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Une nouvelle logique constructive : la logique classique

L'article s'intéresse a la théorie de la démonstration classique.

- syntaxiquement, I'introduction de polarités (positif, négatif) permet de faire disparaitre le
non-déterminisme fondamental du calcul des séquents classique. En fait on obtient un
nouveau calcul des séquents, LC, avec des retombées immédiates sur la traduction de
Godel. Alors que la structure de la conjonction classique apparait plus complexe que
prévu, la disjonction se comporte trés bien : des formes de propriété de la disjonction sont
vérifiées !

- sémantiquement, les démonstrations deviennent des cliques dans des espaces de
correlation, une variation sur le th¢me des espaces cohérents. La sémantique fait
intervenir de fagon essentielle la notion de clique centrale. La notion plus forte de
domaine de correlation permet de donner une version sémantique des formes de
propriété de la disjonction, et un résultat de complétude est conjecturé.

A new constructive logic : classical logic

The paper is concermned with classical proof-theory.

- Syntactically; the introduction of polarities (positive, negative) enables one to cope
with the fundamental non-determinism of classical sequent calculus LC, with immediate
applications to Godel's translation. Whereas the structure of classical conjunction is
eventually more complex than expected, disjunction behaves very well : certain forms of
disjunction property are satisfied !

- semantically, proofs become cliques in correlation spaces, a variation on the theme
of coherent spaces. The semantics makes a prominent use of the notion of central
clique. The enhanced version of correlation domains yields a semantical version of
forms of the disjunction property, and a completeness result is conjectured.
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introduction

There are two ways to present this work ; the most efficient is of course to start with
the main syntactical definitions, and to end with the semantics : this is the presentation that
we follow in the body of the text —chapter 1, syntax, chapter 2, semantics—. Another
possibility is to follow the order of discovery of the concepts, which (as expected) starts with
the semantics and ends with the syntax ; we adopt this second way for our introduction,
hoping that this orthogonal look at the same object will help to apprehend the concepts.

A) classical proof-theory is inexistant

This may seem paradoxical, since there are full books devoted to classical proof-theory,
including one by the author of this provocative declaration. But it is true that, if we look
carefully at classical proof-theory, which starts with the works of Herbrand and Gentzen in
the early thirties, we get hardly more than a cut-elimination theorem (what Kreisel in his day
proposed to call Hauptsatz in opposition to normalisation) without a real procedure to do it.
Proof-theory books can be rather big because this Hauptsatz has been extended to various
systems of arithmetic, but these extensions, when restricted to pure propositional logic hardly
say anything more than Gentzen’s original result of 1934.

In sharp contrast intuitionistic proof-theory is organised along large avenues : let us
mention Natural Deduction, Curry-Howard isomorphism, realisability, denotational
semantics etc. More recently linear logic introduced another system with even larger avenues
~typically an involutive negation, like in classical logic.

This aspect of a well-organised proof-theory, common to intuitionistic and linear logics
is the ultimate meaning of constructivity. Constructivity should not be confused with its
ideological variant "constructivism" which tries to build a kind of countermathematics by an a
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priori limitation of the methods of proofs ; it should not either be characterised by a list of
technical properties —e.g. disjunction and existence properties—. Constructivity is the
possibility of extracting the information implicit in proofs, i.e. constructivity is about
explicitation. Typically we should accept as constructive any kind of system for which we can
define a "reasonable" semantics of proofs, compatible with cut—elimination. The example of
the linear disjunction par (%) shows that the disjunction property is not a necessary condition
for constructivity.

When we say that classical logic has no normalisation procedure, we do not want to say
that cut-elimination cannot be performed at the syntactical level, but that it is a very clumsy
process. Typically, if we see cut—elimination as a form of rewriting, it is full of very bad
critical pairs (the simplest one has been pointed out by Y. Lafont, see [GLT], pp. 150~152 ; all
these pairs come from the structural rules of weakening and contraction). The real problem
here is not quite that the process is strongly non-deterministic (after all, why not ?) but that
we have not the slightest way to control -i.e. to understand- it. What is missing is a stock of
lemmas analysing the input/output relation, ways of defining modules inside a proof etc.,
typically a denotational semantics.

