lévy78], [Klop80], or [Field90]. We rule out this
solution, since it means coming back to modifying the produced code. We prefer to use an origin
function that is considered separately from the object code. This has another advantage: whereas
marks and labels give an extensional description of the origin function, we can use intensional
representations, with possible gains in memory space for the debugger. Examples of such intensional
representations are studied in [Bertot91a]. We do not totally reject labeled rewriting systems,
which we consider to be good tools for the theoretical study of computation, but we propose origin
functions simply as an efficient alternative for the practical implementation of these notions.

In this paper, we are interested in the representation of the A-calculus by rewriting systems,
as this can be useful for studying implementations of functional programming languages. That a

1

1 !
LA
Figure 1. A schematic §-reduction.
(The stubs below area 2 represent occurrences of the substituted variable)

rewriting system implements the A-calculus means that for any A-calculus derivation we can find
a rewriting system derivation that performs the same computations. We want to see if the two
derivations also give the same notion of descendance. In particular, we show that the two rewriting
systems AEnv and Ao which we study do not represent the A-calculus as faithfully. This work is
closely related to previous work of Hardin and Lévy [Hardin&Lévy89] and Curien, Hardin and Lévy
[CHL91]. The proofs of correction we provide owe very much to [Hardin&Lévy89] and [Field90].
In particular, our system Aol is directly inspired from Field’s ACCLL.

1.2. Origins in the A-calculus and Term Rewriting Systems.

We consider the AB-calculus, in its de Bruijn representation [de Bruijn72]. It is based on the
following rule, also called the 3-rule.

(AM)N — M[1\N)

In this representation variable names are replaced by indices which represent the distance between
the variables and their binders. The substitution mechanism represented by the notation M[1\N]
requires non-trivial manipulation of these indices, since the distance between a variable and its
binder may change in the process. A schematic B-reduction is represented in figure 1.

For the descendance relation, it is obvious that a node at any position in area 1’ descends from
the node at the same position in area 1, whereas a node in area 2’ descends from the node at the
same position in area 2 (note that the position in the entire term changes, since area 2 moves during
the B-reduction), and the nodes that are at a same position relative to areas 3’ and 3" descend
from the node that at the same position in area 3. Because substitution requires some updating of
indices, it may happen that a variable occurrence descends from a variable occurrence that does
not have the same index.

We remark that the relation of descendance is simply a relation between occurrences in the
final term and occurrences in the initial term. We also notice that the converse of this descendance
relation is a function. We call this function an origin function.

For multi-step derivations, the origin functions are quite simple to understand. The origin
function for an empty derivation is the identity function and the origin of the concatenation of two
derivations D and D’ is the composition of the two origin functions fo f'. This simply means that
if position u comes from a node position v by the derivation D' (expressed by v = f'(u)) and v
comes from w by D (expressed by w = f(v)) then u comes from w by the concatenated derivation

D; D' (expressed by w = f(f'(u)) = f o f(u)).
The same notion of descendance also appears in linear term rewriting systems. Such systems

are sets of couples of patterns a — (3, with the constraint that every variable appearing in 3 also
appears in « and no variable appears more than once in . Computing with such rewriting systems

2

/(\ . A\
i e
) y vk

AN ENVANVAN

Figure 2. A schematic term rewriting.

means replacing instances of the pattern a by the corresponding instances of the pattern . A
schematic reduction is represented in figure 2.

As far as origin of nodes are concerned, area 1’ has its origins in area 1 as for the A-calculus,
area 2 has its origins in area 2, areas 3’ and 3" have their origins in area 3. The choice of origin
for areas 2’, 3', and 3" is done using the variables in the patterns a and §: the area under a given
variable has its origins in the area that is under the same variable in «. This definition is not
ambiguous, since we are dealing with linear systems. For the nodes in the pattern 3 they do not
have any origin; they are “created” by the reduction. Conversely, the nodes inside the pattern o
are consumed by the rewriting and do not have any descendants.

1.3. Relations between Origin Functions.

Since the discovery of A-calculus, various attempts have been made to represent it using
term rewriting systems, mostly with combinators [Curry&Feys58], [Hindley& Seldin86], [Curien86].
These attempts were all incomplete in the sense that they only presented a part of A-calculus
computations, mostly known as weak computations. Only lately, rewriting systems have been pro-
posed that exactly describe the A-calculus. These rewriting systems are Ae [ACCL90] and AEnv
[Hardin&Lévy89], [CHL91].

The main idea in these rewriting systems is to add operators to the A-calculus to represent
“substitution in the making”. These operators permit to delay and compose substitution operations,
stacking them in environments. As such, these rewriting systems provide a nice tool to study in
a common setting both the A-calculus and its implementation on environment machines (see, for
example [Field90], [Maranget91]).

Since we are interested in origins, and this notion exists for both the A-calculus and term
rewriting systems, it is interesting to compare this notion in both settings. More precisely, if we
consider a derivation of the A-calculus and a derivation of one of these term rewriting systems that
performs the same computations, do these derivations have the same origin function? The answer
is negative and we can rapidly give a counterexample, based on the fact that both Ac and AEnv
contain the following three rules:

Beta (AM)N — M(N -id|
App (MN)[s] — M[s]N[s]
FVar I[M-s] - M

.

Counterexample 1. The origin of the following two derivations differ, if D, is a A-calculus
derivation and D; is a Ao or AEnv derivation (a is any A-term).

D, : (AM11)aSaa

(e.Beta)
—_—

D,: (AM11)a (1 1)[a-id)

(e.App) (1{a - id) 1{a - id])

(1.Fyer) a 1{a - id]

(2,Fvar)
b d aa

Let fi be the origin function for D, and f, be the one for D,. From the informal definition of origins
given above, we infer fi(¢) = 1.1 (the empty occurrence, €, designates the top of a term, whereas
1.1 designates the first child of the first child) and f,(¢) is not defined, because the application
node at the top of the resulting term was created during the second rewriting (rule App).

