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SUB-GROUPS OF Z", STANDARD BASIS, AND LINEAR DIOPHANTINE
SYSTEMS

Loic POTTIER !

ABSTRACT : We caracterize a (affine) sub-group of Z" by a polynomial ideal and standard (Grébner)
basis. We show how to use these standard basis to solve directly many algorithmic problems on (affine)
sub-groups and their non-negative parts :

e the membership problem,
e the triviality problem,

find the smallest non zero vector.

e find the minimal non-negative elements.

e solve linear diophantine systems (Az = 0,z > 0), (Az = b,z > 0), Az < b on integers, and find
smallest solutions.

Finally we conjecture other properties of these standard basis.

SOUS-GROUPES DE Z", BASES STANDARD, ET SYSTEMES
DIOPHANTIENS LINEAIRES

RESUME : Nous caractérisons un sous-groupe (affine) de Z™ par un idéal de polynémes et des bases
standard. Ces bases standard nous permettent de résoudre directement de nombreux problémes sur ces
sous-groupes (affines) et leurs parties positives :

le probléme de ’appartenance,

le probléme de la trivialité,

trouver le plus petit vecteur non nul,

trouver les éléments positifs minimaux,

résoudre des systémes diophantiens linéaires (Az = 0,z > 0), (Az = b,z > 0), Az < b sur les
entiers et trouver leurs plus petites solutions.

Enfin, nous conjecturons d’autres propriétés de ces bases standard.

1S.A.F.LR. Project, Institut National de Recherche en Informatique et Automatique, 2004 route des Lucioles, Sophia
Antipolis, 06565 Valbonne CEDEX, FRANCE. Email : pottier@sophia.inria.fr



INTRODUCTION

Some connections between commutative algebra and linear diophantine problems exist for a long time
(recently, see [St83], [0190], [LP91a], [CoTr91] for works and bibliographies).

The results proposed in this paper show that this connection can be systematicaly extended to relie
standard (Grébner) basis, Knuth-Bendix completion on commutative words, affine sub-groups of 2%,
and linear systems of inequalities on integers.

The main tool is the notion of ideal associated to an affine sub-group of Z", and its algorithmic aspect:
its standard basis.

We then show that these tools can solve directly the following algorithmic problems on (affine) sub-groups
and their non-negative parts :

e the membership problem,
e the triviality problem,

find the smallest non zero vector.

find the minimal non-negative elements.

solve linear diophantine systems (Az = 0,z > 0), (Az = b,z > 0), Az < b on integers, and find
smallest solutions.

We end this paper by some conjectures given by transpositions of notions of commutative algebra to
linear problems on integers.

NOTATIONS AND BASIC NOTIONS

DEFINITIONS 1 : Vectors of Z",

Let u and v be two vectors of Z".

u; is the i** coordinate of u. We will sometimes note u = (u;);.

We define ||uljoo = 3; | u; | and ||u]|; = sup:i{| u; |}.

u<v <= Vi, u; <y

uAv = (inf(u;, v,')).'.

u Vv = (sup(uqi, vi))i.

ut=uv0 u =-uv0 Wehaveu=ut —u-.

If A is a subset of Z”, we define At = ANN",

The vector (1); will be noted 1.

We note (v,v’) the concatenation (vs,...,vp,1,..., ;) of two vectors v = (vy,...,vp) and v’ = (v1,...,vy),
and (A | B) the concatenation of two matrices with the same number of lines.

DEFINITIONS 2 : Sub-groups, affine sub-groups of Z"

In this paper, H denotes a sub-group of Z".

An affine sub-group of Z" isaseta+ H = {a+ z |z € H}, where a € Z2".

The computations of generators of a sub-group given as the kernel of matrix, as well as a presentation
of the form a + H for an intersection of two similar affine sub-groups, can be done with linear algebra
manipulations (see for example [KaBa79] who give polynomial algorithms).

DEFINITIONS 3 : Equational theories on monomials.
Let X = (Xi,...,Xn) be a vector of n indeterminates.



When u € N®, we note X¥ the monomial X} ... X¥=, and 1 := X°.
Let E = {X® = X#} a set of equations between monomials. We define the congruence generated by E
as the least equivalence relation =g containing the set of couples {(X*t¥, X#it¥) | 4 > 0}.

