-

View metadata, citation and similar papers at core.ac.uk brought to you byt CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Observing localities
Gérard Boudol, Ilaria Castellani, Matthew Hennessy, Astrid Kiehn

» To cite this version:

Gérard Boudol, Ilaria Castellani, Matthew Hennessy, Astrid Kiehn. Observing localities. [Research
Report] RR-1485, INRIA. 1991. inria-00075077

HAL Id: inria-00075077
https://hal.inria.fr /inria-00075077
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50449757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00075077
https://hal.archives-ouvertes.fr

INIA Rapports de Recherche

UNITE DE RECHERCHE N° 1485
INRIA-SOPHIA ANTIPOLIS

Programme 2
Calcul Symbolique, Programmation
et Génie logiciel

OBSERVING LOCALITIES

Gérard BOUDOL
Institut National Ilaria CASTELLANI

de Recherche Matthew HENNESSY

en Informatique Astrid KIEHN

et en Automatique

~ Domaine deVoluceau
) Rocquencourt
| BP105
78153 Le Chesnay Cedex
France Juillet 1991

161.(1)3963 5511 R

Observing Localities

Sur I'observation de la répartition des processus

Gérard Boudol & llaria Castellani
INRIA Sophia-Antipolis

Matthew Hennessy
CSAI, University of Sussex

Astrid Kiehn
TUM, Munich

Abstract.

We introduce a refined version of observation for CCS which allows the observer to see the dis-
tributed nature of processes. Using several examples we argue that a semantic theory based on
such observations is not only intuitive but may also be of use when formalising the relationship
between implementations and specifications. Technically, we show that the resulting theory of lo-
cation equivalence is very similar to that of bisimulation equivalence, e.g. it can be characterised
by a simple modal logic. A comparison with distributed bisimulations is also given.

Résumé.

Nous introduisons un raffinement de la notion d’observation pour CCS, ol 'observateur pergoit la
répartition dans l’espace du processus observé. Nous présentons plusieurs exemples qui montrent
qu’une sémantique fondée sur cette notion intuitive d’observation permet de rendre compte des
relations entre spécifications et réalisations. Nous montrons que la théorie de I’équivalence obtenue
est trés semblable a celle de 1’équivalence de bisimulation. En particulier notre “équivalence de
répartition” admet une caractérisation en termes de logique modale. Nous donnons également une
comparaison de cette équivalence avec la “bisimulation distribuée”.

Observing Localities®

G. Boudol, 1. Castellani
INRIA, Sophia-Antipolis,
M. Hennessy
CSALI University of Sussex,
A. Kiehn
TUM, Munich.

Abstract

We introduce a refined version of observation for CCS which allows the observer to see
the distributed nature of processes. Using several examples we argue that a semantic theory
based on such observations is not only intuitive but may also be of use when formalising
the relationship between implementations and specifications. Technically, we show that
the resulting theory of location equsvalence is very similar to that of bisimulation equiva-
lence, e.g. it can be characterised by a simple modal logic. A comparison with distributed

bisimulations is also given.

1 Introduction

There are by now a number of well-established semantic theories of processes in the research
literature which are based on principles of observation. The main idea is that processes are
deemed to be equivalent if there is no possible observation which can distinguish them. Different
formalisations of this idea, which give rise to a number of semantic equivalences, may be found
in [Mil89], [Hen88] and [Hoa85]. All these formalisations are based on the same simple notion
of observation, namely communication: one may observe a process by communicating with
it via a communication channel. The resulting semantic theories are often called interleaving
theories; they do not distinguish between concurrency and nondeterminism or more precisely
they equate a parallel process with the purely nondeterministic one obtained by interleaving
its primitive computation steps or actions.

Some attempts have been made to generalise this observation based approach in order

to develop a semantic theory which does distinguish between these two phenomena, [CH89),

*This work has been supported by the ESPRIT/BRA CEDISYS project.

[BC87|, [DNM88], [BC89], [DD89|. Here we reexamine the approach taken in [CH89] and [Kie89]
where the processes under observation are considered to be distributed in nature. So the observer
can not only test the process by communicating with it but can also observe or distinguish that
part of the distributed process which reacted to the test. A purely nondeterministic process is
based at one site whereas in general a concurrent one may be distributed among a number of
different locations. It follows that an observer will be able to distinguish them.

In this extended introduction we will try to explain in detail our approach and to motivate

it by indicating its usefulness.

§1 We use as a starting point the process algebra CCS, a process description language which
describes processes in terms of the actions they can perform. For example, a “cell”, or a

one-place bag B, which repeatedly performs the actions in, out, may be defined by
Bj <= tn.out.B;
If we run two copies of this in parallel we obtain a process which acts like a two-place bag:
B; < B, | By

Here | is the parallel operator of CCS which in this context defines a process which consists of
two independent processes, two copies of Bj, running in parallel.

Processes running in parallel may also communicate or synchronise with each other. This
is formalised by dividing the set of actions into two complementary subsets, the input actions
and the output actions. Communication is then considered to be the simultaneous occurrence
of complementary actions. Output actions are indicated by an overbar, such as @,in, etc.,
input actions by the absence of an overbar and there is a distinguished action 7 to indicate a
communication or more generally internal and unobservable computation. So if we define two

processes In, Out by

In < in.a.lln

Out < &.out.Out

then the process In | Out acts somewhat like B;. However In, Out are not obliged to synchronise
via the action a. The actions a and @ may be performed independently, which corresponds to
separate synchronisations with processes in their operating environments. To eliminate these
possible communications with the environment and thereby force the synchronisation between
the two processes we limit the scope of these actions using another operator of CCS, restriction,

which in general is written as \ A where A is a set of actions. So let NB; be defined by

NB; < (In | Out)\«

These two processes, B; and NB,, offer very similar behaviour to a user, particularly as the
synchronisation between In and Out is not supposed to be visible externally. According to the
theory developed in [Mil89] they are weak bisimulation equivalent, denoted by Bz ~ NBy; in
terms of the visible actions in and out they offer the same possible behaviour to any user of the
systems. Indeed it would be very difficult to construct a test based on the ability to perform

these two actions which would distinguish them.

§2 However this reasoning is based on the assumption that the only property which can be
observed of a process is its ability to perform particular actions. Now let us re-interpret the
language by saying that P | Q is a distributed process where the sub-process P is at one site
and Q is at another site; moreover let us suppose that an observer can distinguish between
sites in the sense that when a distributed process performs an action the observer knows the

site responsible for it. Thus one observer’s view of the distributed process B; is

Lol
b
o)
—
e
-
..;
-

Here the observer has decided, out of personal choice, to call [y the site or location of the first
subprocess, and [, the location of the second subprocess. Now it is not possible to construct a

similar view of NB;. For example

o)
°
o~
Sy
[

can easily be distinguished from B, as here all in actions are seen to occur at the location {;
and all out actions at location l3. In contrast they are distributed between [, and [l in the
distributed process Bj.

The basic difference between these two processes is that in NB; one site is responsible for
the in actions and one for the out actions whereas Bz has two equivalent sites each acting like
a one place buffer. Viewing these as specifications this is a useful and meaningful distinction.
To implement B; it is necessary to have independent locations each acting like buffers whereas
an implementation of N B; would always have to localise the responsibility for the tn actions

and the out actions in independent locations. In fact NB; is a reasonable specification for a

variety of communication protocols which have to successfully transfer messages across faulty

mediums. For example consider Pr;, defined by

Sender < in.send.Sender
Medium < send.delsver.Medium
Recesver < delsver.out.Recesver

Pry < (Sender | Medium | Recesver)\{send, deliver}

Here the causal links between the in and out actions are more complicated but the responsibility
for them is distributed in a manner similar to that in NB;. So as a distributed system Pr;
can be viewed by an observer in the same way as NB,; above by naming the locations in the

following manner:

..

Medium

..

Note that here the medium has not been assigned any location. This is reasonable because an
observer will never see any actions which it performs and therefore he will never even know it
is there. Similar reasoning may be applied to more complicated protocols where the transfers
from the Sender to the Recesver follow a more tortuous route. As an example consider a
protocol which uses both a secure and a faulty wire. It first tries the faulty wire and if it does
not receive an acknowledgement it retransmits on the secure one. The protocol Pr; can be
defined by:

Sender < in.send.Sender
Medium < send.tryf.(ack.Medium + r.trys. Medium)
FWire <« tryf.(ack.deliver.FWire+ FWire)
SWire <« trys.deliver.SWire
Receiver <= deliver.out.Recesver
Pry < (Sender | Medium | FWire | SWire | Receiver)\I

I = {send,deliver,tryf,trys}

Here we use the choice operator + to indicate that at certain times a process may act in either
of two ways. Again this can be observed in a distributed fashion in a manner similar to NB;

above:

é E —‘ SWire l-—y—: ;
' Sender . Medium ¢ | Recetver | :
e z — FWirel—H s
e e

..