B) denotational semantics

Denotational semantics is the most efficient way of analysing cut—elimination. It has not
to be confused with categorical semantics: surely a (good) categorical semantics is a
denotational semantics, but the converse is by no means obvious ; in fact our semantics is not
a categorical semantics and if it was so difficult to put some order into classical proof-theory,
this is precisely because there cannot be any serious categorical semantics for classical logic, as
it will be clear from the behaviour of classical conjunction.

The kind of semantics we are interested in is concrete, i.e. to each proof = we associate a
set m*. This map can be seen as a way to define an equivalence ¥ between proofs (7 & r' iff
7* = %) of the same formulas (or sequents), which should enjoy the following :

i) if 7 normalises to 7, then 7 & =’

ii) ® is non-degenerated, i.e. one can find a formula with at least two non~equivalent proofs
ili) ® is a congruence : this means that if = and 7 have been obtained from ) and A\’ by
applying the same logical rule, and if A ® A’, then 7 ® .

iv) certain canonical isomorphisms are satisfied ; among those which are crucial let us mention
- involutivity of negation (hence De Morgan)

- associativity of disjunction (hence of conjunction)

Let us comment these points : ;

i) says that ® is about cut-elimination ; however ~as it happened in this work— the semantics
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is likely to be found first, and from it a variant of Gentzen’s procedure enjoying i) can be
extracted.

ii) of course if all proofs of the same formula are declared to be equivalent, the contents of % is
empty ; the condition has to be stated, to avoid certain jokes like "symmetric cartesian closed
categories", see annex B.1.

iii) is the analogue of a Church-Rosser property, and is the key to a modular approach to
normalisation.

iv) another key to modularity is commutation, which means that certain sequences of
operations on proofs are equivalent w.r.t. #. It is clear that the more commutation we get the
better, and that we cannot ask too much a priori. However, the two commutations mentioned
are a strict minimum without which we would get a mess :

- involutivity of negation means that we have not to bother about double negations, i.e. that
if we use the proof of A & A to transform a proof A of 1A into a proof of A and again
into a proof 7 of 77A, then A % 7.

- associativity of disjunction means that the bracketing of a ternary disjunction is inessential ;
furthermore, associativity renders possible the identification of A 2 (B 2 C) with (A A B) 2 C.

C) the solution : semantical aspects

The obvious candidate for a classical semantics was of course coherent spaces, which had
already given birth to linear logic ; the main reason for choosing them was the presence of the
involutive linear negation. However, the difficulty with classical logic is to accomodate
structural rules (weakening and contraction) ; in linear logic, this is possible by considering
coherent spaces of the form ?X. But since classical logic allows contraction and weakening
both on a formula and its negation, the solution seemed to require the linear negation of ?X to
be of the form ?Y, which is a nonsense (the negation of ?X is !X!{, which is by no means
isomorphic to a space ?Y). Attempts to find a self-dual variant §Y of ?Y (enjoying
(§Y)+ = §(Y1)) systematically failed. The semantical study of classical logic stumbled on this
problem of self-duality for years. Of course one way to remove the deadlock would have been
to distinguish two kinds of coherent spaces, interchanged by negation. For instance the
negative ones could be of the form ?Y, and the positive ones of the form !X, etc. but how to
stay within these two classes when forming binary connectives ? It seems indeed impossible to
form the conjunction of a positive and a negative space and to still get either a positive or a
negative space. The real starting point of this work was to discover the tableau 3 of chapter 2,
which has the following properties :
i) it starts with the definition of correlation spaces : a positive one is a comonad (typically any
?!Xl), a negative one is the dual of a comonad (typically any 815 ?Y;) i.e. a "cocomonad"
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(unfortunately not a monad : since comonads are defined in terms of ®, their duals are defined
in terms of the dual % of ®, whereas monads are defined in terms of ®)... anyway this a
variation on the previous theme
i) between such spaces one can define classical operations, without going out of the class of
correlation spaces
iii) last but not least, in fact the only important point : disjunction is associative up to
isomorphism ; in fact it is even commutative and with a neutral element.

