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Shortest paths of bounded curvature in the plane
Plus courts chemins de courbure bornée dans le plan
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Abstract

Given two oriented points in the plane, we determine and compute the
shortest paths of bounded curvature joining them. This problem has been
solved recently, by Dubins in the no-cusp case, and by Reeds and Shepp
otherwise. We propose a new solution based on the minimum principle of
Pontryagin. Our approach simplifies the proofs and makes clear the global
or local nature of the results.

Résumé

Etant donnés deux points orientés dans le plan, on caractérise les plus courts
chemins de courbure bornée les joignant. Le probléme a été traité récemment
par Dubins dans le cas sans rebroussement et par Reeds et Shepp dans le
cas général. Nous proposons une nouvelle solution basée sur le principe du
minimum de Pontryagin. Notre approche simplifie les démonstrations et
précise la nature locale ou globale des résultats.



1 Introduction

The question considered here is the following : given two oriented points
(M;,8;) and (M;,0;) in the plane, determine and compute the shortest
piecewise regular paths joining them, along which the curvature is every-
where bounded by a given 7‘; > 0. Minimizing the length is meaningful both
in the class of paths which are C! and piecewise C?, and in the slightly
largef class of paths admitting a finite number of cusps.

This question appears in many applications : for instance Markov([3]
studied the no—cusp case for joining pieces of railways. A 3-dimensional
version applies to planning plumbary networks, or the version with cusps to
any car driver.

Even without obstacles, characterizing the shortest paths is not simple.
This was only done recently, by Dubins{2] in the no-cusp case, and by Reeds
and Shepp[5] otherwise.

Our way of solving the question here is entirely different from theirs. It is
both much simpler and better adapted to further generalization to the case
of obstacles limiting moves. The essential tool we use is the powerful result
of optimal control theory known as the “minimum principle of Pontryagin”.
We recall in Section 2 its basic version which we will use, and refer to classical
books in control theory, like [1], [4], and [7], for its quite delicate proof.

In Section 3 we apply the principle to our case, and deduce some general
crucial lemmas. Section 4 is devoted to the no—cusp case, and Section 5 to
the more difficult case with cusps.

Our results are essentially the same as those of [2] and [5]. The interest
of the present work lies in the method of proof, both simplified by the use
of a single idea, and as local as the statements will allow. Indeed, we make
a clear distinction between local and global proofs, and we insist on local
proofs in view of further work dealing with obstacles.

Related results to be reported in a forthcoming publication have been
obtained independently by Sussmann and Tang [6]. The results in [2] and
[5] are also deduced from the minimum principle and new lights on the
piecewise regularity of optimal controls.

2 The minimum principle : a basic version

Given are :



e two integers n and r, two points (z*) and (z/) in IR*, and a compact
subset U of IR",

e a C° function f(z,u):IR* x U - R",
e a C? function fo(z,u):IR* x U — R".

A “control” is a piecewise continuous (but not necessarily continuous) func-
tion u(t) : [0,T] — U, for some T > 0. U denotes the set of controls. We
want to find a u € & which minimizes the integral

J(u) = /.& ), u(t))dt .

Here z(t) = (z1(t) -+ -,zn(t)) : [0,T] — IR" is a solution of the differential
system with boundary conditions

Zi = fau®) G=1,00m)
(1)
z(0) = z*; z(T) = =/

J(u) is called the “cost” of the “path” z(t), solution of (1), given the “con-
trol” u(t). The solution z(t) of the system with initial conditions z(0) = z*
is well determined for a given u. This is the case even in a much more gen-
eral setting (see e.g. [7, Theorem I1.4.11]). We denote by U/ the subset of
“admissible” controls u € U such that the associated paths z satis{y also the
final conditions z(T) = z/. The optimal control problem is to find controls
u® € L({ satisfying
J(u*) = mm J(u)
uGU

Such an u* is called “optimal”, as well as the associated path z. Note that
T is here arbitrary. But in the particular case fo = 1, J(u) = T and we
want to minimize the “time” to go from z* to z/.