So both these implementations Pr; and Pr; match the distributed specification NB,, while
they are not equivalent to B;.

§3 As another example consider the solution to a simple mutual exclusion problem where the
access of two readers to a device is controlled by a semaphore. The system may be defined in
CCS by

Reader <= P.enter.exit.v.Reader
Sem < p.v.Sem
Sys < (Reader | Sem | Reader)\{p, v}

This system satisfies the specification defined by
Spec <« enter.ezit.Spec

in that Spec s Sys. However it is also possible to have a faulty system implement this
specification. This involves a faulty reader which may deadlock after exiting from the critical

region:

Reader
F Reader

<= P.enter.exit.V.Reader

< DP.enter.(ezit.V.F Reader + ezit.V.nil)
Sem < puv.Sem

=

FSys (Reader | Sem | F Reader)\{p, v}

In our description of the faulty reader, FReader, we use nil to indicate a process which is
deadlocked but in practice the deadlock could arise because of some more complicated behaviour

of a particular reader. One can check using the definition of weak bistmulation equivalence in

[Mil89] that Spec ~ FSys although the system obviously has a deadlocked subsystem which
has no counterpart in the specification.
However if we view these systems as distrsbuted systems then a difference can be perceived.

An observer may view Sys as

..

Sem

where there are two locations in each of which there is a process repeatedly executing the
actions enter, exit. There is no comparable view of the faulty system FSys. For example the

view

..

Sem

..

leads to a different observable behaviour. Here it is possible to reach a state in which no more
actions will ever be observed at location Iz, while this is not possible for the corresponding view

of Sys.

We hope these examples show that by allowing an observer to see the distributed nature of

a process a useful and intuitively reasonable semantic equivalence is obtained.

§4 Let us now address the question of how exactly an observer should be allowed to perceive the
distributed nature of a process. In this respect we are guided by principles of extensionality;
we would like the resulting equivalence to be as extensional as possible in the sense that the
semantics of a process should only be determined by its external manifestations rather than
its internal structure or behaviour. It is reasonable to argue that at least some aspect of
the distribution of subprocesses in a distributed system is a part of its extensional behaviour;
therefore if we are to view CCS as a language for describing distributed systems an observer
should be able to view P | Q as a distributed system which potentially has two distinct sites;
any externally visible action performed by P should be recognizable as emanating from one

location and any performed by @ should be recognizable as coming from a different location.

But how is an observer to decide when more than one location is involved? The first point to
note is that the notion of location has to be conceived of hierarchically because the distributed
structure of a system may evolve dynamically. For example any system of the form a.P will
initially be viewed as containing one location. This is true even when P has the form Q | R.
The distributed nature of P will only become apparent when the action a has been performed.
Thus if an observer decides to call /; the unique location in a.P when a is performed he will
then perceive that P is distributed among two locations and may allocate them the names
Iz and [3. At this stage I; and I3 are actually sub-locations of the original location /; and in
our formalisation they will correspond to the two locations I1.l2 and !;.ls. This notion of sub-
location will serve to distinguish the different kinds of distribution which appear in systems
such as a.(Q | R) and a.Q | R.

One might hope that this allocation of location names by the observer could at least to
some extent be static; at each stage during the observation period the observer could allocate
location names within the system under observation on the basis of the operator | and then
proceed by examining the ability of the resulting system to perform specific actions at specific
locations. However this approach is fraught with danger. For example it would distinguish the
two processes a.nil and ((a+@) | a.a)\a, which is difficult to justify intuitively. One would also
have difficulty in equating terms such as P and P | nil or even ensuring that | is associative.

In this paper we abandon this static approach and instead develop the idea that location
names are assigned dynamically as part and parcel of the act of observation; when an observer
sees an action being performed, this is seen as emanating from a particular location and the
observer may then choose to allocate a name to that location. All subsequent actions performed
at that location will then be recognised as emanating from this same location. Technically this
involves developing an operational semantics for the language by replacing the usual statements

of the form P % Q with new ones of the form
a

which carry information about the location names which the observer has assigned to particular
locations in the system. This is very similar to the approach taken in [CH89|, {Cas88| and
[Kie89] where distributed bisimulations are defined, and later in the paper we will offer a detailed

comparison.

§5 We now briefly outline the remainder of the paper. In the next section we give a formal
definition of the new equivalence, which we call (weak) location equivalence and develop some
of its properties. This section also includes some examples. This is followed by a section

containing technical results on the new equivalence. We then define a modal logic for location

equivalence which characterises it in the same way that the modal logic HML characterises
bisimulation equivalence. A detailed comparison with distributed bssimulation is then given,
and we end with a list of further research which is suggested by the introduction of the idea of

locations.

2 Location Equivalence

In this section we introduce location equivalence and show some of its properties. As discussed
in the introduction we take a dynamic approach, that is we are only interested in the observable
distribution of a process. The site of a process is observable if and only if a visible action is
performed at it. Seeing such an action emanating from a site the observer allocates a location
name to it. This name is then perceived with any further observation of an action at that site.

The language we use to formalize this approach is a slight extension of Milner’s pure CCS.
The extension is an additional operator called location prefizing representing the allocation of
locations to processes. A process p prefixed by a location u will be denoted by u :: p. Intuitively,
process p is at a location called u. However, in general we will assume these locations to be
introduced via the observation of visible actions. That is, initially, before any experiment has
been performed the process under investigation does not contain any location. The observers
we assume here are more powerful than those usually considered for CCS or other process
algebras. With the observation of an action the location of the action is also perceived and

assigned a name. So we will have a transition rule
a .
a.p — u:p for any location name u
u

which means that a has been performed at a location to which the observer has permanently
assigned the name u. Intuitively a process of the form u :: p arises from the execution of some
action at a location u, and p is the subprocess following this action. However, as usual in CCS
we will assume 7 transitions as invisible and therefore no location will be observed when they

are performed. Hence a.7.p also would evolve to u :: p, i.e.
rpu
arp=—uip

If further experiments are performed on u :: p then the location u will always be observed.
Moreover the location called u may contain sub-locations which in turn may also be observed.
For example

u :: (a.nil | b.nil) -uiu' u (v ndl | bonal)
Here the location which has been called u by a previous observation contains two sub-locations

and at one of them a is performed. The name v is allocated to this subsite via the observation

of a. The complete observation of a records both the general location u and the sub-location
v. In general we will have transitions of the form u:‘}:‘" where each u;, 1 > 1, is the name of
a primitive site. The sequence uj ...u, identifies the location where the action a is actually
executed, i.e. we identify a general location with its access path. This allows us to formalise the
notion of a sub-location: the location u; ...u, may be considered to be asub-location of u; ... u;
for any 7, 1 < j < n. Before we go into a more detailed discussion of such transitions and
of location equivalence we will introduce formally the language we consider and also establish
some straightforward properties.

The language is based on Milner’s pure CCS, see [Mil89], with which we assume the reader
to be familiar. As usual we have a set of actions A and the set of co-actions {& | a € A}, a

disjoint copy of A where ~ is a bijection such that @ = a for all a € A. The invisible action is
denoted by 7. We have Act = AU A ranged over by a,b,c,... and Act, = ActU{r} ranged over
by u,v,.... Var denotes a set of process variables ranged over by z,y,2,.... The operators
we consider are the standard CCS ones, nil, action prefixing u., nondeterministic choice +,
parallel composition |, relabelling [f], restriction \b and recursion rec z. . Moreover, to express
algebraic properties we will also use the auxiliary operators leftmerge | and communication
merge |, cf. [BK85], [Hen88]. Additionally we introduce the new operator of location prefixing
discussed above. To this end we assume an infinite set of basic location names or site names
Loc disjoint from Act,. These will be ranged over by k,I,m,..., whereas general locations,
sequences from Loc*, will be ranged over by u,v,w,.... As usual we use £ to denote the empty
word in Loc*. Syntactically we write u :: p with the intuitive meaning that process p is at a

general location called u. So we work with the following abstract syntax

t o= nid | pt | t+t | (t]t) | t[f] | t\b
| = | recz.t
| et | et
| w:t

where f is a relabelling function f : Act — Act such that f(a) = Fa—) for all a € Act. We
assume the usual precedence rules for operators where | and |, have the same precedence as |
and u :: p the same as u.p. As usual we will often omit occurrences of nil, for example rendering
a.nil as a. Let £ be the set of all terms which can be generated by this syntax. For t € £ the
set of free variables fv(t) is defined in the standard way. Closed terms are called processes and
we use IP to denote the set of such terms. We furthermore distinguish the set CCS containing
all location free processes and the sets CCSy and CCS,¢, the former consisting of all finite CCS
processes and the latter those which are additionally restriction and relabelling-free. Typical

examples for processes in IP are ! :: a.nil | b.nil, | :: (k::a.nil) and (I :: a.ndl | k :: @.nil) \ a. In
examples of processes we will often write = <= t instead of the process rec z. t. For example the
process N B; of the introduction is equivalent to (recz. in.a.z | recz. &.out.z) \ a. Another
notational conventions we will use is p\ A for p\a;\az\...\ an where A = {ay,...,an}. We
will also work modulo the identifications u; :: ug :: +--u, :: p = u :: p where u = uyus...u,,
and € :: p = p. We shall see that these identifications are valid in our semantics. Finally we use

loc(p) C Loc to denote the set of basic location names occurring in p.