DEFINITIONS 4 : Standard basis, monomials orderings

Let < a total admissible ordering on monomials (i.e. such that 1 is the least monomial, and < is stable
by multiplication). We note in(P) the greatest monomial of a polynomial P.

Let 7 an ideal of the polynomial ring Z[X,,..., X,], and B = {Py,..., P;} a familly of polynomials of

Then B is a standard basis of T iff the family in(B) = {in(P,),...,in(P,)} generates the same ideal as
in(T ).

We will use elimination orderings on monomials, which are particular admissible orderings :

an ordering eliminates the indeterminates X\, ..., X} if, when comparing two monomials, we compare
first the parts involving X, ..., X (with any admissible ordering), and in case of equality, finally compare
the parts involving X4, ..., X, (with any admissible ordering).

Then with such an ordering, the intersection of a standard basis of Z with the ring Z[Xi41,..., Xn] is
again a standard basis of the intersection of the ideal 7 with the same ring.

A standard basis of an ideal can be computed from a set of generators with a completion algorithm [Ja20]
[Bu83] [Ga85)].

When 7 is generated by differences of monomials, and in this paper it will be always the case, a standard
basis contains again only differences of monomials, and can be viewed as a convergent rewriting system
of rewrite rules on commutative words, and then can be also computed by a Knuth-Bendix completion
algorithm modulo associativity and commutativity.

DEFINITIONS 5 : Rewriting of polynomials, Grébner basis

Let us note P — Q when Q@ = P — X°R, where R € B and X*in(R) appears as a monomial of P.
We write P — Q when several steps of — are used to obtain @ from P.

Then we have P € I <« P —- 0, which is in fact a definition of a Grobner basis.

We note P | Q when P and Q can be reduced to the same polynomial.

P is said in normal form when it cannot be reduced by —.

STANDARD BASIS OF (AFFINE) SUB-GROUPS OF Z"

SUB-GROUPS AND EQUATIONAL THEORIES ON MONOMIALS

The following connects subgroups with equational theories deduced from their generators.

THEOREM__ 1 :

Let vy, ..., v, being generators of H, with vg > 1.
+ -

Let E={X¥% = XY Yi=o,...p-

Then

veH & X" =p x*”

Proof :

E :
Let X® =g X#, and showa -8 € H.



Let us formalize the fact that there is a succession of elementary uses of equations which proves X% =g
X8 :
X®=p XP = 3Je,...,e1 € {+,-},1,...,0; > 0, such that
Xo = Xv:l'-f-ax

- )
Xﬂ — X”::'H’k

% ta; G4y,

Viz1,.. k-1, X5t o gVt
(where + = — and = = +).
We reason by induction on k.
Ifk=0,thenc=pf,and a—f=0€ H.
If ¥ > 0, then we have vfl‘ + a; — f € H by induction hypothesis. But

a—f=y +a1—(vf;‘-+al)+(vf?+al)—ﬁ=:tv.~l+(vfl‘_+a,)—ﬂ

and then a — 8 € H.
=2

We need a lermma :
LEMMA 1

Let E an equational theory of monomials, containing an equation XY =1, with ¥ > 1. Then

Yu,a,f € N*, Xt =p XP¥¥ = X2 =p XP

Proof :

=_

clear.

=2

Suppose u < v, then X¥t(7-¥) X =p Xu+(r-¥)XP because v — u > 0. Then X" X* =g X7 X5,
But X" =g 1, and then X* =g X7.

The case u £ v reduces to the previous case by noticing that u = (u —uAy)+uAy, uAy <7,
u—uA7y < u,and < is well-founded.

We prove now the sufficient condition of the theorem.

Let v € H, v =}, a;v;. We proceed by induction on |}v]];.

If |jv]|; = 0 then v = 0 and X** =g X*.

Suppose now that a; > 0 (the case a; < 0 reduces to treate —v which leads to X(-v)* =p X(-¥)7 je.
XY =g x*M).

we have v=1v; + v/ = vt — v~ =v‘;~+ -y vt -7 = (vj++v’+)—(vj' +v'7).