We give a more geometric interpretation to the approach by adding an
extra variable zo(t), solution of 222 = fo(z,u(t)),z0(0) = 0. We are there-
fore looking for a u € U such that the solution of

& - i) G=0,...,n)
. (7=0,...,n) (2)
.’l:j(O) = 2:'



satisfies the conditions z;(T) = z; (j = 1,...,n) and J(u) = zo(T) is
minimal (for some T > 0). A basic idea in mechanics is then to introduce
“dual” variables ¢ = (¢, %1,...,%n) : [0,T] == IR™*! which are continu-
ous, piecewise C!, and solution of the “adjoint” system

Wi Z"’f’(z W) G =0,...,n)

(3)
$(0) =
For a given u € U{, z the associated solution of (2), and an arbitrary initial

condition 4", (3) has a unique solution .
If the “Hamiltonian” is defined by H(y,z,u): R*"*?*" — R

H(’l/),:l:,u) =< ¢’f>zzwjfj(x’u)’ (4)
1=0

then, equations (2) and (3) can be rewritten as a Hamilton-Jacobi system
with parameter u :

dz; OH )
— T emm— 4 0 frd t
dt an ’ 'TJ( ) x]
7=0,...,n (5)
7-_'3—:1:7 ) 11’1(0)—11),--

Finally, we define
M(y,z) = mm H(¢,z,u)

where 9, z,u are considered as independent variables. The fundamental
result of Pontryagin{4] is then :

Theorem 1 (Minimum principle) : If u* is an optimal admissible con-
trol, there ezists a non-zero adjoint vector ¢, and T > 0, such that, (z(t), ¥(1))
being the solution of (5) for u = u*, one has :

1. Ve € [0,T) H(¥(2), 2(0),u"(t)) = M(¥(2), 2(2))
2. Furthermore, Vt € [0,T], M(%¥(t),z(t)) = 0 and ¥o(t) = ¥(0) > 0



This changes the question of minimizing the functional J(u) over U into
a minimum problem for the “scalar™ function H on U. In some sense,
conditions 1 and 2 hereabove insure that (z(t), ¥(t)) is “stationary” among
the solutions of (5), and the principle asserts that the optimal paths are
to be found only among these. The minimum principle of course only gives
necessary conditions, and does not even assert that an optimal control exists.
Its existence has to be proved independently, and it is usually done in the
much larger class of controls which are only assumed to be integrable (see
e.g. [7, Theorem V.6.1]). The minimum principle applies just as well in this
larger class (see [4, Chapter II]), and the following computations (Section 3)
will then prove that the optimal controls in fact belong to our smaller class
U. This is why we allow ourselves to restrict our discussion to the class U,
as well as for the sake of clarity, and for emphasis on applications.

A new proof of the piecewise regularity of optimal controls can be found
in [6], in a general setting which includes our case, based on the properties
of subanalytic sets.

Most theorems of existence assume that the range of controls is convex
(see e.g. [7, Theorem V.6.1]). This is the technical reason why we consider
convex ranges of control in Section 3.

3 Application to shortest paths of bounded cur-
vature

Let us recall that we want to minimize the length of continuous and piecewise
C? paths (z(t),y(t)) in the plane IR? joining given initial and final points
with given orientations (z',3*,6%) and (z/,y/,6”). By assumptions on the
control, such paths are formed of a sequence of C? paths, glued together at
isolated commutation points ¢ €]0,7[, where either the curve is C? (called
“inflexion” points) or the orientation is reversed (called “cusps”).

Thus the following quantities are well defined.

o The polar angle a(t) of the tangent to the path, considered as a glob-
ally continuous IR/27-valued function by assuming its continuity at
the cusps. Its intuitive meaning is that the tangent to the path is
directed as the lights of a car that would follow the path, changing
from front to rear gear or conversely at a cusp.

e The arc length along the path, which we denote by ¢ : intuitively, the
path is run at constant speed one.



e The curvature u(t) = %‘tl, which is defined everywhere except at the
commutation points. When u(t) # 0, its sign depends on whether the
point (z,y) runs in clockwise sense (v < 0) or in counter—lockwise
sense (u > 0) as t increases.

The differential system (2) can be written as (from now on we write 2 for
dzy .
rR

t=ccosa z(0)=2z' z(T)=2z/

j=esina y(0)=y' y(T)=1y/
&=u a(0)= o a(T) = o’ (6)
To=1 IQ(O) =0

with control functions (¢,u) € U C IR?, where U = {-1,+1} X [- %, +%]-
This means that we control the instantaneous curvature u, allowing also
changes between front and rear gears (the sign of €). The cost we want to
minimize is equal to the length of the trajectory and defined by :

T
J(u):/o dt=T (7)

For the technical reasons already mentioned at the end of section 2, we
should assume here U convex, more precisely : U = [~1,+1] x [- %, +%],
that is to say —1 < ¢ < 1. We modify (6) accordingly and consider now the
system :

t=ccosa z(0)=2' 2(T)=2z'

y=esina y(0)=y y(T)=y/ (8)
a=leju  a0)=a oT)=0of
Ig=1 30(0) =0.