We will give two operational semantics to £. The first one generalizes bisimulation equiva-
lence in a straightforward way. The standard transition system is extended by a rule for location
prefixing. Loosely speaking the new transition rule preserves locations but also ignores them.
The extended transition system is given in Figure 1. Note that the rule for the communication
merge |. can not be defined without using e-transitions’. Based on this transition system weak
bisimulation is defined a usual. We use & to denote %% and /i to denote a if u = a,a € Act,

orjp=cifu=r.

Definition 2.1 [Bisimulation Equivalence]

A symmetric relation R C IP x P is called a bisimulation iff R C B(R) where

(p,q) € B(R) iff for all 4 € Act,

pBp implies ¢ L q' for some ¢' € IP such that (p',¢') € R.

p and g are bisimulation equsvalent (or bisimilar), p = ¢, if and only if there is bisimulation R
such that (p,q) € R.

Two expressions t,t' € £ are bisimulation equivalent (or bisimilar), t ~ t', iff tp ~ t'p for all

substitutions p : fu(e) U fu(e') — IP .]

It is well known that =5 is an equivalence relation and, restricted to IP, the largest symmetric
fixed point of the equation R = B(R).

Bisimulation equivalence considers the ability of performing visible actions and only in
this respect bisimilar processes exhibit the same behaviour. The new semantics we give to £
additionally takes the distribution in space into account. As already discussed above there will
be two points in which it differs from the standard one. The first point is that locations may
be introduced via the observation of actions. Secondly processes may contain locations and
actions in the scope of locations will be observed at those locations. Formally these two points

are reflected by the following two rules in the location transition system.

! As pointed out by L. Aceto an operational rule for |. based entirely on strong transitions would yield an

operator which does not preserve sy, the coarsest relation contained in s preserved by +.

10

For each y € Act, let & C (IPx IP) and = C (IP x IP) be the least binary relations satisfying

the following axiom and rules.

(51)
(52)

(S3)

(54)

(35)
(s6)
(s7)
(s8)
(s9)

(S10)

(W1)

(W2)

u
pp—p

trecz. t/z] 5 p'

p—7,

pSp,
e

p’ :5 p"

implies

implies

implies

implies

implies

implies

implies

implies

implies

implies

ptgby
g+p Sy

plesplg
glpbqlp

plabp g
21179 pif)
p\b 5 p'\b, pu ¢ {b,B}

recz.t B p'

ple>p|d

pleg—p"|¢"

pé P"

Figure 1: Standard Transitions

11

(L1) a.p —::—o up W€ Loc*

(L2) P —:—o r implies vip — vup

vu
Here u is an access path representing a location where the action a is performed and in the
second rule this is extended by v to give the new location vu. With these two rules we are able

to derive, up to the identificationu ;v ip=uv i p

. a -
abenil — wu:ibe.nil
u
b .
— uv:ec.nsl
uv
[.
— uvw : nsl
uvw

This example demonstrates the incremental allocation of locations in the course of observations.
But one might wonder whether this is necessary when considering sequential processes only.
However with the rule (L1) it is not obligatory to assign a new location with each action

performed because u may be instantiated to €. So we could also have the derivation

u: benil LN u::c.nsl

:: nil

eloe
=

The rule for parallel composition is the usual one:

(L4) p = p implies plg = plg

Using this rule together with (L1) we can derive

a.(bnil | cnil) = u:(b.nil|c.nil)

— u: (v enil)

— u: (vl | wenid)

We can now see how parallelism is differentiated from nondeterminism. For the process

a.nil | b.nil we can derive a.nil | b.nil —:—0 u :: nil | b.nil while its nondeterministic coun-

terpart would perform the transition a.b.nsl + b.a.nil {—' u :: b.nil. Now with the observation

of the action b different locations would be perceived. In u :: nil | b.nil —:—~ u i nil | v i ndl the

12

For each a € Act let —:—~ C (P x Loc* x IP) be the least binary relation satisfying the

following axioms and rules.

(L1) a.p —30 uip u € Loc*

(L2) P —:—~ r implies vip ;% vip

(L3) P —%o [implies p+yq —E' p
¢tp — P

(L4) p— 7 implies ple = #lq

a !

glp > qlp

(L5) Py implies pla = ¢lg

. /

(L6) p L p implies plf] %2 p'ls]

(L7) Py implies P\b > p'\b, a & {b,}}

(L8) tlrecz. t/z] —30 p' implies recz.t —:—o 4

Figure 2: Location Transitions

13

b is performed at the location v which is independent of u whereas in u :: b.nil T?J uv :: nil it
is performed at a sublocation of u, namely uv.

The r-transitions are considered, as usual, to be invisible, so no location is observed when
they are performed. They are of the form p -+ p' and are defined through the standard
transition system for CCS given in Figure 1. Visible transitions are defined by the location
transition system given in Figure 2. They always have the form p -'—‘:* p' where we call u the
location where the action a is performed. Weak transitions are defined in the same way as for

the previous transition system:
p3p1, p1 — p2, ;23 implies p=>p

Note, that p=:> p' implies p = p', up to the identification € :: ¢ = ¢, and that in general the
reverse is not true.

If we apply the transition rules to our examples from the introduction we can derive
In % u:aln
u
Formally In is represented by the term rec z. in.a.x and

. tn .
reczT. 1n.a.x — Ul a.reczr. 1nn.a.x
u

because

. . n .
ina.z[recz. in.a.z/z - unorecz.inoz

by (L1) and (L8). Similarly using in addition (L4) and (L7) and our notational conventions

(In|Out)\ 1':—‘0 (u:aIn|Out)\ a
5 (u:In|out.Out)\a
3;15 (u::Injv:Out)\a

-—%3 (uIn|v:out.Out)\ a

recalling that In < in.a.In and Out < &.out.Out. This means that the observer can discern
two different locations in the system, one where in is performed and the other where out is

performed.
Based on the transition system given in Figure 1 and Figure 2 we now define location
equivalence. Two processes p and ¢ are location equivalent if every move of one of them is

matched by a similar move of the other and in particular if for every visible transition p——3> r

the matching transition q%q’ has the same location.

14

Definition 2.2 [Location Equivalence]

A symmetric relation R C IP x IP is called a location bisimulation iff R C C(R) where
(p,q) € C(R) iff

(f) p>p' implies ¢=>¢' for some ¢' € IP such that (p',¢') € R

(¥%) p%p’,a € Act,u € Loc*

implies q%q’ for some ¢' € IP such that (p',¢') € R.

Two processes p and q are said to be location equivalent, p =3, g, iff there is a location bisimu-
lation R such that (p,q) € R.
Two expressions t,t' € € are location equivalent, t s, t', iff for all substitutions p :
fo(t) U fu(t') — TP, tp s t'p. O

We reconsider the examples of the introduction. As argued there the processes
B; < By | B,

and
NB; < (In | Out)\«

should be distinguished if their distributed nature is taken into account. Indeed B2 and NB;

are not location equivalent. If
B, —'3' u:out.B, | By = By
then NB; would have to match this move with
NB; % (u:a.In|Out)\a = NB;

or

NBg%"(u i In | out.Out)\a = NB3
Both of these, NB} and NBZ, may perform an out action at any location v,
NB} 2 NB}

which can not be matched by a similar move by Bj at the location v if v is chosen to be different
from u. On the other hand NB; =, Pr; because a location bisimulation containing this pair
of processes may be defined, using NB and Pr as generic names for states of the systems NB;

and Pry, as follows, using I = {send, delsver}:

15

(NB,Pr) € Riff
NB=(u:In|v:Out)\a and Pr = (u :: Sender | Medium | v :: Recesver)\I
or NB = (u:a.In|v:Out)\a
or NB = (u:In|v:out.Out)\a
and Pr = (u: send.Sender | Medium | v :: Receiver)\I
or Pr = (u:: Sender|deliver.Medium | v :: Recesver)\I

or Pr 4 :: Sender | Medium | v :: out. Recesver)\I

Finally it can be checked that Pr; ss; Prs ss, NB; considering the location bisimulation in

Figure 3, where I = {send, delsver,tryf, trys}.

3 Properties of Location Equivalence

In this section we prove some properties of a3,. For example, a property one would expect is
that p =, ¢ implies p = ¢, that is location equivalence is included in bisimulation equivalence.
In order to show a more general result we introduce some notation concerning the renaming
and erasing of locations.