Such a tableau is definitely the proof of the constructive nature of classical logic ; but
the situation turns out to be much more surprising than expected...

D) a positive surprise : the behaviour of disjunction

The disjunction and existence properties of intuitionistic logic are essential to its
constructivity —which means in concrete non-dogmatic terms, its computational aspect-. This
is why typed A-calculi like the system F of second order A—calculus can be thought of as
paradigms for computation. The most brutal ingredient of the relative success of F and its
likes is the possibility of representing usual free data types by cut-free proofs of certain
formulas. Typically if we want to represent booleans, we need two formulas V; and V,, each of
them with only one cut—free proof (these two formulas may be the same formula V) ; then it
is possible to represent booleans by means of the cut—free proofs of ool := V; V V,, since by
the disjunction property, a cut—~free proof of bool must be a proof of one of the disjuncts...
This wonderful situation is likely to break down in the classical case, since the contraction rule
allows to prove a disjunction A V B without deciding between them, like in A V ~A. The first
shock is therefore to discover, semantically and syntactically the fact, —with the obvious
choice for V- that the property still holds classically ! In other terms classical booleans are
standard and the representation of current data types by means of proofs is still possible in a
classical framework.

Investigating more carefully this surprising fact, it is possible to see a kind of
disjunction property satisfied by classical logic : in a cut—{free proof of = P V Q of a disjunction
of positive formulas, one of the two disjuncts is "preferred", and when P and Q are
hereditarily positive, to prefer P means to prove P. This phenomenon of preference is not very
conspicuous at the syntactical level, since it refers to the order of rules which may look a bit
irrelevant, especially in LK, but semantically speaking, it comes from the extremely asocial
behaviour of the linear connective "!". ’

To sum up : not only classical logic is constructive, but it seems to be constructive in a
way compatible with the usual intuitionistic handling of constructivity... we can even dream
of a classical system [F...
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E) bad news : classical conjunction is a mess

Intuitionistic conjunction is a categorical product. This fact is extremely useful for
constructive purposes. Unfortunately classical conjunction A A B when one of A and B is
positive is by no means a product. Concretely, if we take a proof = of A A B, then using the
implications AABw+~ A, AAB+B, we can get two "projections" m (proof of A) and m
(proof of B) as in intuitionistic logic. But from  and 7, there is no way to recover 7! In fact
the equation 7 = <m,m> is inconsistent... (this property -surjective pairing— is consistent
with intuitionisitic logic) ; even worse, when both A and B are positive, we get two pairing
functions, i.e. two absolutely different ways of forming a proof of A A B from a proof of A and
a proof of B, and these two ways cannot be identified without creating an inconsistency.

This complications about conjunction are just another way to state the
non—commautativity of cut : given proofs of = T', P and =~ A, Q and » A, 7P, 7Q we can form
a proof of = I';, A, A by means of two cuts. But semantically speaking the result depends on
the order of performance of the two cuts, when P and Q are positive. Since the general
principle that our two cuts can be replaced by a single cut between T, AP AQ and
~ A, 9P V 2Q is still valid, this indicates that either the conjunction rule or the disjunction
rule (in fact conjunction) should be refined into two cases ; therefore if we want to fix LK it is
not enough to distinguish polarities, but we must also introduce two conjunction rules when
the conjuncts are positive : they are distinguished by the order in which the cuts on the
conjuncts are performed during cut-elimination.

F) correlation domains and central cliques

The denotational interpretation of classical proofs —once two rules for conjunction have
been carefully distinguished—- is not problematic : a proof 7 of A is interpreted by a clique in
an associated correlation space. But it is slightly more delicate to get the semantics sharp
enough so as to be able to prove from purely semantical grounds that for instance classical
booleans are standard. The problem with usual denotational semantics is that it deals —for
reasons of continuity- with partial objects for instance empty cliques; however the
interpretation of proofs is most of the time not empty... So is it possible to state a pure
semantical property of the interpretation of proofs that would for instance exclude (in good
cases) empty cliques ?