The analysis of this counterexample shows that the application operator in the resulting term
is created by the second reduction of D,, whereas the application operator that appears inside the
A-abstraction in the initial term is consumed by the same reduction. This leads to the following
suggestion: why not extend origin functions for term rewritings so that created nodes (inside)
descend from consumed nodes (inside a)? We call such extensions of origin functions marking
functions. '

The main result of this paper is that these extensions are sufficient to represent A-calculus
origins for AEnv, but not for Ae. The main difference between the two systems lies in the treatment
of substitution inside a A-abstraction. Both introduce an extra operator to express that the variables
in the substituent will need some updating, but only AEnv introduces an extra operator to express
that the variables bound by the A-abstraction must be protected from the substitution. The system
AEnv contains the following two rules:

Lambda (AM)[s] = A(MIfi(s)])
FVarLift1 1f(s)} - 1
Whereas the system Ao gets away with the following trick, using substitution (rule FVar) to recover

the correct value for the bound variable:
Lambda’ (AM)[s] = AM(M[1-(s o T)])

Thus, in Ao, the bound variable is protected because it receives the same value when the sub-
stitution is applied. However, the origins are all mixed up, since a substitution actually took place.
The problem of computing correctly A-calculus origins can still be solved, with more complicated
extension of origin functions, which we describe in section 4.

2. Definitions.
2.1. The A-calculus.

We denote N, the set of strictly positive integers. The set A of A-terms is the set defined by
the following syntax:
A:z=X|AA|n

where n is an element of A,. We note @ the head operator of a term of the form M N and X the
head operator of a term of the form AM. Thus, A is the set of terms built from the operators of
Op)‘ = {@, /\} U.A,f+.

We use occurrences to denote positions in terms. The set of occurrences O is the set of words
of N,. We denote the concatenation of occurrences u and v as u.v and the empty occurrence as
€. We note u < v whenever there exists an occurrence w such that v = u.w (we note v < v if
u < v and u # v) and we denote |u| the length of the occurrence u. The notation M/u denotes
the subterm of M at occurrence u, op(u, M) denotes its head operator, and M[u — N] denotes
M where the subterm at occurrence u is replaced by N. For any term T, the set of occurrences
u such that T/u is defined is called its domain and is noted D(T). We also denote depth(u, M)
the number card{v | v < u op(v, M) = A}, that is the.number of A operators in M on the path
represented by the occurrence u.

Examples. (MN)P)/1.2= N, op(e,(AM)N) = @, op(1,(AM)N) = A, depth(1.1.2,(A(1 2)N)) =
1.
We note T = T’ the S-reduction (or elementary A-derivation) of T' at occurrence u. This

means that there exist two terms M and N such that T/u = (AM)N and T' = T[u — M[1\N]].
We denote

—
TUS T =TS T

s o . .
and more generally we denote T — T' any derivation of the A-calculus, where S is a list of
occurrences. We use “;” to represent the concatenation of lists of occurrences, and we denote the

empty list as 0. If D and D' are the two derivations D = T =» T' and D' = T" 5 T", we note

D; D' the derivation D; D' =T R T', thus overloading the operator “;”. Also, we denote u.S the

list of occurrences u.up;---;u.u, when § is the list of occurrences uy;---;u,.

2.2. The system AEnv.

)

Linear term rewriting systems have already been presented earlier. We denote T (] T’ the

rewriting of T at occurrence u using rule r = o — 3 to the term 7. This means that there exists a
substitution o such that T/u = () and T' = T[u — o(B3)]. We note T = T' a derivation of the

term rewriting system, where S is a list of couples of the form (u,r) in which u is an occurrence
and 7 is a rule. As for the A-calculus, we note D; D' the concatenation of two derivations and @ the
empty derivation.

The rewriting system AEnv works with the language A Env defined by the following syntax:

M:=dM|MM|n| Mls]
su=so0s|M-s|id|f(s)|1T

Thus, AEnv is obtained from A by adding new operators [], o, -, 1, ¢d, and . The term rewriting

system contains 24 rules that are given in the appendix. One of these rules, Beta, is used to
represent the (-rule:

Beta (AM)N = M|[N -id]

All the other rules describe how to compute substitutions. We note SEnv the system obtained by
removing rule Beta from AEnv.

2.3. Origin Functions.

The origin functions for the A-calculus are given by an origin mapping § that maps A-calculus
derivations to functions over occurrences. This mapping is defined by the following properties:

1. For any derivation D =T 3 T', one has dom(2(D)) = D(T’) and codom(Q(D)) = D(T).

2. For any derivations D and D’, one has Q(D; D') = (D)o Q(D’). For any derivation D of the
fomD=T2 T, one has Q(D) = 1p(1).

3. For any derivation D =T 3 T such that (D) = w and for any term M such that M/u =T,

the function w' = Q(D') where D’ is the embedded derivation D' = M 3 M[u — T'] verifies
the following properties:

a. For any occurrence v such that u £ v, one has w'(v) = v,

b. For any occurrence v € D(T'), one has w'(u.v) = u.w(v).

4. For any elementary derivation D = (AM)N = M[1\N], the function w = Q(D) is defined by
the following properties:
a. For any occurrence u € D(M) which is not an occurrence of the substituted variable, one
has w(u) = 1.1.u,
b. For any occurrence © € M[1\N] such that « = v.w where v is an occurrence of the

substituted variable in M and w is an occurrence in D(N), one has w(u) = 2.w.

The origin functions for linear term rewriting systems are also given by a mapping Q5. To
handle the fact that origin functions are only partial functions, we add an element nil to O that
represents the lack of origin for some occurrences. Thus, the images of derivations by €,,, are
functions over O U {nil} that map nil to nil. The mapping §y,, is defined by the same properties
1, 2, 3 as those used for © and by the property 4’ given below:

4'. For any elementary derivation D =T () 71 where r is a rule of the form & — 3, the function

w = Nyrs(D) is the function defined by the following properties:

a. For any occurrence v, € D(8) such 8/v, = z is a variable and for any occurrence w and
v such that w = v;.v € T', one has w(w) = u,.v where u, is the only occurrence of z in
a (remember that we are working with a linear term rewriting system).

b. For any occurrence v € D(f) which is not an occurrence of variable, one has w(v) = nil.

2.4. Markings as extensions of Origins.

A marking M is a function that maps the derivations of a linear term rewriting system to
functions over O U {nil}. It is defined by the same properties as the origin mapping Q.,, for term
rewriting systems, except that constraint 4’ is replaced by the following one:

4”. For any elementary derivation D = T) 7 where r = a — B, the function f = M(D)is the

function defined by the following properties:
a. same as 4'.a, replacing w by f.

b. For any occurrence v such that v € D(f), we have f(v) = f,(v) where f, = M(D,) and

6

D, = a (e 8.

Note that a marking is entirely specified by the values of all the functions f, for the rules in
the term rewriting system. The properties of markings given above make that we do not need to
- know the initial and final terms of a derivation to compute the marking function, we only need to
know the sequence of elementary steps and the domain of the final term. Also, §2;,, simply appears
as a special kind of marking.