In this case, t is the time, and no longer the arc length s, and we have :
ds = |e(t)|dt. The expression (7) of the cost remains unchanged, although
it corresponds now to a minimum time problem. Calling (p,¢q,8,€) a set of
dual variables to (z,y,a,z0 = t), the minimum principle applies here. The
Hamiltonian is

H=e+epcosateqgsina+ |e|fu, (9)
and the adjoint system
p=0
¢=0
B = epsina — eqcos a (10)
e=20



with arbitrary (but not all zero) initial values. Thus p, g, e are constant on

[0,T). Putting p = A cos ¢, ¢ = ) sin ¢, with A = /p? + ¢Z > 0, determines

an angle ¢ modulo 27, such that tan¢ = %. We rewrite (9) and (10) as :
H =e+ elcos(a— ¢) + || fu (11)

B = ersin(a — ¢) (12)
As H is a piecewise affine function in €, it cannot reach its minimum w.r.t.
¢ elsewhere than at ¢ = 0,41. But ¢ = 0 on some interval is obviously irrel-
evant since it corresponds to zero velocity which is trivially not an optimal
control for a minimum time problem. Thus, condition 1 of the minimum
principle asserts that optimal controls can only be obtained for € = %1, so
that we set |¢| = 1 in the following of the discussion. Hence, the arc length
becomes equal to ¢, and minimum time solutions provide minimum length
paths. Moreover, H rewrites

H =e+ eAcos(a — @) + fu (13)

and systems (6) and (8) are identical. Condition 1 also states that for an
optimal control u, along any C? piece of the optimal path, we have

Ae cos(a — ¢) < 0 and fu £ 0. (14)
Furthermore, either one of the following two cases holds :

° -"fri’=ﬂ_=.0,thusﬂEO,andaEd;ora:-E¢+7r,andthepath is a
line segment with direction ¢,

e oOr %f‘—’ /A0 and thus, by condition 1, u = :t;‘;, and the path is an arc
of circle of radius R.

The preceding discussion leads immediately to :

Proposition 2 Any optimal path is the concatenation of arcs of circles of
radius R, and line segments all parallel to some fized direction ¢.

Also condition 2 of the minimum principle (H = 0 and e > 0) implies :
Lemma 3 3 = 0 at the inflexion points and on the line segments.

Proof : That 3 = 0 on the line segments was already mentioned. It implies
B = 0 at the inflexions between a line segment and an arc of circle, since 3
is continuous. But at an inflexion between two arcs, u changes sign, and so
should 3 in order that H = 0 ; thus the same continuity argument applies. O



Lemma 4 If A = 0, the optimal path is either a line segment, or a sequence
of arcs of radius R joined by cusps.

Proof: (13) and condition 2 imply Bu = —e. If e = 0, B cannot vanish since
¥ = (p,q, 8,€) would then vanish, which is forbidden by the principle. Thus
u = 0, and the whole path is one line segment. If ¢ > 0, then neither § nor
u can vanish, and the path contains neither line segments nor inflexions, by
Lemma 3. m]

In the following, we assume A # 0.
Lemma 5 ¢> 0

Proof : Assume that e = 0. Then, by (13), Bu + € A cos(a — ¢) = 0. But
the two parts of the sum are of the same sign by (14) so that they have to
be zero. Since |e] = 1 and A # 0, this implies (i) : cos(a — ¢) = 0 and (ii) :
Bu=0. By (i), a = ¢ £ 5 is constant, and this path is a line segment along
which, necessarily, 3 = v = 0 and § = 0. This implies a = ¢ or a = ¢+,
and leads to a contradiction. Hence e # 0 and the result follows from the
condition 2 (e > 0) of Theorem 1. m

Lemma 6 3 — py + gz is constant along any optimal path. Consequently,
all the points of an optimal path where  takes the same value are on the
same straight line of direction ¢.

Proof : According to (6) and (10) 6—py+q =0 ,and thus B—py+gz = ¢
for some ¢ € IR, on the whole optimal path. 0

Lemma 6 has the two following consequences :

Lemma 7 On any optimal path, the line segments and the inflezion points
are all on a straight line Dy with direction ¢ (of equation py—qz +¢c=0).