Quite surprisingly, it can be done nicely : in a correlation domain we indicate which
cliques are "good", not in the correlation space itself, but in its disjunction with the constant
V. The correlation domain modelises therefore not the proofs of A itself (there are not enough
of them) but of ~ A, V, i.e. of A in a context which is in turn provable. The proof of the fact
that the interpretation 7* of a proof 7 belongs to the associated correlation domain could be
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quite easy if the problem of non-commutativity of cut were not still lingering : in order to
associate a correlation domain to ~ A,,..., A, we have to use duality and n cuts, and the order
of these cuts should not matter for obvious reasons...

This is why central cliqgues come into the picture : roughly speaking a central clique
corresponds to a proof of «I', P (P positive) where P has not been weakened or contracted.
The main technicality about them is that the two ways of forming <my,m> that we discovered
above coincide when one of the 7 is central, or in other terms that if we perform cuts with
central cliques, then the order of these cuts is irrelevant. At the conceptual level the interest
of central cliques is that they are (traces of) linear maps preserving the structure of comonad.
The notion of central clique is then taken as a central ingredient of the definition of
correlation domain, and the theorem follows without too much trouble.

In fact the semantics of correlation domains is good, very good, so good indeed that it is
difficult to imagine a clique which lies in a correlation domain without coming from a proof.
This is why we propose a very challenging conjecture : prove that a clique in the correlation
domain associated with A necessarily comes from a proof of A. This generalisation of Gddel’s
completeness theorem can only hold when the completeness theorem (A true 2 A provable)
holds. This result looks technically difficult, but its interest is much more than technical : for
the particular formulas for which the conjecture is stated the subformula property provides a
kind of absoluteness of proofs, i.e. a cut—free proof of A in any "reasonable" extension of LK is
already a proof in LK : the conjecture would therefore be a quite satisfactory explanation of
this absoluteness.

G) a new sequent calculus : LC

The main semantical boulevards being drawn, it remains to look at syntax, and the
obvious proposal is to try to improve the cut—elimination procedure of LK, for instance by
distinguishing between two conjunction rules... but this is not enough to fix LK... For instance
consider a ternary conjunction PAQAR; we can decide to write it PA(Q AR) or
(PAQ)AR; in the former case the available conjunction rules yield four combinations
corresponding to the orders PQR, PRQ, QRP, RQP, whereas in the latter the combinations
correspond to PQR, QPR, RPQ, RQP. In fact the six combinations must be available in both
cases (since conjunction is associative) in a cut—free way, and the only possibility is that in
both cases the missing combinations are definable from the available ones. In fact what
happens is that one can restrict the conjunction rules to the particular case where both sides
have proofs interpreted by central cliques, in which case they coincide. This restriction
amounts to make the structural rules commute with the conjunction rule in such a way that
conjunction is performed between »I', P and + A, Q only when both P and Q have not been
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weakened or contracted. This suggests a further refinement LC of LK : besides usual sequents
" (now noted »T'; ) there will be sequents + I'; P in which a positive formula is distinguished.
Such sequents have no straightforward meaning in model-theoretic terms ; their interest is
purely proof-theoretic : a proof of - I'; P is represented by a central clique.

Semantics easily yield a sequent calculus enjoying a nice cut—elimination theorem ;
observe the presence of two rules for cut, depending or not on the presence of the cut—formula
in the stoup, i.e. the area delimited by ";". The intricate relations between these two cut rules
explain why classical cut—elimination is such a mess.

The calculus with stoup has an intuitionistic flavour, and this is why we eventually end
with a translation of LC into intuitionistic logic. This translation —which seems to be obvious
and that we took for pedagogic reasons as our starting point— has outstanding properties,
expressed by our theorem 1. It is not completely incorrect to reduce LC to this translation
-what we do for instance for technical properties—, but also LC lives by itself. Moreover, even
intuitionistic logic would benefit from a negative stoup (representing headvariables)...