3. Correct Markings for AEnv.

In this section, we first describe constraints on markings for the term rewriting system AEnv
such that marking functions associated to derivations of AEnv represent correctly the origin func-
tions associated to the A-calculus derivations they represent, and we then provide a proof that these
constraints are sufficient.

3.1. A class of Correct Markings.

The rules of SEnv can be classified in two subsets. Some rules describe the interaction of the
substitution mechanism with the operators of the A-calculus (App, Lambda, FVar, RVar, VarShift1,
VarShift2, FVarLiftl, FVarLift2, RVarLift1, RVarLift2); the others describe the interaction of the
substitutions with substitutions.

For the rules of the first subset, the left hand side always has the substitution operator -[-] as
head operator, the head operator of the first subterm is an operator from Op,, and it is the only
occurrence of such an operator in the left hand side. In the right hand side, an operator of Op,
may or may not occur. For the rules of the second subset, no operator of Op) occurs.

We consider the markings that verify the extra constraint that for every rule of the first set
r = o — (3 and any occurrence u such that op(u,) € Op,, one has f.(u) = 1. Since 7 is in the
first set, one has op(1,a) € Op,.

From now on, M will be a marking that verifies this constraint. We prove in the following that
the marking functions associated to derivations of AEnv represent correctly the origin functions of
the A-calculus.

3.2. Proof of Correctness.

To prove that AEnv actually implements the A-calculus, the authors of [Hardin&Lévy89) have
to prove that for every derivation of the A-calculus there exists a derivation of AEnv that is coinitial
and cofinal, and conversely that for any derivation of AEnv whose initial and final terms are in A
there exists a A-calculus derivation that is also coinitial and cofinal. We have to be more careful
because two coinitial and cofinal A-calculus derivations may have different origin functions, as is
shown by the derivations D; and D; below:

D, (AL((A1)(A1)) = (A)(A1)

D> (A1)((A1)(A1) 5 (A1)(A1)

The origin functions f; and f, for these two derivations are different. For example, one has
fi(e) =2 and f,(e) = €. It is obviously useless to try to compare the marking function associated
to a AEnv derivation that implements D, with the origin function of D;.

7

To turn around this problem, we prefer to state our result using the following two theorems.

Theorem 1.For any derivation A of the A-calculus, there exists a derivation D of AEnv, that has
the same initial and final term as A and such that M(D) = Q(A).

Theorem 2.For any derivation D of AEnv whose initial and final terms are both in A, there
exists a derivation A of the A-calculus that has the same initial and final term as D and such that
M(D) = Q(A).

Theorem 1 is a direct consequence of the following lemma, which describes the computation of
one substitution at a time. One result of [Hardin&Lévy89) is that the normalization of M[N-id] in
SEnv yields the term M{1\N]. We extend this result by stating the properties of the corresponding
marking function.

Lemma 1. For any terms M-and N of A, there exists a derivation D of S Env normalizing M[N -id)
with a marking function M(D) = f verifying the following properties:

1. For any occurrence u € D(M) which is not an occurrence of the substituted variable, one has
f(u) = 1Ly,

2. For any occurrence u € D(M[1\N]) such that v = v.w where v is an occurrence of the
substituted variable in M and w is an occurrence in D(N), one has f(u) = 2.1.w.

The proof of this lemma uses the following four properties:

Property P1. For any term M € A, any substitution S € AEnv, and any natural n there exists
a derivation D leading from M{S] to a term M’, with a marking function f such that:

1.Vue D(M) |ul<n op(u,M)e {@A} op(u,M') =o0p(u,M), f(u) = l.u,

2.Vue D(M) M/u=M" (lui<n A M"'"eN) Vv (lul=n)

times
p tim

M fu=M"[%(...#(S)...)] where p = depth(u, M),
Vv € D(M"), f(u.l.v) = u.v,

p times

Vv € D(S), f(u.2.1.-.-.1.v) = 2.v.

Proof. By induction on n. For n = 0 the result is trivial.

Let D,,, f,, and M, be the correct derivation, the associated marking function, and the final term
of the derivation for a given natural n, let u;, ..., u, be the occurrences of length n in D(M)
such that op(u;, M) € {@, A}, and let 7y, ..., 7y, be the rules such that r; = App if op(u;, M) = @
and r; = Lambda if op(u;, M) = A. Let s} be the sequence s|, = (u;1,71); - -;(¥m,Tm) and let D},

C . s, .. . e L.
be the derivation D; = M, = M,;;. The derivation Dnyy = Dy; D), is a correct derivation for
AEnv. Let fn,41 be the associated marking function. The rest of the proof, omitted here, shows
that Dyn4q, fnt+1, and M, verify the good properties. 0

Property P2. For any number n € N} and any term S built only with the operators {, 1, id and
o, there exist a derivation D starting from n[S], whose final term is a number m, and such that the
associated marking function f verifies f(e) = 1.

Proof. By induction on the length of the longest derivation for SEnv starting from n[S] (such
an induction is licit since SEnv is noetherian). If this length is 1, then the rule applied is either
IdEnv, VarShift1, or FVarLift1. The constraints imposed on the marking ensure that f(e) = 1.

If the length of the derivation is greater than 1, let (u,r) be the first step and f' the corre-
sponding marking function. By induction hypothesis, we only have to verify that f'(1) = 1. If one

8

has u # €, then 2 < u and this is trivially the case. If one has u = ¢, then r is either VarShift2,
FVarLift2, RVarLiftl, or RVarLift2. In all these cases, the constraints we impose on the marking

ensure that f'(e) = ¢.

Property P3. For any distinct numbers n and p and any term N there exist a derivation starting
-1 times
PP . '
from n[f{t(---ft(N)---)] whose final term is a number m and such that the associated marking
function f verifies f(e) = 1.

Proof. there are two cases, depending on whether n > por n < p. If n > p there exist a derivation

D' of the form D' = n[ff(---fH(N)---)] = n'[S] where

p—1 times

A

s = (e, RVarLift1); (e, RVarLift2);...; (e, RVarLift2); (¢, RVar)

leading to a term of the form n'(S] where n’ is a natural number and S is a term built only with
the operators f}, up, id and o. The constraints imposed on the marking ensure that the marking
function f' associated to D' verifies f(e) = €. the result is then given by P2.