Let # be a mapping # : Loc — Loc*. We call such a mapping a location renam-
ing. Now 7 may be extended to words in the obvious way: =x(e) = ¢ and #(lu) =
n(l)n(u). Further, 7 may be transferred homomorphically to a mapping between processes
n: € — &: for example we will have x(u :: p) = x(u) :: 7(p). For a renaming affecting only
one location we will frequently use the notation t[l — u], meaning the result of applying to ¢

the renaming 7 defined by

k otherwise

k) = {u k=1

Let pure be the location renaming which erases all locations, i.e. V! € Loc,pure(l) = ¢; then
pure(p) yields a CCS—-process for any p € IP (up to the identification € :: ¢ = ¢). Now, it is
easy to check that for any p € Act,, we have p & p' if and only if pure(p) %, pure(p'). Then
the following property is straightforward.

Proposition 3.1 pure(p) = p. O

In fact, we have a stronger result, namely that pure(p) and p are strong bisimulation equivalent,

[Mil89] but we shall only use Proposition 3.1 in the following.

16

R is defined by
(NB, Pr) € Riff

NB = (u:In]|v:Out)\a
and Pr = (u: Sender | Medium | FWire | SWire | v :: Receiver)\I
or Pr = (u: Sender| Medium | ack.deliver. FWire+ FWire | SWire | v :: Receiver)\I

or

NB = (u:aln|v:Out)\a
or NB = (u:lIn|v:out.Out)\a
and
Pr = (u:: send.Sender | Medium | FWire | SWire | v :: Receiver)\I
or Pr = (u: Sender|Wirehandler | FWire | SWire | v :: Recefver)\I
or Pr = (u: Sender|Wirehandler | FWire | SWire | v :: Recesver)\I
or Pr = (u: Sender|ack.Medium + r.trys.Medium
| ack.deliver. FWire + FWire | SWire | v :: Receiver)\I
or Pr = (u: Sender| Medium | deliver. FWire | SWire | v :: Receiver)\I
or Pr = (u: Sender| Medium | FWire| SWire| v :: out. Recesver)\T
or Pr = (u: Sender|trys.Medium
| ack.deltver. FWire + FWire | SWire | v :: Recesver)\I
or Pr = (u: Sender| Medium
| ack.deliver. FWire + FWire | deliver.SWire | v :: Receiver)\I
or Pr = (u: Sender | Medium
| ack.deliver. FWire + FWire | SWire | v :: out. Receiver)\ I

Figure 3: A Location Bisimulation for Pr; and Pr,.

17

We show now that location equivalence implies ordinary bisimulation equivalence. This

result relies on the next lemma, which shows the basic interrelation between the transition

a a
systems — and — .
u

Lemma 3.2

(1) Ifp —:—' p' then pure(p) > pure(p).

(2) Ifpure(p) > r then Juc Loc*,f€P st. p —%o p' and r = pure(p').
(8) Properties (1) and (2) also hold for weak transitions.

Proof: by induction on the proof of transitions. O

Proposition 3.3 p=s,q implies pure(p) s pure(q).

Proof: we show that R = {(pure(p),pure(q)) | p ~¢ ¢} is a bisimulation. Suppose
pure(p) = r. By Lemma 3.2 we have p‘-%p' with r = pure(p’). As p ~, ¢ we know that
q=:>q’ with p' ~, ¢'. Applying Lemma 3.2 we obtain pure(q) = pure(q'), which is a suitable
matching move since (pure(p'), pure(q')) € R.

The case pure(p) = r is even easier, since we have pure(p) = r iff 3p’ st. p = p' and
r = pure(p').]

The inclusion of location equivalence into bisimulation equivalence follows directly from Propo-
sitions 3.1 and 3.3:

Corollary 3.4 p=,q implies p=q.]

We now study how location renamings affect the behaviour of processes. The next lemma

establishes the relation between the transitions of processes p and = (p).

Lemma 3.5 Let p € IP, and x be an arbitrary location renaming.

(1) Ifp5p then =(p) > x(p').

(2) Ifxn(p) 5 r then Ip st. pp and n(p')=r.

(8) Ifp ¢ then (p) = n(p').

(4) ForanylL s.t. loc(p) C L C Loc: =(p) -%0 r tmplies In',3v € Loc*, Is € IP such
that n'[L=x[L and p —:L‘ s with n'(v) =u, n'(s) =r.

(5) Properties (1),(2),(3) and (4) also hold for weak transitions.

18

Proof: we only prove point (4), as the others are easy. The proof is by induction on the proof

of the transition =(p) {—' r. We examine two cases.

i) ag —5:—' u :: ¢, with 7(p) = a.¢, r = u:: q. Then 3p' s.t. p=a.p' and n(p') = ¢. Let now
l € Loc\L. Define the renaming =’ by:

) = {u if k=1

x(k) otherwise

Then #'[L = x[L, and the required move of p is a.p’ —‘:—0 l:p, since n'(l) = u and
7'(p') = x(p') = ¢ because loc(p') = loc(p) C L.
i) wg f:’ w:g,m(p) =w:gq, u=wd and r = w :: ¢', and the transition of w :: ¢

is inferred from ¢ — ¢'. Since w :: ¢ = n(p), there exist w',p’ st. p = w' :: p’ with
¢

r(w') = w, n(p') = ¢. Then by induction 3x', I, Is' st. «'[L = x[L and p —:—,~ s

with 7'(v') = o', 7'(s') = ¢'. From this we deduce w'::p' -~ w' :: &', which is the required
w'v’

move for p since #'(w') = n(w') = w because loc(p) C L, and thus ='(w'v’) = wu' = u and

!

w s)=wugd =r. 0

Proposition 3.6 Let p,q € P, aend n be an arbitrary location renaming. Then

p e q implies n(p) =~ 7(q).

Proof: let R = {(n(p),7(q)) | p ~¢ q}. We show that R is a location bisimulation. Assume
n(p)%r. Take now L such that loc(p)Uloc(q) € L € Loc. Applying Lemma 3.5 (4) we deduce
that there exists ' s.t. n'[L = x[L and a transition p%p’ such that n'(v) = u, 7'(p/) = r.
As p = ¢, there is a transition q=:=q' such that p' ~, ¢. Now since n(g) = #'(q), applying
Lemma 3.5 (3) we obtain #'(g) == #'(¢'), where by definition of R, (x'(p'),'(¢")) € R.

x'(v)
The case n(p) = r is treated similarly, using clauses (1), (2) of Lemma 3.5. o

Like (weak) bisimulation equivalence, location equivalence is a congruence with respect to the
operators of prefixing, parallel composition, renaming, restriction and recursion. It is also
preserved by the new operator of location prefixing. We do not give the proof here, the proof

technique being essentially the same as for bisimulation equivalence [Mil89).

19

Proposition 3.7 Let p,q,r € IP, t,t' € £, and suppose p iy q, t =y t'. Then:

(1) ap ¢ agq

(2) unp SNy u:ig
(3) plr ~¢ q|r
(4) Pler =¢ qlcr
(5) plf] = qlf]

(6) P\b ¢ q\b

(M recz.t w4y recz.t

D

It is well-known that the (weak) bisimulation equivalence = is not preserved by nondeterministic
choice nor by the leftmerge operator (for the latter consider the example: a =, 7.a but
afbs,r.afb), and for similar reasons neither is location equivalence. We proceed here as for
bisimulation equivalence, and work with sj — the coarsest equivalence contained in =, which is
preserved by all operators. The equivalence =§ can be characterized in two ways. Again, these

are standard and we omit the proofs.

Proposition 3.8
piq i (I) (1) p>p' implies g=>¢' for some ¢ € IP such that p’' ~, ¢'
(1) p —E* P implies q=:=q' for some ¢' € IP such that p' =4 ¢'.
(I) () ¢ ¢ implies p=>p for some g € IP such that p' ~y ¢'
(1) ¢ —:—‘ ¢ implies p'—%>p’ Jor some p' € IP such that p' ~, ¢'.

iff p+a w.q+a for some a & sort(p) U sort(q)

where as usual sort(p) yields the set of actions of p. a

Consider now the equations in Figures 4, 5, 6. The first set of equations, D, contains the
so—called static laws of CCS, that is the basic laws governing the static operators, parallel
composition, relabelling and restriction. The equations E and E' give a set of very simple
laws about the distribution of location names through the other operators and will be used
later in the paper. Finally the equation set G gives a standard set of equations for non-
interleaving semantics of CCSy, finite CCS without restriction and relabelling. This particular
set of equations is taken from [Kie89] and will also be referred to later in the paper. The last
equation in Figure 6 expresses an absorption of terms: the notation y C z means that y is

absorbed by z, that is z + y = z.