Proof : Apply Lemma 6 with 8 =0 @)

Lemma 8 All the cusps of any optimal path are on two straight lines Dy
parallel and equidistant to Dy, of equationpy—qz+c = Fe R. Furthermore,
(a) there are no cusps between a line segment and an arc of circle, (b) the
“positive” cusps (that ts where u > 0 both before and after) are on D, , and
the others on D_, (c) the half-tangent at a cusp is perpendicular to D4.



hid

Proof : By condition 2 of the principle, 0 = e + € A cos(a — ¢) + Bu. Near
a cusp, u remains constant and equal to :t};, while € changes from +1 or
—1 or the converse. Hence, by (14), cos(a — ¢) = 0; thus & = ¢ £ § and
B = e R. The first assertion follows from Lemma 6, then (a) and (c) from
Lemma 7, and (b) from (14). o
Moreover, we have :

Lemma 9 AnyC? arc of circle of an optimal path, between two points where
B =0, has length > = R.

Proof : Assume the length of such an arc, between ¢t = ¢; and t = ¢, to be
< mR. As B(t;) = B(t;) = 0, we have by (13) and since H = 0,

€

e cos(a(ty) — ¢) = € cos(a(tz2) — ¢) = ~ (15)

>|

Bis C! on [t;,t;] and it keeps a constant sign on an arc, by (14). So, 3 reaches
an extremum at some point t3 €)t;,12[ where B(t3) = ¢ A sin(a(ts) — ¢) =
0 by (12). Now, € cos(a(tz) — ¢) = —1, by (15) and since the sign of
cos(a(t3) — @) cannot change on [t1,1,], according to our assumption on the
lentgh. But then

0_=..H=e—/\+ﬂ(t3)u(t3)§e—/\,

by (14), and thus § > 1, which compared with (15) implies e = A. Since
lu*(t3)] = 71§ > 0, B(t3) = 0. Hence B = 0 on {t;,%2] ; this means by (12)
that this piece of path would be a line segment, not an arc of circle. o

We remark now that we may simplify our equations by using obvious syme-
tries. The rectangular coordinate system in IR? is arbitrary. So, we can
assume ¢ = 0 by a rotation of axes, A = 1 or 0 since the change from %—
to 1 leaves the minimum principle invariant when A > 0, and the constant
c in Lemmas 6, 8 to be zero by a translation of the origin in IR?. Under
these assumptions we have p = 1, ¢ = 0. The lines Dy, D4 have now the
equations y = 0 and ¥y = Fe R, and B = y is the signed distance of a point
on the path to Dy. Furthermore, we have

H=e+4+ecosa+uf=0. (16)

Consider now an arc of circle with a cusp at one of its endpoints. If this
endpoint is on D_, u = —% and, since at a cusp a = +%,by (16),0< 8 =

9



eR+¢eRcosa < eR since € cosa < 0 by (14). The same argument shows
that on an arc with a cusp on D4, one has 0 > 3 > —e R. Summarizing
this discussion, we get :

Proposition 10 For any optimal path with A # 0, there ezists a rectangular
coordinate system in IR? such that (see figure 1)

e all the line segments and inflexion points on the path lie on the first
aris Dy : y=0,

e all the cusps where u > 0 lie on the line Dy : y= —eR,
o all the cusps where u < 0 lie on the line D_ : y= +eR,

e an arc of circle with a cusp as one of its endpoints on D, (D_) lies
between Dy and Do ( between Do and D_),

(16) is satisfied at any point on the path.

Q

|

Do

Y

NN
L
e
v
Cwi ccwW

Figure 1: : Do, D4, D_

<

Q

Remark 1 (a) Outside the three lines Dy, Dy, D_ there can be no com-
mutation and no line segment. A piece of an optimal path not intersecting

10



these lines can only consist of one arc of circle, and is contained in one of
the strips [D4, Do} and [Do, D] as soon as it is not an initial or a final arc.
(b) By (16) and since u # 0 outside Dy, the geometric angle of the tangent
line to an optimal path with Dg at a point (z,y) is almost determined by
the “distance” y of the point to Dg. Indeed a satisfies

ecosa:i%—eSO (17)

which gives only two possible values of & for any piece of path with no
commutation (that is for given ¢ and u).