If n < p then there exist a derivation D' of the form D' = n[fi(-- - f#(N)---)] > n'[S] where

n-2 times

N

s = (e, RVarLiftl);'(s, RVarLift2);...;(e, RVarLift25; (e, FVarLiftl)

. Here again the associated marking function f’is such that f'(¢) = ¢, S is built only with f}, up,
id and o, and the result is given by property P2.

Property P4. For any number n and any term N of A there exists a derivation D going from
n times

p——
nft(---f(N)---)] to a term N' of A such that for any v € D(N) one has either op(v, N) = op(v, N')
or op(v,N) € N and op(v,N') € N. If f is the associated marking function, then one has

n times

——
f(v)=2.1.---.1.0. _
Proof. Let D' be the derivation D' = n[fi(---f(N)---)] = 1[N o...0 1] id] where

n times

A

”

s = (e,RVarLiftl);(e,RVarLift2);---;(e, RVarLift2); (1, MapEnv)

and let f' be the associated marking function. by the definition of marking functions, one has
n times

o
f(2.1.1.v) = f'(2.1.---.1.v) for any occurrence v € D(N). From properties P1 and P2, we obtain
that there exist a derivation going from N[fo...01] to a term N' verifying the good properties and
such that the associated derivation f" verifies f”(v) = 1.v. Last, there exists a derivation of the

form 1[N'-(To...01)] 75"

Altogether, we have constructed a derivation going from n[ff(---f(N)---)] to N’ whose marking
n times

N' whose associated marking function f" is such that f"'(v) = 2.v.

N
function f verifies f(v) =2.1.....1.v for every occurrence v € D(N). 0

Together properties P1, P2, P3, and P4 give a proof of lemma 1. To find a AEnv derivation D
that has the same initial and final term as a A-reduction A = M = N and such that M(D) = Q(A),

9

. ‘s (u,Bet c .
we simply need to perform the rewriting M (B2t 411 and use lemma 1 to find a SEnv derivation

leading to N that has the correct marking function. For a non-elementary A-derivation, we simply
need to repeat the operation.

- The proof of theorem 2 uses an auxiliary marked rewriting system, for which we prove some
confluence properties. The result then comes from the close relation between this marked rewriting
system and marking functions. We first introduce a language of marked terms:

Definition. Let A} be a set of marked integers, N7 = {1*,2°,...}, and let Op} = {@*, A"} UN}
be a set of marked operators. Let AEnv* be the set of terms obtained by replacing some occurrence
of operators of Op) by the corresponding operator of Op5. Let m : Opy — Op} be the marking
bijection such that m(@) = @*, m(A) = A", and m(n) = n* for every number n. For any term
t € AEnv*, and any occurrence u € D(t) such that op(u,t) € Op,, we note m(t, u) the term t' such
that op(u,t') = m(op(u,t)) and op(w,t') = op(w,t) for any w # u. Let erase : AEnv* — AEnv be
the function that maps any term ¢ to the term t' such that op(u,t') = op(u,t), if op(u,t’) ¢ Op}
and op(u,t') = op where m(op) = op(u,t) otherwise.

Stars in a term are simply used to denote occurrences. To compute a descendance relation, we
can simply use a rewriting system working on marked terms. The descendance relation we study

is simply parameterized by the way we choose to put stars on both sides of a rewriting rule. To
study marking functions, we use the rewriting system introduce in the following definition:

Definition. Let AEnv* be the smallest rewriting system containing AEnv and such that if r =
o — Bis arulein AEnv*, uis an occurrence such that a/u € Op, and v is the occurrence such that
B/v € Opy, a' = m(u,a) and B’ = m(v,B) then the rule o’ — ' is also in AEnv*. The function
erase introduced in the previous definition extends naturally to rules of AEnv*. For any derivation

D=M"™ Nin AEnv, and any term M’ such that erase(M') = M, we denote lift(D, M)

the derivation D' = M' 5 N’ where ' is the only rule in AEnv* such that erase(r’) = r

and D’ is a valid derivation. This function lift extends naturally to non-elementary derivations
by concatenation. We denote SEnv* the subset of AEnv* that contains any rule r such that
erase(r) € SEnv and Beta” the system AEnv® — SEnv™.

The following lemma shows that AEnv* enables us to directly use rewriting for studying
marking functions.

Lemma 2. Let D = M — N be a derivation of \Env, and f be the function f = M(D). For any
occurrences v € D(N) and u € D(M) such that op(u, M) € Opy and op(v, M) € Op,, and for any
terms M' and N' in AEnv* we have the following property:

Lft(D,m(M,u))=M" — N = op(v,N’) € Op} & u= f(v)

Proof. By induction on the length of D.
-~ If D is a derivation of length 0, then the result is trivial.
- If D = D'; D" where D" is of the form P (wp) N, let f" and f” be the function such that

f''= M(D') and f" = M(D") Let P' be the term of SEnv* such that iift(D',m(M,u)). If we
have v = w.v’ where v' € D(B) and /v’ is not a variable, then op(v,N’) € Opj if and only if
op(f"(v), P') € Op3, from the definition of SEnv*. By induction hypothesis, op(f"(v), P') € Op}
if an only if f'(f"(v)) = u. If v # w.v' where v' € D(B) and /v’ is not a variable, then we have

directly op(v, N') = op(f"(v), P') and the induction hypothesis also gives the result. U

10

(Betay* R (u”.1, Beta)

M N

l (u’, App) (u’, Closure)

(u.App) R’
* .2, MapEn
% (u".1, Lambda) (w2, MapEnv)
. (v~.2.2,IdL)

p {Beta) (u", Beta) - (v, Closm'e)= (2, L\ﬁEnv; (u'.2.2, IdR)> Q

R”
{u.1, Lambda)

Figure 3. Resolution of critical pairs between (Beta)* and SEnv.

Property P5. The rewriting system SEnv* is noetherian and confluent.

Proof. This rewriting system is locally confluent, as can be checked automatically using the algo-
rithm of Knuth and Bendix [Knuth&Bendix70], and it is also noetherian, since S Env is noetherian
(Hardin&Lévy89] and any derivation of SEnv* is mapped to a derivation of SEnv of same length

by the function erase. Therefore, it is confluent {Huet80]. 0

Corollary 1. If M and N are elements of A, then all the normalizing derivations for S Env starting
from M[N -id] have the property stated in lemma 1.

In the following, we shall write Sim3* the set of derivations in AEnv* that perform first a
reduction using one of the rules in Beta” then a S Env* normalization, then a Beta™ reduction, etc.
Corollary 1 simply indicates that derivations in Simf3~ have the property needed in theorem 2.