20

(P1) zlnl = z

(P2) zly = yle
(P3) zl(ylz) = (zly)|=
(R1) z\a = z ifa,a ¢ sort(z)
(R2) z\a\b = z\b\a
(R3) z|y\a = y\a|z\a ifa,a & sort(z) N sort(y)
_ a.(z\b) ifa#b,b
(R4) as\b = { nil otherwise
(RUD) @] = e\ ¢ f(aort(s)) and 1) = { fle) Bere
(U1) z(id] = z
(U2) z[flls] = =zlgo /]

(U3) (|9l = =lf]{ylf]

Figure 4: Equations D, the Static Laws
Now it may be checked that all these equations are satisfied by ~j:

Proposition 3.9 The sets of equations D (in Figure §), E, E' (in Figure 5) and G (Figure

6) are sound for .]

We show now that for sequential CCS processes the equivalence =3, reduces to the bisimulation
equivalence =s. This will ensure us that introducing locations adds discriminations between
processes only as far as their distributed aspect is concerned.

Let CCSgeq be the set of sequential processes of CCS, that is processes built without the parallel
operator. The following is easy to prove, using the laws E2, E3, E6.

Lemma 3.10 Let p,q € CCSsq and u,v € Loc*. Then:
(1) If vup =:> y then 3p' € CCSyeq 8.t. p>p' with rvpuc:p.
(2) If p>p' then Vw € Loc*. Ir € CCSyeq 8.t. v p ﬁ r, with r ~, vw : p'.

Proposition 3.11 If p,q € CCS;¢q then pm g smplies pwyq.
Proof: let R={(v:p,v:q)|p,g € CCSsq and p = q}. We want to show that R C =,.
To this end it is sufficient to show that R is a location bisimulation up to location equivalence.

More precisely we will show that if v :: p=:> r then v : q=:>s with r &4 -R- x5, s (and similarly

for e-moves).

21

(E1) uu(z|y) = uuz|uny
(B2) wi(elf) = (uua)lf]
(E3) wu:u(z\b) = (uaz)\b
(E4) enz = z

(ES5) uingl = nsl

(E6) u:(viy) = wvzy

Equations F

(E'1) uvi(zl|ey) = unz|uzy
(E'2) u:x=(z/fy) czxfuny
(BE'3) uu(z+y) = uunz+uzny

il
2

Equations E'
Figure 5: Equations E U E': Equations for Location Names.

Suppose v :: p=:>r. Then by Lemma 3.10 (1) 3p' € CCS,eq s.t. p = p' with r sy u = p'.

Note that u is necessarily of the form u = vw. Now since p = g, corresponding to p = p'
there is a move ¢ = ¢’ s.t. p' ~ ¢'. But now by Lemma 3.10 (2) 38 € CCS,eq s.t. v g =v—i> s,
with s ~pvw: ¢’ =u: g Then (up' u:¢g') € R,and thus re,uiip' Ru:i¢ =
Take now v :: p = v :: p'. This is because p = p'. Then, since p = ¢, we have ¢ = ¢' with
p' = ¢, and thus (v:p,v:ug') € R

We have thus proved that p = ¢ implies v :: p a5, v :: ¢, and hence in particular ¢ :: p =,
€ :: ¢. Now by the soundness of law (E4) we have ¢ :: p ~, p, whence we conclude that

PRt LPpRgELgRY Q. (]

We next show a decomposition result for location equivalence. This will be used in Section 5
to show that location equivalence and distributed bisimulation equivalence coincide on a subset
of CCS. This decomposition result only concerns IP;, the set of finite processes of IP. We
introduce first some notation and preliminary results. Let p € IP;. Define the observable length

of p, denoted [p|, to be the maximal length of a chain of observable actions of p, that is:
VpGIP/: |p|=maz{n|p§$...a=$p'}

The following properties are easy to show:

22

(A1) z+(y+z) = (z+y)tz
(A2) z+y = y+z

(A3) z+nl = z

(A4) z+z = z

(LP1) (z+9)fz = zfz+yf=
(LP2) =fv)fz = =z[(y|2)
(LP3) zfnd = =z

(LP4) nilfz = nil

(11) t+rz = 1z

(12) prr = pz

(13) plz+ry)+py = p(z+ry)
(NI1) rzfy = r(zly)
(NI2) zfy = z{ry
(NIB) zf(y+rz)+zfz = zf(y+r.2)

(CPE) zly = zfytylfztz|y
(CPO) 7.T Ic y = z IC Yy
(CP1) (z+y)]lez = (zlc2)+ (vl 2)
(CP2) zley = ylez
(CP3) x |¢ nd = nil
' n _) =InfE]y) fa=3
(CP4) (a.x Y *) |c (b.y Yy) - { nil otherwise

(CP5) a(z|2)f(yly) C afczfz'+v)f(eyly +w)

Figure 6: Equations G: Standard Non-Interleaving Laws.

23

Lemma 3.12

Let p,q € IP;. Then:

(1) p=q implies |p|=|q|
(2) p=>p implies |p| > |p|
(3) p=>p implies |p| > ||
(4) p==p implies [p| > |p|

Note that from clause (1) we may deduce also |u :: p| = |p|. Also, it may be noticed that
as a consequence of proposition 3.1 we have =x(p) s p for any location renaming =, since
p ~ pure(p) = pure(n(p)) =~ n(p). Then from clause (1) it follows also that |[p| = |=(p)|.

The next lemma generalizes Lemma 3.2. It also expresses the fact that in the location

transition system the location allocated at each step may be chosen arbitrarily.

Lemma 3.13

Let p,q € IP;. Then:

(1) If p>p' then Jucloc(p)® s.t. Vigloc(p): p _:T p! with p' =p"[l — €]

() Ifp —:—~ p' then Jv€loc(p)’, w € Loc* s.t. u=vw and Vi gloc(p) p _:T p", with
P =p"[l -).

We need another preliminary result:

Lemma 3.14
Letp,q,r,s € IP; and u € Loc*, 1 € Loc, withl ¢ loc(p) Uloc(q) Uloc(r) Uloc(s).
Then wul:p|q mq¢ ul:ir|s implies |p| = |r| and |q| = |s]|.

Proof: remark first that |(p|q)| = |p| + |g|- Let now q% e %%q’, where n = |g|. By
Lemma 3.13 (2) we may assume that ! does not occur in any v;. Now ul ::p| ¢ % cee :5" ul =
p|q'. Therefore 3r',s' st. ul:r|s %—} .. :5; ul : r' | 8'. Now r cannot be responsible for
any a;-move, since | does not occur in any v;, and thus |s| > |g|. A symmetric argument shows

lg| > |s|, hence |¢| = |s|, and by the remark above also |p| = |r|. 0

We may now prove the decomposition result.

Proposition 3.15 (Decomposition)
Let p,q,r,8 € IP; and u € Loc*, | € Loc, with ! & loc(p) Uloc(q) Uloc(r) U loc(s).

Then wul:p|q m¢ ul:r|s implies p s, r and ¢ =5 s.

24

Proof: let R = {(p,r),(¢,8) | ul =p| q = ul = r|s}. We want to show that R is a

location bisimulation. We only consider the pair (p, r).

Let p 5 p'. We want to show that r = ¢ with (p,r') € R. From p = p' we deduce
wli:p|g>ul:p|q Then ul ::r|s has a corresponding move ul :: r | 8 > ul :: ' | & such
that ul :: p' | ¢ =¢ ul :: ¥’ | &'. Then we have (p',r') € R and (q,8') € R.

We want to show now that r = ¢' and s = s'. We prove then, by contradiction, that in
ul :r|8=>ul:r'|s' there wasno communication between r and s. For assume there was such

" and

a communication, that is ul ::r | 8 S ul ::¢" | 8" 5 ul :: ¢’ | & because ul i r D ul v
s > " for some a € Act. Due to this communication the observable length of s has decreased,
i. e. |s| > |s'|. However, Lemma 3.14 applied to the precondition and to ul :: p' | g s ul ::¢' | &'
yields |¢] = |s| and |q| = |s'| respectively, thus |s| = |s'| contradicting |s| > |&|.

Therefore ul :: v | s = ul :: ¥' | &' because r = #' and 8 = s, and thus r = ¢' is the required

move of r.

The case p%p’ is similar. It relies on the case p = p' above, and uses Lemmas 3.12, 3.14, and

clause (2) of Lemma 3.13. O

Let us now concentrate on processes which are generated by processes in CCS. Let IP(CCS)
be the least set of processes satisfying:

1) CCs C IP(CCS)

i) p€IP(CCS) and p--p implies p' € IP(CCS)

iif) pe€IP(CCS)and p —+ p' implies p' € IP(CCS)
Processes in IP(CCS) are those we are mainly interested in, as our work was motivated by
the search for a semantics for CCS taking the distributed nature of processes into account.
The essential difference between processes in IP and IP(CCS) is that those in IP may contain
locations under the dynamic operators; for example processes a.(u :: b) or (a + u :: b) are in
IP but not in IP(CCS).