(c) As soon as an optimal path contains a line segment, the tangent at the
inflexion points is Dy itself. Indeed, at a point on a line segment, y = 0,
a = 0 mod 7 by Proposition 2, thus by (16) e = +¢ = 1, and (17) then gives
cosa = x1 at any point on Dy.

Proposition 10 and Remark 1 invite us to classify the different possible kinds
of optimal paths according to whether e > 1, e =1,0or 0 < e < 1. We will
denote each concatenation of segments and arcs by a word like for instance
“C|CSC|C”, each C meaning an arc of circle of radius R, S a line segment
of direction ¢ = 0, and | a cusp ; C,, will mean an arc of circle of length R v.

4 The C! (no cusp) case

The preceding study applies to the characterization of C! shortest paths
between given initial and final positions and orientations in the free plane.
It is enough to set € to be 1 and allow no cusps in all the statements above
(but here cos a can take arbitrary sign as we do not minimize anymore with
respect to €).

As soon as an optimal path contains a line segment, it has to be of
CSC type (or the degenerate forms CS, SC, S). Indeed, since S is on Dy,
any other event would mean another commutation on Dy, thus a full circle,
which is obviously not optimal.

That an optimal path without segment is necessarily of the CCC kind
(or the degenerate forms CC or C) is a consequence of the remark that a
portion of an optimal path is itself an optimal path, and from the following
lemma :

Lemma 11 No path of type CCCC is optimal.

11



Figure 2: : The case CCCC

We give a direct local proof of this lemma, by showing that there is always
a strictly shorter path arbitrarily close to the initial one, having the same
endpoints, and of the same type CCCC.

Proof : The notations being clear on Figure 2, let us write 7 for the unitary
vector of polar angle 4, and assume R = 1 for simplicity.

If such a path of the CCCC kind were optimal for some values of a,b and
for a = ag, # = Bo, ¥ = Y0, Lemmas 7 and 9 would imply Bg = 4 and that
the intermediary arcs are each of length > 7. Thus

04 = 014 20aq + 2004-p + 2Va0-Bo+0 (18)
Lo=a+(m+Bo)+(m+7)+0b

where Ly is the length of the path. We can deform this path into a similar
one with the same endpoints but slightly different angles a, 8,7, and we get
in the same way (noting L its length)

O4=01+20,+ 2043+ 205_pg4~
L=a+(a—ag)+(r+06o)+(m+v)+0b (19)
+(a-B+7-ag+ Bo—70)

so that

L—-Lo=2(a-ag)+2(y—7), thus dL = 2(da + dv) (20)

12



cosa + cos(a — 3) + cos(a — B + 7)

= cos ag + cos(ap — fo) + cos(ao — Bo + Y0) (21)
sina + sin(a — B) + sin{a - 8+ 7)

= sin ag + sin(ag ~ Bo) + sin(ao ~ Bo + 7o)

The Jacobian of (21) with respect to 5 and v is equal to — sin 7 thus not zero
near (ao, fo,70) since 0 < fBp = 7o < 7. So system (21) defines implicitly 3
and v as functions of « in a neighborhood of (ag, o,70), which proves that
such a deformation is possible. Differentiating twice (21) with respect to a,
we get

ﬂ—.— sin(8 — v) — siny ﬂ: sin(8 — v) +sin g

d? —siny " da —siny

dy -1 df 2

da? sin vy [Cosﬂd'; COS((jﬂ =)+ (1+cosy) (1~ da)
LAY

+(1 4+ cosy)(1 o + da)]

In particular, %(ao) = —1, and thus %(ao) = 0, by (20) as expected. But
further

d’L d*y 1 + cos flo Bo
W(Oo) = 2m-(a0) = —4—T‘BO— =-4 cot? < 0,

and this proves L(a) < Lo in a neighborhood of ag. a

Thus we get the result of [2] :

Theorem 12 (Dubins) AnyC! and piecewise C? shortest path of bounded
curvature in the free plane between given endpoints and orientations s either
of type CSC, or of type CC,C with v > w, or a degenerate form of these.

Remark 2 Dubins[2] (and Reeds and Shepp[5] in case of cusps) seem to
get a more general result, as they minimize the length in a larger class of
paths. But our conclusion amounts to the same, as we already explained at
the end of Section 2.

5 The general case (allowing cusps)

We go back to the general statements and results of Section 3. The case
of an optimal path for which A = 0 has already been settled by lemma 4.