Lemma 3. The following diagrams hold, where (S*)* represents repetitive uses of the rules in the
system S*.

(Beta*)* (Beta*)*
(Beta‘)‘l l (Beta*)* SEnv* l l (SEnv*)*
—— —
(Beta*)* (SEnv*)*(Beta* }*(SEnv*)*
a. b.

Proof. Diagram a comes from the fact that Beta™ does not contain any critical pair and that a
Beta®-reduction cannot create a Beta®-redex. For this reason, a derivation of Beta™ reduces only
residuals of redexes that are all present in the initial term and we can use the possibility to reduce in
any order (in parallel) non-overlapping redexes [Boudol85]. Diagram b can be proved by induction
on number of redexes reduced in parallel by the derivation on the upper arrow. If the redex reduced
on the leftmost arrow does not overlap with any of the redexes reduced by the upper arrow, then
the result comes directly from the possibility to reduce in any order non-overlapping redexes. If the
redex reduced on the leftmost arrow overlap with one of the redexed reduced by the upper arrow,
then the rule r used on the leftmost arrow is such that m(r) = App and we can use diagram a to
suppose without loss of generality that the Beta redex that overlaps with (u,r) is reduced last. If
we consider the unmarked derivation, we can then draw the diagram given in figure 3.

The same diagram can be drawn with marked derivations, where the appropriate rules for App,
Lambda, and Beta are chosen depending on the marks carried by M at occurrences u.1 and u.1.2.

The final result @ does not depend on these marks.

Lemma 4. any derivation of AEnv* whose initial and final terms are in A™ has the same initial

11

and final term as a derivation in Simg3*.

Proof. By induction on the number of Beta™ reductions in this derivation. If this number is 0,
then the derivation is empty, since a term of A* is in SEnv* normal form.

Let D = D,; D, be a derivation of AEnv* whose initial and final terms are in A*, where D, is
a Beta™ reduction followed by a SEnv* normalization. Let d be a SEnv*-normalization of the
initial term of derivation D;. From lemma 3, diagram <, there exists a derivation D} of the form
Dj = d;d,;d' that has the same initial and final term as D;, where d is a Beta® derivation and d'
is a SEnv* normalization. We can apply the induction hypothesis to the derivation D;;d. From
lemma 3, diagram a, we can suppose that the the redexes reduced in d, are in decreasing order
with respect with the order < on occurrences. We can then prove by induction on the length of d;
that the derivation dy;d' has the same initial and final term as a derivation in Simg*. This is done
by separating.the first redex from the others. Because this redex appears at an occurrence that is
maximal for <, the normalization of its result does not interfer with the other Beta redexes. The

detailed proof is omitted here. U

The proof of theorem 2 then comes directly from lemmas 2 and 3. From lemma 2, we obtain
that any Simg derivation D has the same initial and final term as a A-derivation A and that
we have M(D) = Q(A). From lemma 3, we obtain that it is possible to find a Stmf3 derivation
that has the same initial and final term and the same marking function as any derivation of AEnv
starting and finishing in A.

4. Computing Origins for \o.

The rewriting system Ao is presented in the appendix. We call & the subsystem obtained by
removing rule Beta. the set of terms on which Ao works is the subset Ac of AEnv that contains
all the terms constructed without the operator {}. As we saw in the introduction, Ao uses the rule
FVar both to perform actual substitutions and to protect bound variables from substitution. With
respect to origin computations the two usages should be distinguished. We recall the form of this
rule:

FVar 1M id - M

When an actual substitution is performed, we agree that the origins of nodes in the result M are
actually in the subterm M of the left hand side, but when the reduction corresponds to protecting a
bound variable, M is actually a term that derives to a number n and we want the origin of the result

to be in the subterm 1 of the left hand side. Thus, we have to choose between two possible marking
. e . FV . . .
functions for a derivation of the form T (wF¥en T'. When computing the marking function for a

non-elementary derivation, we need to find a way to choose which possible function each time the
rule FVaris used.

4.1. A Correct Mapping for Ao.

The solution we propose is a mapping M, working only for derivations that start from a
term of A, constructed recursively using the following rules. In these rules we note (u or v) the
occurrence w such that w = v if u # nil and w = v otherwise (or behaves like a sequential or).

1. For any term M € A, if D is the derivation D = M 2 M then M,(D) = 1p(m)-

2. If D, D', and D" are derivations such that D =T > T, D' = T %7 7" and D" = 7'

T” then the function f' = M,(D’') is defined from the function f = M (D) by f' = fo f"
where f" is given as follows:

12

a. If the rule r is Beta, app, IdL, Shiftld, Shift, AssEnv, or MapEnv, then f" = M(D")
where M is a mapping verifying the constraints defined previously for AEnv. In all the
other cases we have f” = Q,,(D"), almost everywhere, with the following exceptions:

b. If the rule r is Lambda', then we have f(u) = f(u.1). We recall that rule Lambda’ has the
following form:

Lambda’ (AM)[s] = A(M[1-(s o T1)])

Note that this definition does not give any origin to the index in the right hand side.
c. If r is the rule r = FVar, then we have f(u) = f'(u.2.1) or (f'(u.1) or f'(u)).
d. If 7 is the rule r = Closure, then we have f(u.1) = f'(u.1.1) or (f'(u.1) or f'(u)).
e. If r is VarShift2 or RVar, then we have f(u.1) = f'(u.1) or f'(u).
f. If r is VarShift1 or Varld, then we have f(u) = f'(u.1) or f'(u).
4.2. Proof of Correctness.

With this mapping M, we have the same results for Ao as we had earlier for AEnv, that is,
we have the following two theorems:

Theorem 3.For any derivation A of the A-calculus, there exists a derivation D of Ao, that has the
same initial and final term as A and such that M,(D) = Q(4).

Theorem 4.For any derivation D of Ao whose initial and final terms are both in A, there exists
a derivation A of the A-calculus that has the same initial and final term as D and such that
M,(D) = Q(A).

The proof of these theorems is very similar to the proof of theorems 1 and 2. We have to take
into account the fact that the mapping M, is defined only for derivations starting on terms of A.
We first use a lemma that reproduces the result of lemma 1:

Lemma 4. For any terms M, N, and P in A there exists a derivation D of the form Dy; D' where
Dy = Plu « (A(M)N)] (w.Bgta) Plu « M[N -id]] and D' is a derivation of o ending on a term P’
of A, such that the function f = M,(D) verifies the following properties:

-YoeD(P') udv f(v)=w.