Let =g be the congruence generated by the set of equations E. Note that if p € IP(CCS)
and p =g ¢ then ¢ € IP(CCS) as well. This is true also because we do not force the last
allocated location to be new. For example u :: (p | ¢) is in IP(CCS) because a.(p | ¢) € CCS
and a.(p | q) —:* u 2 (p | g). On the other hand u :: p | u :: ¢ is also in IP(CCS), because

ap | b.g € CCS and a.p | bg ——E* u::p|bg —:’7 u 2 p| u g Processes of the form
u: p| u: g could have been excluded from IP(CCS) by restricting the location transition
system so that the last allocated location is always new. However, while for intuitive reasons

one may question the use of such processes, they are technically convenient. They will allow us

25

to assume that processes of IP(CCS) always have the form (IT;eu; :: p;)\ 4, p; € CCS. Moreover
in transitions of the form p —:‘o p', | & loc(p), we may assume that p' is ssf-equivalent to a
process (ul :: py | p2)\A, where | ¢ loc(ps), p1 € CCSyt and p2 € IP(CCSy¢), where IP(CCSy) is
defined in the same way as IP(CCS) but taking CCS,s as the starting set.

The existence of such representations can be proved by induction on the length of the proof
of transitions, applying equations from D, E and E'. We omit the proofs as they are similar
to those in [Kie89]. Let IP(CCS;) be defined as IP(CCS), but starting from CCS;.

Proposition 3.16 Each p € IP(CCS¢) 18 =pygpug'—-equivalent to a process of the form
(Tieru; :: pi))\A where p; € CCSy¢ for alls € I. a

Proposition 3.17 Let p € IP(CCS;).
(1) Ifp -:7 p', L & loc(p), then there are processes p; € CCSy, p2 € IP(CCS,t), and A C Act

such that p' =pypup (ul :: p1| p2)\A.
(2) Property (1) also holds for weak transitions. m]

For processes in IP(CCS,¢) we have a simpler representation.

Proposition 3.18

(1) FEach p € IP(CCSy) s =pypurr-equivalent to a process of the form (Ilicru; :: p;) where
pi € CCSy¢ for alls € I.

(2) i p%p’, | & loc(p), then there are processes py € CCSy, p; € IP(CCSy) such that

9 =pueur (ul : py | p2). o

4 Logical Characterization

It is well known that bisimulation equivalence may be characterized using a simple modal
language called HML, in the sense that two processes are bisimulation equivalent if and only if
they satisfy exactly the same set of formulae, [Mil89]. Indeed the characterization has generated
considerable further research into the relationship between processes and behavioural properties
which in turn has given rise to significant practical applications, [CPS89], [Sti87], [Lar90]. Here
we show that a similar logical characterization of location equivalence may be given and in
future research we hope to use this characterization to extend the work on model checking,
proof systems for modal properties, etc. in those papers to this new setting.

HML is a simple modal logic based on two modalities {(a) and [a] where a is an arbitrary
action. So an obvious extension to cope with location equivalence is to parameterise these

modalities by locations. However, we will introduce a slightly more general modal language,

26

which we feel is somewhat more natural. If a process contains no locations then it should
be unnecessary for the formulae which characterise it to contain locations. In such processes,
elements of CCS, locations are potential rather than actual and it should also be thus in its
characterising formulae. For this reason we introduce location variables and quantification over
these variables. One can imagine an expressive term language for locations but here we consider

only a very simple language given by
tu=ll€Loc | z,z€LVar | € | tt

Here LVar is a set of location variables, € represents the degenerate location and “.” is sequence
concatenation. As usual we omit this symbol writing t.t' as tt'. The language for property

formulae is then defined by the following abstract syntax

@ == A{®|®el} |-
(@@ | ()@
t=t | 3z.9

In the formula (a):® the term t represents a location and intuitively the formula is satisfied by
a process which can perform an action a at a location specified by t and in so doing reaches a
state which satisfies ®.

Other logical operators may be defined in the standard way in this language. For example
Vz.® stands for —3z.~®, [a|¢®P stands for —(a)—P and A{® | & € 0} stands for ¢t which
vacuously is true for all processes. As with processes we use loc(®) to denote the set of all
locations occurring in ®. Both V and 3 bind location variables and this leads to the usual
definition of free and bound variables. We are only interested in formulae which are closed , i.e.
which contain no free occurrences of location variables, which we denote by £. More generally,
for L C Loc we let L1 denote the set of closed formulae which only use locations from L. So
in particular formulae in £y use no locations and all location variables are bound.

The satisfaction relation between processes and formulae, =C IP x £, is a straightforward
extension of the standard one, [Mil89), and is defined by structural induction on formulae. We
extend the notation for renaming locations already defined on processes to formulae. We use
®[z — t] to denote the formula which results from substituting t for all free occurrences of z in
®. If | denotes a simple location, i.e. | € Loc, then ®[l — u| is the formula which results from

substituting u for all occurrences of I in @ and ®[! — z| is defined similarly.

27

pEA® ifforeachiel pE&;

pE-® ifnotp=®

plE{(a)u® ifp=>p'andp' @

pE(e)® ifpSpandp @

pEu=w ifuisw

pl=3z.® if for some u € Loc* p = Pz — y]

Note that the variables range over general locations, i.e. sequences from Loc* rather than

simply elements of Loc. We consider some examples.
a| bk Vz.Vy.(a)-(b),tt

This expresses the fact that the process a | b can perform the actions a and b at arbitrary and
therefore independent locations. This is not true for the process a.b + b.a which consequently
does not satisfy this formula. Instead it satisfies a formula which expresses the idea that
whenever an a action is followed by a b action then the latter is always executed at a sublocation

of the former:
a.b+ b.a = Vz.Vy.[a]-[b],tt — Fz.(y = z.2)

Let us introduce the notation ¢t subloc t' to abbreviate the formula 32.(t = t'.z) where z is
some variable not occurring in t or t'. It expresses the fact that ¢ is a sublocation of t'. Then

the above formula may be rewritten as
VzVyla][b],tt — y subloc z

As another example let p, ¢ denote the processes (a.a.c | b.a.d)\ e, (a.a.d | b.&.c)\« respectively.
Then
p | Vz.Vy.Vz.[a]z[b]y[c]stt — 2z subloc z

while g satisfies the dual property
q = 3z.3y.32.(a)z(b)y(c)stt A (2 subloc z)

We can also use these properties to distinguish between the two different kinds of buffers, NB;

and Bs, discussed in the introduction.
B; = Vz.Vy.[in];[out] tt — y subloc z

This expresses the fact that whenever an out action follows an in action it must take place at

the same location. This property is not true of NB;. In fact we have

NB; = Vz.Vy.(in) (out)tt

28

which emphasises the fact that the locations where the in and out actions are performed are
independent.

Our aim is to show that location equivalence is characterised by the formulae in £ which
processes satisfy. We first show a lemma which says that certain locations may be renamed

without affecting the satisfaction relation.

Lemma 4.1 For I,k € Loc p |= ® implies plk —] = ®|k —] provided | does not occur in p
or &,

Proof: by induction on the definition of p = ®. We give three examples.

i) ®is (a),V¥.

Then p=:>p’ such that p' = ¥. By induction p'[k — | = ¥[k — []. Also from the Renaming
Lemma in Section 3 it is easy to show that ;)=:‘> p' implies p[k — I]% p'lk — 1] where u' is
ulk — 1]. So plk — 1] |= (@) ¥k — 1], i. e. plk = 1] = (®)[k —).

i) @ is 3z..

We must show plk — {] = 3z.¥[k — [], i.e. for some u, plk —] |= (¥[k — {])[x — u]. We
know that p = ¥[z — w] for some w. If I does not occur in ¥[z — w] then by induction
plk = 1] E (¥[z — w])[k — I]. The required u is therefore w[k — !] since

(¥[z = w]){k = 1] = (¥[k = I])[z — wk — 1]]

Otherwise, i.e. if | occurs in w, let I' be a location name which does not occur in p nor ¥[z — w).
Then by induction p[l — I'] = (¥[z — w])[l — '], that is p |= ¥[z > w'] where w' = w{l — 1],
and we are back to the previous case.
i) ®is V.

We must show that plk — l] | -¥[k — I}, i. e. not plk — {] | ¥[k — I]. Suppose to the
contrary that plk — I} = ¥[k — I|. Then by induction, since k does not appear in plk — I] or
Yk — 1], plk — l][l — k] = ¥[k — I][l — k]. Since I does not appear in p or ¥ this reduces to
p = ¥ which contradicts p = ~¥. o

As a corollary we have that if p = ® and ® contains a location not in loc(p) then the role of

that location is essentially arbitrary.

Corollary 4.2 If p = ®[z — 1] where ! & loc(p) U loc(®) then for every k & loc(p) U loc(®P)
pE @[z — k.

29

Proof: by the previous lemma p[l — k] |= ®[z —]|l — k]. But p[l — k] is p and (®[z — I])[I —

k] is ®[z — k] since neither k nor ! occur in p or ®. o

We are now ready to state the main result of this section. For L C Loc let L (p) denote
{PeLlL|pk ®}.