13



Notice that in this case, any path of type S is obviously optimal, as well as
any path of type Cy,|Cy,|...|Cy,|... when v1 + ...+ v, +... < 7, since all
these paths have the same length R(v; +...+v,+...) = Rlaf —a'| ; but the
number of cusps is unbounded and may even be infinite, since we can always
replace a sequence Cy,;|Cy,|Cyy by Cyr|Cy|Cyy |Cy|Cyy With v1 + v2 + v3 =
v] + v+ v + w + vy. It can be shown that the converse is also true. Thus
there are in this case infinitely many shortest paths, in striking contrast to
section 4. Notice however that there always exists one with at most two
cusps, as proved by [5].

In the following we focus on the case of an optimal path for which A # 0,
where the whole of Section 3 applies, and in particular Proposition 10 (with
A =1 ¢ =c = 0). We assume that there is at least one cusp on the
path (the no—cusp case being already settled) and we lead the discussion
according to the values of e > 0.

51 e>1

No arc of circle of radius R perpendicular to D+ can reach Dg. Thus, there
is no inflexion, and the path is of a type C|(Cy])* C for some k > 0.

52 0<exl

Any circle of radius R centered on D4 intersects Do at angles satisfying
cosa = —ce # 0. Thus the possible values for a are +v,+v + 7 for some
0<v< Z.

But then part (c¢) of Remark 1 asserts that the path contains no line
segment and an arc of circle starting at a cusp A, on D4 (D_), can only

1. either be final : |C,
2. or end at an inflexion point I1 : |C,C...0or I3 : |CryC ...,
3. or end at a cusp : |Cy|.

An inflexion at I; (the inflexion point farthest from A) is impossible, since
the arc I, I, would be an arc between two points where 8 = y = 0 and
shorter than m R, contrary to Lemma 9. The third case is also impossible by
the same argument since the arc intersects Dy in two points. Thus we are
left with only |C or |C,C, the last arc being again either final or ending at
a new cusp on D_ (D.), and thus also of length vR.

14



We conclude that any portion of an optimal path starting at a cusp is of
one of the three following types |C, |C,C or |C,Cy|... with 0 < v < Z, and
the same v along the whole path.

Hence the possible types of optimal paths in the case 0 < e < 1 are

CIC, C|CC, CC.|C, CCL|C,C, C|C.Cy|C
with 0 < v < § (compare to the list in [5]), and also others of type
e .CC|CoC[C ... , OF ...CICHC,ICuC . ..

The following lemma shows that the two last cases cannot be part of an
optimal path by computing a local deformation of the paths, similarly to
the proof of Lemma 11.

Lemma 13 No path of type CC,|C,Cy|C (or C|C,Cy|C,C) with0 < v < §
can be optimal.

Proof : We consider only the case CC,|C,C,|C, the computations for the
other one being identical. The notations being clear on Figure 3, let again
7y denote the unitary vector with polar angle § and L the length of the
path. Assume R = 1 for simplicity.

For any nearby path of the same type and with the same endpoints
CCg|C,C;s|C, O; and O are unchanged and we can take O;0s as the z-axis,
so that

05 = 01 + 217#—0 + 217-—0-{-[3 +2’77r—a+ﬁ+7 + 2’7—a+ﬁ+7—6
L=a+(@-v)+B+7+6+b—(a-B-7+9)

while for the initial path « = § = ¥ = § = v by Proposition 10. Hence
{ Os = 01+ 205_y + 200 + 20544 + 2009
Ly=a+v+v+v+b for some positive a,b
This yields
L—Lo=2(8-v)+2(y —v), thusdL = 2d8 + 2dy (22)
—cosa+cos(f—a)—cos(B+y~-a)+cos(B+vy-a~¥6)

=2-2cosv (23)
sina +sin(f - a)—sin(B+y-a)+sin(f+y-—a-6)=0
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Figure 3: : The CC,|C,C,|C case
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Now we look for shorter paths assuming furthermore § = 7. Equations (22)
and (23) become

L-Lyg=2(8+7~-2v) (24)
—cosa+2cos(f—a)—cos(f—a+v)=2~2cosv (25)
sina + 2sin(f - a)—sin(f—a+7v)=0