-Vv e D(M) wvis not an occurrence of the bound variable in M f(u.v) = u.1.1.v

-Yv € D(M) v is an occurrence of the bound variable, Vw € D(N) f(u.v.w) = f(u.2.w).

The proof of this lemma uses the following properties, that reproduce the results of properties
P1 to P4.

Property P7. For any term P of A , any derivation D starting in P and finishing in P’ such that
P'/u = M[S], and any natural n there exists a derivation D' starting from P' and ending in a term

P" such that the functions f = M(D) and f' = M(D;D') and the term P" verify the following
properties:

LYo ugv f(v)= f(v), op(v, P") = op(v, P'),
2. YveD(M) |vl<n op(v,M)={@,2} op(u.v,P")=o0p(v,M), f'(uv)= f(u.lv),
3. Yve D(M) M/v=M (lv]<n A M' e M)V (Ju] = n),

p times

e e
P'lluv=M[1-...(p-So(To(...(101)...)))...)] where p = depth(v, M),

13

p times

Yw € D(M'), f'(uv.lw)= f(u.v.w), Yw € D(S), f(uv.2.2.---2.1.w) = f(u.2.w),

g times
o,
Vg <p, f(uv2.1.---.1) = nil.

Proof. The proof of this property is the same as the proof of property P1, replacing uses of the
rule Lambda by judiciously chosen sequences of Lambda’, MapEnv, VarShift, and AssEnv.

The following property is the equivalent of Property P2:

Property P8. For any derivation D starting from a term P € A and ending in a term P', such
that P'[u = n[S] where n € N, and § is a substitution build only with the operators -, 1, 1d, o, [],
and the elements of N, for any derivation D' starting from n[S] and ending in a term m € Ny, if
f and f' are the functions f = M,(D) and f' = M,(D;u.D') and if f(u) = nil and f(u.2.v) = nil
for any occurrence v € D(S) such that S/v € N, orop(v,S) =[], then we have f'(u) = f(u.1).

Proof. This proof is done by induction on the length of the longest derivation starting from n[S].
It contains a lot of cases, corresponding to the different possible rules used and to the different

possible values of the function f. This tedious proof is omitted here. 0

The following derivation describes exactly the case when a bound variable is protected from
substitution.

Property P9. For any derivation D starting from a term P € A and ending in a term P’ such
that P'Ju=n[1-(...p—=1-(N-id)oTo(...(101)...)...)] where n and p are different numbers,
there exists a derivation D' such that D' = P' S P", P"/u = m € Ny, and if f and f' are the

k times

e
functions f = M,(D) and f' = M,(D; D), if f(u) = nil and f(u.2.---.2.1) = nil for any k such
that 1 < k < p, then we have f'(v) = f(u).

Proof. There are two cases. If n > p, let s’ be the sequence:

p—1 times

—

s’ = Ze, RVar);...; (e, RVarj; (2, MapEnv); (e, RVar)

and let D" be the derivation D" = P’ 23 Q. The term Q is such that Q/u = n — p[S] where S is a

substitution built only with the operators id, {, and o. Let f” be the function f" = M,(D; D"),
we have f"(u) = nil, f’(u.1) = f(u.l) or f(u). Property P8 then gives the result. If n < plet s

be the sequence:
n—1 times

N

s = Ee, RVar);...;(e, RVari; (¢, FVar)

n times n times

et N
we have f'(u) = f(u.2.....2.1) or(f(u.1) or f(u)). Since f(u.2.....2.1) = f(u) = nil we have
f'(w) = f(u1). U
Property P10. For any derivation D starting from a term P € A and ending in a term P’ such that
P'/u=n[l-...(n~1-((N-id)oTo(...0(To1)...)))..] where N € A, there exists a derivation D' such
that D' = P' =¥ P", P" [u = N’ € A, for any occurrence v € D(N) one has op(v, N) = op(v,N') or

op(v,N) € N, and op(v,N') € N,. and if f and f' are the function f = M,(D) and f' = M,(D')

n times

e N
then we have f'(u.v) = f(u.2.....2.1.v) for any occurrence v € D(N).

14

Proof. Let s’ be the sequence

n-1 times
A

s' = (¢, RVar);...;(¢, RVar)(2, MapEnv); (¢, FVar)

u.s’

and let D" be the derivation P’ < The term Q is such that Q/u = N[to(...(To1)...)]. Let f"

n times

e
be the function M,(D; D"). We have f"(u) = nil, f"(u.1.v) = f(u.2.....2.1.v) for any occurrence
v in D(N). The properties P7 and P8 then give the result. i

Together, properties P7, P8, P9, and P10 give a proof of lemma 4. This lemma has the same
corollaries as lemma 1, and among them comes theorem 3.

To prove theorem 4, we use a more elaborate labeled rewriting system as we did for theorem
2. This rewriting system is based on the following language of labels.

Definition. Given an infinite set A, we consider the language L constructed from A U {nil,or}
where nil and the elements of A have a null arity and or has arity two. Let or and nil have the
following properties, for every z, y, and 2z in L.

zornil=nilorz=12 (zory)orz=xor(yorz)

We consider the set Ao’ of terms Ao labeled with elements of L. We assimilate unlabeled terms
with labeled terms where all the nodes are labeled with nil. Given a term M € Ao, and a function
L:D(M) — L,wenote (M, L) the labeled term M’ € Aol that carries the label £(u) at occurrence
u, for any ocurrence u € D(M). We also note M = erase(M') and £ = labels(M'). labeled terms
are represented by writing the label as exponent. For example, if P is the term P = (A(M)!N)™
and £ = labels(P) we have L(¢) = m and L£(1) = [. We allow ourselves to add a label [to a term
M by writing M!, with the convention that (M)™ = M!orm,

The basic idea behind this labeling is the same as in [Lévy78], [Klop80], [Field90], and
[Maranget91]. However, the language of labels is much simpler.

Definition. The labeled rewriting system Aol is given in appendix. The function erase introduced

in the previous definition extends naturally to rules of A\o’. For any derivation D = M () N of Ao

(u"")

and any labeling function £ : D(M) — L we note lift; (D, L) the derivation D' = (M, L) =" N’

such that erase(r’) = r (in the following, erase(r') and r will always be noted with the same name,
the ambiguity being always solved by the context). As for the function lift, this function lift;
extends naturally to non-elementary derivations. We note ol the sub-system Aol — { Beta}.

This labeled rewriting system permits to represent computations of origins for Ao exactly as
AEnv* did AEnv.