By hypothesis of induction, X** =g X¥'”, and we have X% =g X"7 then X" *V" =g xu v,
But (v} +v'*) —v¥ = (v] +v'7) — v~ >0, then by the lemma 1, X¥" =g X"

=]

EQUATIONAL THEORIES AND POLYNOMIALS IDEALS

Now we link equational theories on monomials and polynomials ideals (as in [MaMe82]).
LEMMA 2 :

Let E = {X% = XPi} an equational theory on monomials, and let T the ideal of Z[ X, ..., Xa]
generated by the polynomials X — X5,
Then

X=p X? = X°-XPe1



*

Proof :

=2

X°=g X? = 3v,...,7, 70,75, 61, ..., 6k such that

Y= oy and 7—1 = ﬂi,’) or vy = Bi,‘ and 7—]= a5,

and such that

X = X‘71+61)Xﬂ = X746 and

Vi=1,... k=1, XTitsi = XVitrtbis,

(we just formalize the fact that there is a succession of elementary uses of equations which proves
X =g XP).

We proceed by induction on k.

Ifk=0,thena=Fand0€Z.

k>0 X~XP = X8 (X1 - XT0) 4 (XT4h _ X5),

But XT1+8: _ XP ¢ T by hypothesis of induction, and X" — X7 € T , then X* - XP e T .
=

We have X® —~ XP €T ¢ X - XP =3, Qi(X = X5).

We proceed by induction on the sum of the absolute values of the coefficients of the Q;’s.

If this sum is zero, then a = B and so X =g X%.

If this sum is not null, then we can write X — X# = X7(X ~ X#i)+ P, where P =}, Q!(X* —
X#:), the sum of the absolute values of the coefficients of the Q!’s being lesser than that of the Q;’s,
and where X® = X7+ (or X* = X7"*% which reduces to treate X# — X®).

We have P = X"*+#5 — X8 and P € T, then by hypothesis of induction we have X7+8i =g X5,
But X® = X7+% =5 X7+8i then X =5 XP.

IDEAL OF H

Using the previous results, we caracterize a sub-group by an ideal.

THEOREM 2 :

+ -
Let vy,...,v, generating H, and Jy the ideal generated by the polynomials XVi — XV and
the polynomial TX! — 1, where T is a new indeterminate.

Then

vEH < X”+—X"-€JH

Proof ;
We include H in Z™*! by adding a zero coordinate to the v;’s, corresponding to the variable 7. Let
vo =1, and H' generated by vg,vy,...,v,.
Then, by the theorem 1 and the lemma 2, we have v € H' <= (X,T)"+ (X, 7)Y €Jn
andthenve H < X*" -Xv" ¢ TH.

It is clear that Ju does not depends of the choosen set of generators of H, so :

DEFINITION 6 :

Let Ty = Iy N 2[X1,..., X4l

Ty is called the ideal of H, and we have v € H < xvt _ xvT €ly.

IDEALOF a+ H

We extend theorem 2 to affine sub-groups.

THEOREM 3 :




Let vy,...,v, generating H, and Js4+x the ideal generated by the polynomials Xv? - Xvi_,

TUX' -1, and UX%~ — X°+, where T and U are new indeterminates.
Then

vEa+ H < xvt —uxv € Jat+H

Proof :
We include H in Z"*? by adding two zero coordinates to the v;’s. Let vp = 1, vp+1 = (a,0,—1) and
H' generated by vg,vy,...,Up, Up41.
Then, by the theorem 1 and the lemma 2, we have v € H' < (X,T, U)"+ —(X,T,U)" € Tayn
and thenv€a+ H < (v,0,-1) € H' < vX¥Y —UXY € TatH-

Again, it is clear that J,; 5 does not depends of the choice of a and the choosen set of generators of H,

SO :

DEFINITION 7 :

Let I°+H = Ja+H ﬁZ[U,Xl, .. .,Xn].

Za+n is called the ideal of a+ H, and we haveve a+ H < Xt _UXv € Loyl

STANDARD BASIS OF H AND a+ H

DEFINITIONS 8 : Standard basis of a (affine) sub-group.
Let B a standard basis of Jy for an ordering eliminating T, and Bsg be the set of polynomials of B not
containing T. Then Bsy is a standard basis of Zy , and is called a standard basis of H.

Let B a standard basis of 7, i for an ordering eliminating T and U, with T > U, and Bsg be the set of
polynomials of B not containing T. Then Bs,, y is a standard basis of Z,4 5 , and is called a standard
basis of (a + H).

By an easy remark, every polynomial of Bsy is of the form Xxvt - XY ,withveH.