Theorem 4.3 p = q iff L1(p) = L1L(q) where L = loc(p) U loc(q).

Proof

“=": 1t is sufficient to show that if p ~4, ¢ and p |= ® for any ® in L (p) then ¢ = ®. The
proof is straightforward by induction on the structure of ® and is omitted.

“<": Let R= {(p,q) | Lo(p) = LL(q),L = loc(p) Uloc(q)}. We show that R is a location
bisimulation. The proof is by contradiction. If R is not a location bisimulation then there can
only be two reasons (up to symmetry):

i) p= p' and for every ¢' ¢ > ¢' (¢',¢') € Ror

ii) for some u € Loc* p%p’ and for every ¢' such that q%q', (r',d) & R.

We only examine the second possibility as the first is similar but easier.

Let {¢; | { € I} denote {¢' | q%q'}. Then for each ¢ € I there exists a closed formula ®;, which
uses at most the locations from ¢; and p’ such that p' = ®; and ¢; £ ®;. Sop=P and ¢ &
where @ denotes (a)y A{®i | § € I}. Note however that in general loc(®) Z loc(p) U loc(q). We
need to find a formula which is satisfied by p and not by ¢ but which only contains locations
from loc(p) U loc(g). We know that u must be of the form vw where the basic locations in v
belong to loc(p) and therefore the only new basic locations occurring in ® which are not in
loc(p) U loc(g) must appear in w. Let ! be one such location. We show that there exists a
formula @' such that loc(®') = loc(®) \ {I} and p = ¥, ¢ [£ ¥'. By iterating this elimination
procedure we will eventually obtain a formula which differentiates between p and ¢ and only
contains the basic locations from loc(p) U loc(q). Let new(z) be a formula which expresses
the fact that z is a basic location which does not occur in loc(p) U loc(g). If ly,...,ln is an

enumeration of this set then new(z) may be defined by
Sz=h)A~(z=b)A...A-(z=l)Az#er((z=y.2) Dy=eVz=E¢)

Provided we choose a variable z which has not appeared before it then follows that p =
Jz.(®[! — z] A new(z)) while ¢ & 3z.(®[l — z] Anew(z)). The latter follows from the previous
corollary and those two statements contradict the fact that (p,g) € R. To see in detail why
g does not satisfy this formula suppose to the contrary that it does, i. e. ¢ = 3z.(®[l —

z] Anew(z)). Then g = B! — z|[z — u] A new(u) for some location u. This means that u is in

30

fact a basic location k from Loc which is not in loc(g) Uloc(®[l — z]) and ¢ |= ®[l — z|[z — k].
So we may apply the previous corollary to obtain ¢ = ®[l — z](z — I],i. e. ¢ |= ® since P is
closed. D

As an immediate corollary we have

Corollary 4.4 For p,q € CCS, p =4 q if and only if Lo(p) = Lg(q)- m)

5 The Relationship to Distributed Bisimulation

The first approach to a semantics for CCS which takes the distributed nature of processes
into account — as opposed to their causal structure — can be found in [CH89], [Cas88] with an
extension in [Kie89]. The basic idea is similar to that of location equivalence. The capabilities
of observers are increased so that they can observe actions together with the location where they
are performed. However, observers have a different strategy. In the present paper an observer
sees an action together with its location, chooses a name and assigns it to the observed site.
Within the world of distributed bisimulations observers are mobile and may move from one
location to another. So when seeing an action together with its location the observer moves
to this location and appoints a new observer to observe the remainder of the process. Thus in
the course of experimenting on a process the number of observers increases by one with each
visible action. On the other hand locations are observed without assigning names to them.

In this section we give a formal comparison of distributed bisimulations and location equiv-
alence for the finite language without renaming and restriction. We will show that for these
processes both semantics coincide. This allows the transfer of results already available for dis-
tributed bisimulations to location equivalence. For example we have a complete axiomatization.

In the following we give a brief discussion of distributed bisimulations for finite processes
without restriction and renaming. The definition we choose here is based on local & remainder
observers as first introduced in [Cas88| as opposed to the local & global approach in [CH89).
However, we consider a slightly different operational semantics from that in ([Cas88] which can
be found in [Kie89).

We will distinguish the local subprocess by including it in brackets [], as for example
(a.nil | [b.nill) | c.b.nil. Therefore the syntax for “processes with a local component” is given
by the following grammar, where p stands for any CCS¢-term, that is for any finite CCS term

written without restriction and renaming:

P := [p] | (Plp) | (| P)

31

Let PROC[] denote this language. We use C[p],DIq],... to range over PROC[] In Clp]
p denotes the local subprocess included in []-brackets while C stands for its context; p will
often be called the process at the actual location. For example for (a.nsl | [b.nil]) | c.b.nil we
have p = b.nsl and C = (a.nsl | .) | c.b.nil. We will also use the notation C(p) where C and
p are as in C[p] but p is embedded in C without the []-brackets. Processes in PROC ;
will be used to exhibit the location which has been observed with the execution of a visible
action. They determine the new position the observer will take and the remaining part of the
process to be observed by a new observer. So visible transitions have the form p =4 C[p'].
The observer who observed the a-action of p will move to the location of a, and from then
on he can only see actions performed by the local component, that is p'. A newly appointed
observer will observe the remaining part C(nsl).

Technically the observation of the location of an action is similar to that of the location
transition system. The only difference is that here no names are assigned to locations. The
rules for distributed transitions are given in Figure 7. These rules apply only to restriction and

renaming free terms.

For each a € Act let 54 C (CCSy x PROC| 1) be the least binary relation satisfying the

following axiom and rules.

(D1) a.p >4 [p]

(D2) p 34 CIlpY implies p+q-2qCIp
g+p >4 CIlp1

(D3) p>aClp] implies ple2sClp'l g
glpSaq|Clp

(D4) p 24 Cp') implies ple=>4Cip'l|gq

Figure 7: Transitions for Distributed Bisimulations

Weak transitions are derived by the rule
(WD) pS3p1,pr 2aClp'),Clp'1 3 DI[p") implies p=>4D[p"]

where transitions C[p'] = D[p"] are defined, in conjunction with the single arrow relations

32

£,, as the least binary relations satisying (S1) - (W2) in Figure 1 and, in place of (S2):
(82 pLyp implies [p] 5 [p]
As an example we can derive

(a]ab)|ch 24 (a] [81)|ch
(a]a.b)|chb 34 (nil]|nil)| [nsl]

So the main difference between the location semantics and that based on distributed bisimu-
lations does not lie in their transition system but in the equivalences based on them; in the
former observing a location results in assigning a name to it, while in the latter it results in

splitting the process into a local subprocess and a remaining subprocess.

Definition 5.1 [Distributed Bisimulation Equivalence]
A symmetric relation R C CCS,¢ x CCSyt is called a distributed bisimulation iff R C D(R)
where (p,q) € D(R) iff
(f) p>p' implies ¢=>q' for some ¢' € CCS, such that (p/,¢') € R
(55) p34CIp'] implies ¢34DIg'] for some D[q'] € PROC|[3
such that (r,d)ER
and (C(nil), D(nil)) € R

Two distributed processes p and ¢ are said to be distributed bisimulation equivalent, p =4 q, if

and only if there is a distributed bisimulation R such that (p,q) € R. O

As an example for non-equivalent processes consider a.b+b.a and a | b. If a.b+ b.a =4 [b]
then a | b can match this move only with a | b 33 [asl] | b. So we have to compare the
local subprocesses, b and nil, and the remaining ones i. e. C(nil) = nil and D(nil) = nil | b.
Obviously in both cases the equivalence does not hold.

On the other hand

pr=(a]abd)|eb+ech|bmy(alad)|chb=gq

For example p; =4 [b] | b which can be matched by ¢ with q; =4 nil | b| [8]; it is obvious
that the processes at the actual locations are equivalent and so are the remaining processes

nil | b and nil | b | nil.

Distributed bisimulation equivalence is not preserved by + and [, for the same reason as
location and bisimulation equivalence are not preserved by them and so again we consider the
largest relation 2§ contained in s44 which is preserved by all operators. It can be characterised

in the standard way:

33

Proposition 5.2
PG
iff () p>p implies ¢=>q such thatp mqq
(1) p3aClP) implies q3;0[q") such that p ~4q' and C(nil) s4 D(nil).
(I) ({) ¢=q' implies p>p' such that p' sy ¢'
(1) ¢3aDIg'] implies p3,CIp') such that p' mq ¢' and C(nil) 4 D(nil).

iff p+a =4 g+a for some a & sort(p) U sort(q).
a

We next show that s, and s#4 for processes in CCS,t coincide. The major difference between
these two equivalences resides in the fact that in the case of distributed bisimulation equivalence
after a visible move the process being observed is split into two, the two parts being subsequently
observed independently. Another difference is the way locations are observed. We establish
with the next lemma the relationship between the different kinds of observations. Based on
that we then obtain the required splitting for location terms by applying the Decomposition

Proposition of the Section 3.