Definition. For any term M such that op(e, M) € Op, U {[]}, there exists a characteristic
occurrence u. of the form 1.1 such that for any occurrence v < u, we have op(v, M) =“[]” and
op(uc, M) € Op, (this comes directly from the definition of Ac¢). The label £(u.)...L£(1.1)L(1),
where £ = labels(M), is called the head-label of M and is noted head(M). We say that M
is head-labeled if head(M) # nil and that M is well labeled if for any occurrence u such that
op(u, M) € {@, A} one has L(M) # nil.

Lemma 5. If D = M — N is a oL derivation and M is well labeled and head-labeled then N is
well labeled and head-labeled.

15

Proof. Proof by induction on the length of D, omitted here. 0

Lemma 6. For any terms M € AL and N € Aol such that M is well labeled and D = M — N
is a ol derivation, for any subterm of N of the form A(P), the term P is head-labeled.

Proof. By induction on the length of the derivation D that goes from M to N. If D is the empty
derivation, then the result is trivial.

If D= D'; D" where D" = M' () N we have two cases:

- M'/u.l1 = A(P) and r = Lambda’. we have N/u = A(P[S]) for some term S and P[S] is head
labeled because P is head labeled. The result is trivial for any other ocurrence.

~ In any other case, the result comes from the induction hypothesis and lemma 6. 0

We can now come to the following lemma, which expresses the relation between Ael and M,.
This reproduces the result of lemma 2.

Lemma 7. For any term M € A, for any labeling function £ : D(M) — A, for any derivation
D =M — N of Ao, if L' is the labeling function such that lift;(D,L) = (M,L) — (N,L'), and
if f is the function f = M,(D), then we have:

Vo € D(N) L(f(v)) = £'(v)

Proof. By induction on the length of D. If D is the empty derivation, then f is the identity

function and £ = £’, the result is trivial.
u,r)

If we have D = D'; D" where D" = M’ (“D N and £" is the function such that lifty (D, L) =

(M',L"y = (N,L'), f' = My(D') we only have to compare formally the labeled rewriting system
and the definition of M,. We have two cases:

1. If r is neither Lambda’ nor App, then for any occurrence such that the definition of M, imposes
f(w) = f'(w') or f'(w") one has w = u.v, v’ = u.v', w” = v.v”, and lg(v) = l,(v') or l,(v")
if B/v is not a variable or Ig(v) = l4(v") and B8/v = /v’ is a variable. For all the other
occurrences, the result comes from the definitions of rewriting and origin functions. We can
then apply the induction hypothesis.

The same kind of reasoning holds when the definition of M, imposes a constraint of the form

fw) = f'(w') or f'(w") f'(w™).

2. If r is one of the rules Lambda’ or App then we have f(u) = f'(u.1)and £'(u) = £"(u.1) or L'(u).
However lemma 5 asserts that £"(u.1) # nil and we have £'(u) = £L"(u.1). As above, we can
then apply the induction hypothesis. D

L

Property 11. The rewriting system o" is confluent on ground terms.

Proof. Most critical pairs of o are confluent in the genera] case. For those critical pairs that are
not simply confluent, the confluence can be checked automatically by a systematic treatement of

all the possible cases of variable instances. 0

This property has the same corollaries as property P5. If we note Simp3, the set of derivations
in Ao, whose initial and final term are in A and which perform first a reduction using rule Beta,
followed by a normalization for o, followed by a Beta-reduction, etc, then all the derivations in
Simf actually permit to prove theorem 3.

To prove the equivalent of lemma 3 we have to be more careful, and we need extra definition.

Lemma 8. The same diagrams as in lemma 3 hold for Aol on ground terms, replacing Beta® by
Beta and SEnv* by oL,

16

(Beta)* R (u".1, Beta)

Y
Z

M

l (u’, App) (u’, Closure)

(u,App) R’
(Beta)*. (u”.2, MapEnv)
(u°.1, Lambda”) 1dL)
i .22,
(Beta)* (u’, Beta) S > .

P ?’ —>R" > > Q Q
(u.1, Lambda”)

Figure 4. Resolution of critical pairs between (Beta)* and or.

Proof. Diagram a can be proved exactly the same way as in lemma 3. For diagram c, the case
where the o-redex on the leftmost arrow overlaps with one of Beta-redexes is solved by the diagram
given in figure 4, where the derivations (Beta)* represent the derivation that reduces the Beta
redexes that do not overlap with the reduction in (u, App), u' is the residual of occurrence u', and
s is the sequence

s = (v, Closure); (u'.2, MapEnv); (u'.2.1, FVar); (v'.2.2, AssEnv); (v'.2.2.2, Shift); (v'.2.2.2, IdL)

If the term R is such that R/u' = (AM(T)*T')"[S])" then the terms Q and Q' obtained figure
4 differ only in the sense that Q/u’ = T¥[T'[S]- 5] and Q'/u' = T[T'[S] - (S o id)]. We can prove
that there exists a term S’ such that Soid — S’ and S — S’ for any ground term S. This can be
proved by induction on the size of §. Let S’ be the normal form of S for o. If §' is atomic, then
we have § = id or S = 1, the rules IdL and Shiftld give the result. If S’ is not atomic, then we
have necessarily S’ = (¢- S") for some terms t and S”, we can then write the following derivation:

(t-5")oid “MEE™ 4li). (5" 0 id)

By induction hypothesis, we have §" o id — S”. We can prove using the same kind of reasoning
that t{id] — t. We thus prove that T[T'[S]- S] T[T'[S] - (S o id)] reduce to the same term. We
still have to prove that T¥[T'[S]- S] and T[T'[S]- S] reduce to a same term. From lemma 6, we
have that T is head labeled. Since T is also ground there exists a term T" such that T — T" is a
ol derivation and op(e, T") € Opy since T" is also head labeled, we have labels(T")(¢) # nil and
labels(T")(e) = labels(T")(e). Therefore, the terms T[T’[S]- S] and T[T'[S] - S] reduce to the

same term T"(T'[S]- S]. 0

5. Conclusion.

The concept of origin functions we have used in this paper seems a good tool to study the
notion of descendance in reduction systems, with a good separation between descendance and
other aspects of reduction. With the concept of marking functions, we have extended this notion
of descendance in a way that proves fruitful when studying the A-calculus and the system AEnv.

The difference between AEnv and Ao, mainly that the former is confluent on all terms whereas
the latter is confluent only on ground terms, is studied in detail in [CHL91], along with conditional
variants of these systems. Our result shows another difference between the two systems. It would be
interesting to understand whether the problem of computing origins and the problem of confluence
are related.