SMALLEST NON ZERO VECTOR OF H

For v € Z", we define ||v|]1,00 := sup(]lvt]l1,]lv™||1). We define min; o (H) as the set of the smallest non
zero vectors of H for ||.||1,c0-

THEOREM 4 :
Suppose that Bsy is defined with a total degree ordering on X,,...,X,. Suppose also that H

is not reduced to 0. Then

3X*" - X¥” € Bsy such that v € miny oo H

Proof ;
Let Bsy = {X°' — X°7}. Remark that with the chosen ordering we have lleill1,o0 = llaf -
Suppose that there exists in H a non zero vector v with ||v||1,c0 < infi{llai||1 0}-

It is then clear that X¥* — X*” is irreductible with Bsy , but by theorem 2 we have Xt X €Iy
and then X** — X¥” reduces to 0 with Bsy , which leads to a contradiction. Then a such v does
not exists, and the result is obtained.



NON-NEGATIVE PARTS OF (AFFINE) SUB-GROUPS OF Z"

MEMBERSHIP PROBLEM

From theorem 2 and theorem 3 we deduce immediately caracterizations of H* and (a + H)% :

COROLLARY 1 :
veEHY < X'-1€1Iy

vE(a+H)Y & X' -U€T4n

TRIVIALITY PROBLEM

More, with their standard basis, we can directly test the triviality of H* and (a + H)* :

THEOREM _ 5 :

(a-{-H)+ #0 < 3(X*-U) € Bsg4+n

H* # {0} < I(X®-1)€Bsy

Proof :

First assertion :

=

Let ve (a+ H)* . Wehave XV —U €Z,,y , then XV | U for the rewriting relation of Bs,, g .
But the normal form of XV does not contain U (because of the ordering choosen for Bsg4+x ), then
U is not in normal form, and then there must exists in Bsg4+x a polynomial U — X<,
=
Clear, because X® — U € Bsgypy => X°-U €T,yn = a € (a+ H)*.
Second assertion :
=2
Let ve Ht, v # 0. Then X" reduces to 1 with the rewriting relation of Bsy , and then there must
exists in Bsy a polynomial of the form X< — 1.
=

| Clear, because X* —1€Bsy = X°—-1€Iy = a€ H*.

SMALLEST VECTORS OF Ht — {0} AND (a + H)*



Suppose that Bsy (resp. Bs,+n ) is defined with a total degree ordering on X;,..., X,. Then v such
that XY —1 € Bsy (resp. X —U € Bsy is a vector of minimal norm ||.||, in H+ — {0} (resp (a+ H)*).

MINIMAL ELEMENTS OF (a + H)*

A standard basis of a + H gives an element of (a + H)* when such an element exists. We will use this
fact to give an algorithm computing the set Min((a+ H)*) of minimal elements of a + H for the partial
ordering < (is it well known that this set is finite).

Unformally we proceed as follows :

First we compute Bs,yn and get, if it exists, v € (a+ H)*t.

Then it is clear that every w in Min((a + H)*) different of v verifies 3i, w; < v; .

We will then investigate every sets of the form E;x = (e + H)N{z | z; = k})*, foreveryi=1,...,n,
and every k=0,...,v; — 1.

It is clear that these sets are non-negative parts of affine sub-groups a; + H;, where the a;:’s and
generators of the H; ;’s are obtained by linear algebra manipulations from a,H i, and k [KaBa79)].

And we have :

Min((a+ H)*) c {v}U UMin((a.',k + Hii)t)
ik
The dimensions of the H; ¢’s are either 0, either strictly lesser than the dimension of H, that proves the

termination of the process.
Now we precise an algorithm MINAFFINE computing Min((a + H)*) :

ALGORITHM 1:

r MINAFFIKE(a,H): (H is given by its generators) 1
Bs,yy := a standard basis of (a+ H).
IF it exists (X* —U) in Bsg+n
THEN v:= «
ELSE RETURKS 0
FOR i:= 1...n AND k:=0...v; —1 DO
Compute a@;; and generators of H;; such that
air+Hixg=(a+ H)Nn{z |z =k} #0
| RETURKS Minimals elements of {v}U (U,.'k HINAFFINE(a;,k,H;,k))

We can remark that if we compute Bs,yy with a total degree ordering on X,,...,X,, then ||v||; is
minimal and then we minimize the number of steps in the loop of the algorithm.