The Jacobian of (25) with respect to B and v is equal to —2siny # 0 for
7 sufficiently close to v, since 0 < v < §. So (25) defines implicitly 8 and
v as functions of & in a neighborbood of (v,v,v). This proves that such a
deformation is possible, and differentiating (25) w.r.t. o yields

ﬁ =1 —-—Sin(ﬂ t 7) and d_’)‘ = 2Sin'3 _ Sin(ﬂ +7)

da 2sin v da —2siny
In particular, p
dL dg ¥
— — —_—) = 0 t = = .
do 2(da+da) atf=v=v
But further,
d’L cos v
W(O) = _4sin2v (1—cosv)<0
which proves L < Lo for any small enough o # 0. a

5.3 e=1

Any circle of radius R centered on Dy is tangent to Dg. Thus any arc of an
optimal path starting at a cusp, say A on D,

e either is final : |C,
e or ends at a cusp on Dy : |Crl,
e or has length 7R and ends at an inflexion point B, and is followed by

— either a segment BB’ of Dy. If segment BB’ is not terminal, then
B’ is another inflexion point, followed by an arc of circle which,
again, is either terminal or of length £ R and ends at a cusp on
either Dy or D_.

— or a final arc of circle,

— or another C,/; ending at a cusp A’ on D_.
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We conclude that any portion of an optimal path starting at a cusp is of one
of the four following types |C, |Cy/2SC, or [Cry2SCr /s - .. and its degenerate
cases |Cr|... and [Cr/2Crpal ...

Hence any optimal path, in the case e = 1, is of one of the following
types (together with their degenerate forms) :

C|C,C|Cry2SC,CSCrpa|C,C|Cr 2 8Crsa|C
(compare to the list in [5]), plus others of type
o CSCrplCrpaSC...
for instance
oo CuSCrp2)CraSCryal ..oy - |Cry25Cr2|Cry2SCuy ...
Summarizing the above discussion, we state :

Theorem 14 Any shortest path in the plane, piecewise C?, and either C!
or with cusps at junction points, between two given oriented points, is of one
of the types listed below, together with their degenerate forms :

csc, cc,C (withv > ),
C|C|...|C, C|C,C,CC,|C,CCy|C,C, C|CyC,|C (With 0 < v < ),
CSCo/2|CrpaSC, Cl(CrpaSCrpa)¥C, (with k 2 0)

It is worth noticing that all the arguments used so far were of a local nature.
In the sequel, we will use global arguments and further restrict the number
of possible types of shortest paths.

Lemma 15 A path of type CSC, 3|Crj3SCrya|C (01 C|Cry3SCry2|Cry2SC)
cannot be optimal.

Proof : We consider only the case CSC,,/2|C,,/QSC,,/2|C, the computa-
tions for the other one being identical. The four possible cases of type
CSCry2|Cry2SCrya|C (see (1) to (4), figure 4) can be discarded by global
arguments. We apply the following length preserving transformation to any
of the paths (1) to (4). First, if the two cusps are not already on the same
line (case (2) and (4)), reverse a Cr/2|C,/, portion, in order to get the
two cusps on the same line, say Dy. Now, transform SC,/;|Cr/3SCr/sl

18



(2)

(4)

LV
J N>

Figure 4: : The CSCyr/2|Cry25Cx2|C case

into SC,/9|Cx|, by sliding a cusp along D,. Finally, reverse |C,| in or-
der to remove the cusp. By this transformation, we obtain a path without
cusp, which is of the same length than the initial one, and which contains a

S§Cr3Cy section. Then, Lemma 9 applies to prove that such a path is not
optimal. m]

Finally, observe that a path of type CC,C with v > 7 is no longer
optimal. Indeed, by reversing C,, one obtains a path of type C|Cy|C where
w =27 — v < T, so that it is shorter than the initial path.

We conclude with the following theorem :

Theorem 16 (Reeds and Shepp) Any shortest path in the plane, piece-
wise C?, and either C' or with cusps at junction points, joining two given
oriented points, is of one of the types listed below, together with their degen-
erate forms :

csc,
C|C]...|C, C|C,C,CC,|C,CC,IC,C, C|C,C,y|C (With 0 < v < T),
CSCry2|Cry2SC, C|CryaSCrplC



Furthermore, the only two cases where there is an infinity of shortest
paths are C|C|...|C and CSC,/3|Cr/,SC. But one of them can always be
found of the type C|C|C, or C|Cr/,SC (or CSCp/,|C) respectively. This is
Reeds and Shepp’s result in [5).
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