17

On the side of programming language study and implementation, it would be interesting to
extend this kind of result to graph rewriting systems, as many new implementations of functional
programming languages use graph rewriting.

References.

[ACCL90] M. ABaDI, L. CARDELLI, P.-L. CurIEN, J.-J. LEvY, “Explicit Substitutions”, Pro-
ceedings of the 17th Annual Symposium on the Principles of Programming [Languages, San
Francisco, California, January 1990, pp. 31-46.

[Bertot91a] Y. BERTOT, Une Automatisation du Calcul des Résidus en Sémantique Naturelle,
PhD thesis, University of Nice, France, June 1991.

[Boudol85] G. BoupoL, “Computational Semantics of Term Rewriting Systems”, Algebraic Meth-
ods in Semantics, M. Nivat, J. C. Reynolds (editors), Cambridge University Press, 1985.

(de Bruijn72] N. pE BruliN, “Lambda-Calculus Notation with Nameless Dummies, a Tool for
Automatic Formula Manipulation, with Application to the Church-Rosser Theorem”, Indag.
Math. 34,5, 1972, pp. 381-392.

[CHL91] P.-L. CurieN, T. HARDIN, J.-J. LEvy, “Confluence Properties of Weak and Strong
Calculi of Explicit Substitutions”, Personal communication, July 1991.

[Curien86] P.-L. CuRIEN, Categorical Combinators, Sequential Algorithms and Functional Pro-
gramming, Pitman, London, 1986.

[Curry&Feys58] H. Curry, R. FEYS, Combinatory Logic, Vol. I, North-Holland, 1958.

[Field80] J. FieLp, “On Laziness and Optimality in Lambda Interpreters: Tools for Specifica-
tion and Analysis”, Proceedings of the 17th ACM Symposium on Principles of Programming
Languages, San Francisco, California, January 1990, pp. 1-15.

[Hardin&Lévy88] T. HarDIN, J.-J. LEvy, “A Confluent Calculus of Substitutions”, Proceed-
ings of the France Japan Artificial Intelligence and Computer Science Symposium, Izu, Japan,
November 89.

[Hindley&Seldin86] J. HiNDLEY, J. SELDIN, Introduction to Combinators and A-calculus, Lon-
don Mathematical Society Student Texts, Cambridge University Press, 1986.

[Huet80] G. HUET, “Confluent reductions: abstract properties and applications to term rewriting
systems”, Journal of the ACM, 27, 4, pp. 797-821, 1980.

[Klop80] J. W. KLor, Combinatory Reduction Systems, PhD Thesis, Mathematisch Centrum
Amsterdam, 1980.

[Knuth&Bendix70] KNuTH, D. E., BENDIX P. B., “Simple Word Problems in Universal Alge-
bras”, Computational Problems in Abstract Algebra, J. Leech (editor), Pergamon Press, 1970.
[Lévy78] J.-J. LEvY, Réductions Correctes et Optimales dans le Lambda Calcul, PhD Thesis,

Université de Paris VII, 1978.

[Maranget91] L. MARANGET, “Optimal Derivations in Weak Lambda-Calculi and in Orthogonal
Terms Rewriting Systems”, Proceeding of the 18th ACM Symposium on Principles of Program-
ming Languages, Orlando, Florida, January1991, pp. 255-269.

[Morris68] J. MoRrris, Lambda Calculus Models of Programming Languages, PhD Thesis, MIT,
Cambridge, Massachusetts, 1968.

[Tolmach& Appel90] A. P. ToLMAcH, A. W. APPEL, “Debugging Standard ML without Reverse
Engineering”, Proceedings of the 1990 ACM Conference on Lisp and Functional Programming,
Nice, France, June 1990, pp. 1-12.

18

Appendix: The Rewriting Systems A\Env and Ao

(Beta) (Aa)b — a[b-id]
(App) (ab)is] — alslpls] (Lambda) Cals] — Aalf(s))
(Closure) (alsht] — a[sot] (VarShift1) n[f] - n+1
(VarShift2) n[fos] — n+1[s) (FVar) lla-s] — a
(FVarLift1) 1n(s)] — 1 (FVarLift2) f(s)ot] — 1]t
(RVar) n+1fa-s] — n[s] (RVarLift1) n+1f(s)] — nl[soT)
(RVarLift2) n+ 1{ft(s)ot] — nf[so(lot)] (AssEnv) (sot)ou — softou)
(MapEnv) (a-s)ot — aft]-(sot) (Shift) lTo(a-s) — s
(ShiftLift1) Tofi(s) — sof (ShiftLift2) To(f(s)ot) — so(]ot)
(Lift1) Ao ft(t) — f(sot) (Lift) Hs)o(h(t)ow) — fsot)ou
(LiftEnv) fi(s)o(a-t) — a-(sot) (1dL) tdos — s
(IdR) soid — s (Liftld) 1id) — id
(IdEnv) afid] - @

The rewriting system AEnv.
(Beta) (Aa)p — afb-id]
(App) (ab)ls] — (als] 8fs) (Varld) alid) — n
(FVar) lla-s] — a (Closure) als)ft] — a[sot]
(Lambdad') (Aa)(s] — Aa[1-(so1)]) (IdL) idos — s
(Shiftld) Toid — 1 (Shift) To(a-s) — s
(AssEnv) (s;083)083 — 81 0(s2083) (MapEnv) (a-s)ot — aft]-(sot)
(VarShift1) n[l] — n+1 (VarShift2) nl[tos] — n+ 1[s
(RVar) n+1lfa-s] — nfs

The rewriting system Ao.

(Beta) ((Aa)*b)* — alb-1d]
(App) ((ab)*[s])* — (a[s] B[s])* " ¥ (Varld) (n*[id))* — m¥em®
(FVar) (1¥[a-s]))¥ — avor? (Closure) ((a[s])*[t])* — a*°"¥[so{]
(Lambdd') ((Aa)¥[s])’ — Xa[l-(so]))*° ¥ (IdL) idos — s
(Shiftld) loid — 1 (Shift) To(a-s) — s
(AssEnv) (s;0s3)os3 — s30(s208;3) (MapEnv) (a-s)ot — aft]-(sot)
(VarShift1) (n*[1)Y — n41very (VarShift2) (n¥[fos])? — n+1%°"Y[4]
(RVar) n+1%a-s]' — a¥omY]

The labeled rewriting system Aol.

19

ISSN 0249 - 6399