MINIMAL NON ZERO ELEMENTS OF H*

The previous algorithm can be modified to compute minimal non zero elements of H* :
we just begin with a = 0, take v such that X¥ — 1 € Bsg4+ 5, and then continue the previous algorithm :

ALGORITHM 2:
r MINHOM(H ) : e
Bsg+n := a standard basis of (0+ H).
IF it exists (X®*—1) in Bsgyn

THEN v:= o

ELSE RETURNS 0
FOR i:= 1...n AND k:=0...yv; — 1 DO

Compute a@;; and generators of H;: such that

aix+Hig=Hn{z|z;=k}#0

| RETURNS Minimals elements of {v}U (U‘,k HINAFFINE(a;,k,H;,k))




LINEAR DIOPHANTINE SYSTEMS

We show in this section how the previous results apply to the study of linear diophantine systems. We
will study the following types of systems :

Az =0,z2>0
Az =b,z>0
Az <}

where A is a matrix of integers with n columns and m rows, z is in Z”, and b in Z2™.
Our aims are here :

e to test for the existence of solutions,

e to describe the set solutions,

e and to give algorithms for the computations of the solutions, by using standard basis, which is an
new approach for these problems.

In the following, S will be the set of solutions of the considered system.

SYSTEMS Az =0,z > 0

Here S = H*, where H = Ker(A), which is an sub-group of Z"”. The computation of generators of H
from A can be made by computing an Hermite normal form of A.
Theorem 5 and algorithm 1 give then the awnsers to our questions on S :

THEOREM _ 6 :

T€ES < X*_-1€Iy

S#{0} < HX°-1)eBsy = a€S

| and MIKHOM(H ) is the set of minimal non zero elements of S. J

SYSTEMS Az = b,z > 0

Let A’ = (A)b) and H' = Ker(A’). We introduce an new indeterminate X,, + 1, in order to define the
ideal of H’.
Suppose that Bsy- is defined with an ordering such that Vi < n, X,4; > X;. Then :

THEOREM _ 7 :




€S & X*—=Xp41 €Iy W

S#0 < IX* - X1 €Bsg = a€S

| and the projection on Z"™ of MINBOM(H') is the set of minimal non zero elements of S.

SYSTEMS Az < b

Let A’ = (A | I, | b) where I, is the identity matrix of order m. Let H' = Ker(A'). To define the ideal
of H' we introduce new indeterminates Y;,...,Y,, and Z.
Suppose that Bsy is defined with an ordering such that Vi <n,Vj <m, Z > Y; > X;. Then:

THEOREM 8 :
t€S «= Iy XYV _XTZeIy

S#£0 < 3X’+Y9—X"ZeBsH, = z€S

QUESTIONS, CONJECTURES

We have caracterized (affine) sub-groups of Z" and their non-negative parts by ideals. We have then a
connection between commutative algebra and integer (semi-linear) algebra (see [St83], [0190], [LP91a],
[CoTr91] for works in this aim).

Through this gap we can easily ask some questions on H and Ty (and respon a+ H and T, ) :

1. Is the dimension of H equal to the dimension of its ideal Zy ?

2. Is the number of integer points in an minimal cell of H (resp. a + H) equal to the multiplicity of
Iy ?

3. Is the maximal size of minimal elements of H* (see [Tr75), [Ro89],[Do90], [LP91a], [LP90a]) related
to the regularity of Ty ?

4. These three previous features of ideals (dimension, multiplicity, regularity) are given by the Hilbert-
Samuel function and the Hilbert-Samuel polynomial of the ideal, and then can be read on a standard
basis. What is the meaning on H of the coefficients of the Hilbert-Samuel polynomial of Ty ?

5. The computation of a standard basis has a double exponential complexity, even on ideal generated
with differences of monomials [MaMe82]. But here we have always a polynomial X! — 1 in the
generators, all our ideals are given with complete intersections, and we solve here at most NP-
complete problems.

So, is the computation of standard basis of Ty of simple exponential complexity?

6. There is some theoretical reasons to think that standard basis computations are strongly related
to the geometry of problems they represent. If it is the case with H and H*, we can think that
algorithmical results presented here can be very usefull in practice.
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In practice, we hope that implementations (in progress) will confirm this new approach for solving in-
equations on integers.

Finally we remark that many previous results can be extended to affine subgroups of Q™ and solving
linear integer systems in the rationals, for example :

veE(a+ H)Y < 3k, X" -U* €Ty

(a+ H)* #0 < 3X° —U* € Bsgyg — %e(a+H)+
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