Lemma 5.3 Let p,q € CCSy.
Then p%p’ and p' =pr 1 :: py | ps for some | € Loc if and only if p 24 C[p) and p =p' p and
C(nil) =pr p; where D' = {(P1),(P2),(P3)} in Figure 4.

Proof: by induction on the length of the proof of transitions.]

Proposition 5.4 Let p,q € CCSyy. Then peiyq iff p2agq.

Proof: by induction on the combined sizes of p and ¢ defined as the number of actions
occurring in the terms. Without mentioning it we will make use of the fact that equations in
D' preserve the size of processes.

“=7”: Assume that p 24 C[p].

By the previous lemma p=‘;>p’ where p' =p/ :: p | C(nil). Since p =s¢ ¢ there is q%q’ such that
p ~, ¢'. By Proposition 3.18 there are q;,¢; € CCS, such that ¢' =p: [:: q; | g2. Applying
Lemma 5.3 again we obtain ¢ =4 D [§] such that § =p ¢, and D(nsl) =pr g2. As the equations
in D' are sound for =3, we derive p’ s, :: p| C(nil), q1 ==, § and q2 =, D(nil). Moreover, as =,
is preserved by parallel composition and location prefixing { :: § | D(nl) msp ¢' ¢ 1 :: p | C(nal)
follows. Applying the decomposition of Proposition 3.15 we obtain § ~, p and D(nil) a2, C(nil).

34

Now induction yields § &4 p and D(nil) ~4 C(nsl) which is what we were required to show.
The case p = p' follows immediately by induction.

“&”: Assume p:—‘-::p'.

By Proposition 3.18 we know p’' =p+ ! :: p; | p2 for some p1,pz € CCSyy. Hence, by Lemma 5.3
p =4 C[p] such that p =p: p; and C(nil) =pr p;. Moreover, since p =4 q there is ¢ 2,017
such that p ~4 7 and p ~4 D(nil). Induction yields p s, § and C(nil) ~s, D(nil). Thus, as ~ is
preserved by location prefixing and parallel composition it follows [:: p | C(nsl) e 1 :: § | D(nil).
With Lemma 5.3 we derive q——%q' such that ¢ =pr I :: §| D(nil). Now as the equations in D'
are sound for =5, we can conclude p' ~, ¢'.

The case p = p' is obvious. o

Corollary 5.5 Let p,q € CCSy. Then pss§jq iff p=Gq.]

The equivalence of =2, and s34 immediately yields the following result.

Proposition 5.6

~s; 18 equal to the congruence generated by the equations G in Figure 6.

Proof: see Theorem 4.12 in [Kie89). w]
In [Kie89] the definition of distributed bisimulation was extended to all of finite CCS. We do

not give the definition here but we can show that the resulting equivalence is different from
~¢. For example the two processes p and ¢, defined below are equivalent according to the

genefalised definition of distributed bisimulation but are differentiated by =,.

p= (e.(c.za+d.Ha+a.Zb+3.Hb) | (a.zb+E.Hb+c.za+d.na))\{c,d},
g=(e(c.d atdJ[a+2ed s+adJ[o)1 @D s+ad]s+cd at+dJ[a))\{c d}

where

Za = aj.a2.n0 + az.ay.n8l and
[Ie = ainil]aznil

Intuitively the difference in these two equivalence is due to the fact that in the course of
experimenting on processes by means of distributed bisimulation, locations which have been

observed are forgotten in later states. Hence, a visible transition of one process can be matched

35

with a visible transition of the counterprocess which originally was at a different location. This
effect is similar to what causes history preserving bisimulation equivalence to be stronger than
pomset bisimulation where causalities in the past are forgotten.

Finally we should point out that location equivalence appears to be orthogonal to causality
based equivalences. For example s, distinguishes the processes (a.a.c | b.a.d) \ a, (a.a.d |
b.a..c) \ a@ which would be identified by behavioural equivalences based on causality such as
that in ([DD89)]. On the other hand, the processes a.b | c.d and (a.(a.b + b) | ¢(a.d + d))\a are

identified by =2, although they have a different causal structure.

6 Conclusions

Most of the recent research into non-interleaving semantic theories for concurrent systems has
centred on introducing some aspect of causality into their observation. We believe that it is very
difficult for an external observer to confirm causal dependencies between actions performed by
independent systems and if such dependencies can be determined, this may be done only in
a very indirect manner. For this reason we believe it is inappropriate to base an extensional
semantic theory of processes on notions such as causality although they may be appropriate for
intensional purposes, such as defining the operational behaviour of processes. Instead we have
focused on a different aspect of systems, namely their distribution in space. For distributed
systems it seems natural to assume that an external observer can discern which sites within the
system react to particular experiments or requests for information. We hope that the present
paper gives some arguments to convince the reader that a reasonable and useful semantic theory
can be based on such ideas and that it can be applied to non-trivial languages.

Very similar ideas underlie the various definitions of distributed bissmulation equivalence,
[Cas88], [CH89), [Kie89] and indeed the main contribution of the present paper is to reformu-
late this approach in order to make it more accessible. This new location based equivalence is
easy to understand, applies to all of CCS, and its formulation makes its relationship with the
standard bisimulation equivalence transparent. Indeed it should be possible to adapt much of
the work done on bisimulation equivalence to location equivalence. This includes generalising
the algorithms for checking and generating bisimulations and those for checking that processes
satisfy recursively defined modal formulae, [CPS89]. However this generalisation is not com-
pletely straightforward because, for example, the relations which establish location equivalence
between even finite processes are infinite. This was certainly the case with the examples we
examined in earlier sections.

Another interesting area of research would be the development of a specification language,

an extension of CCS, more suited to location equivalence or more generally to expressing

36

properties of the distribution of processes and the application of such a language to non-trivial
examples,

The introduction of locations into the language for describing processes also enables us to
define what it means for one location to be a sublocation of another. This has been shown
to be of use in the modal language defined in Section 3. It could also be used to define a
“concurrency preorder” between processes. Briefly p < ¢ would mean that p and ¢ have more
or less the same behaviour but ¢ is possibly more concurrent than p. Such a preorder could
be defined by relaxing the condition that matching actions be performed at exactly the same
locations; instead an action from ¢ could be matched by one from p performed at a more
specified location. This would imply that p is possibly more sequential than g or ¢ is possibly
more concurrent than p. However there is considerable room for discussion as to what exactly
the formal definition should be.

Finally we should mention that location equivalence lacks a finite axiomatisation, when
restricted to finite terms in CCS. This is one of the most attractive features of bisimula-
tion equivalence and it would be nice to have such an axiomatisation for location equivalence

especially if it did not use many auxiliary operators.

Acknowledgements: The authors would like to thank Luca Aceto for many useful and illu-

minating discussions.

References

[BC87] G. Boudol and I. Castellani. On the semantics of concurrency: partial orders and
transition systems. In Proceedings of TAPSOFT 87, pages 123-137, 1987.

[BC89] G. Boudol and I. Castellani. Permutation of transitions: an event structure semantics
for CCS and SCCS. In Proceedings of Linear Time, Branching Time and Partial
Order in Logics and Models for Concurrency, pages 411-427, 1989,

[BK85] J. Bergstra and J.W. Klop. Algebra of communicating processes with abstraction.
Theoretical Computer Science, (37):77-121, 1985.

[Cas88] I. Castellani. Bisimulations for Concurrency. PhD thesis, University of Edinburgh,
1988.

(CH89] 1. Castellani and M. Hennessy. Distributed bisimulations. JACM, 10(4):887-911,
1989.

37

[CPS89)

[DD89)

[DNM88]

[Hen88|

[Hoa85]

[Kie89)

(Lar90]

[Mil8g)

[Sti87]

R. Cleaveland, J. Parrow, and B. Steffen. A semantics based verification tool for
finite state systems. In Proceedings of the 9'* International Symposium on Protocol
Specification, Testing and Versfication, North Holland, 1989.

P. Degano and P. Darondeau. Causal trees. In Proceedings of ICALP 88, pages 234~
248, 1989.

P. Degano, R. De Nicola, and U. Montanari. A distributed operational semantics for
CCS based on condition/event systems. Acta Informatica, 26:59-91, 1988.

M. Hennessy. Axiomatising finite concurrent processes. SIAM Journal of Computing,
17(5):997-1017, 1988.

C.A.R. Hoare. Commaunicating Sequential Processes. Prentice-Hall, 1985.

A. Kiehn. Distributed bisimulations for finite CCS. Report 7/89, University of
Sussex, 1989.

K. Larsen. Proof systems for satisfiability in Hennessy-Milner logic with recursion.
Theoretical Computer Science, 72:265-288, 1990.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

C. Stirling. Modal logics for communicating systems. Theoretical Computer Science,
49:311-347, 1987.

38

Imprimé en France
ar
. IInstitut National de Rechesche en Informatique et en Automatique

ISSN 0249 -6399