Let us observe that, whereas the semantical aspects of classical logic are
well-understood (but for the completeness conjecture), there are a lot of open syntactical
problems, from the building of an efficient rewriting system to the extension to polymorphism,
not to speak of the possibility of a new approach to Peano arithmetic for which a direct access
to I13 sentences would be welcome.

At a general level, this work establishes deeper relation between classical, intuitionistic
and linear logics. For instance chapter 1 gives an "intuitionistic looks" to classical syntax by
means of the stoup, whereas chapter 2 explains the subtilities of classical connectives by
means of the distinction additive/multiplicative. We cannot exclude the possibility of forming
in the future a logical system in which classical, intuitionistic and linear features would live in
harmony... This idea is part of the background of logical frameworks ; however, extant logical
frameworks are unifying logic only at the "metalevel and accept too many junk systems with
not enough remarkable properties to deserve the name of logic : they are more a kind of
synchretic approach than a true unification. The ideal logical framework should be a neutral
logical system in which specific effects could be obtained by restriction to specific fragments...
Although we are far from being in position to build such a system, the new results of this
paper are encouraging : they reinforce our strong belief in the essential unity of logic.
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From the beginning (winter 85-86) linear logic was seen as a way to analyse classical
logic ; however the translation classical B linear given in [G2] turned out to be a dead issue ;
for a long time the only evidence about classical logic was the negative examples of annex B.2.
concerning the bad behaviour of cut-elimination in presence of structural rules. But the
absence of progress was compensated by frequent —and sometimes passionate— discussions
held with the group FORMEL of INRIA (especially Gérard Huet, Thierry Coquand, Benjamin
Werner, Hugo Herbelin) about ~~-translation, continuations, etc.: the building up of a
decent classical proof-theory was not only a logical puzzle, but also had many potential
applications to computer science.

The decisive progress was made during a stay in Monash University at the invitation of
John Crossley (December 90), where the crucial tableaux 1 and 3 were obtained. A first draft
-mostly semantical and ending with LC- was ready by January 91. A second draft ~starting
from syntax and with tableau 2 as the main novelty- was ready by March 91. This second
version benefited from comments by Mitsu Okada, Michel Parigot, Jacques van de Wiele,
Vincent Danos, Jean H. Gallier and -last but not least— Yves Lafont : this printed version
takes care of their various suggestions.

Finally many thanks are due to Beppe Longo for publishing this paper faster than light.

Added in print : the modifications between the second draft and this printed version are
limited to correction of mistakes and clarification of obscurities. However the situation has
evolved, since one of the main tasks proposed by the author —the building of a unified logical
system in which (good) logical systems can interact freely, see section 1.5.v)- has been carried
out in [G8]. The striking property of the unified sequent calculus LU is that its classical,
intuitionistic or linear fragments are better behaved than the calculi LK, LJ or LL ! The price
to pay for this is an increase of the number of rules, a price already noticed when replacing LK
by LC. We did not make any effort to rewrite this paper in the light of the new paper [GS] the
classical fragment of LU being a variant of LC. On the other hand [G3)] brings some new insight
in some of our discussions; in particular the identification of intuitionism with negative
polarity, turns out to be incorrect. Technically speaking a third polarity (neutral or 0) must be
introduced. Classical logic uses polarities —1 and +1, intuitionistic logic uses 0 and +1 (only 0
for its negative fragment) and linear logic makes use of the three polarities —1, 0 and +1.).
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chapter 1 : classical sequent calculus

This chapter is devoted to the sequent calculus LC, an improvement of Gentzen’s LK.
Since LC has much more rules than LK, we decided to use a one-sided version, negation being
thus a defined connective. The formulas of the predicate calculus we shall consider are built
from atomic formulas and their negations by means of conjunction (A), disjunction (V),
universal (Vx) and existential (Jx) quantifiers. Among the atomic formulas there are two
constants V and F for "true" and "false" ; they are both atoms, so the four literals V, F, 7V,
-F are distinct... Hence we didn’t identify V and F : although these formulas are provably
equivalent they have distinct proof-theoretic behaviours.

Negation will be defined through obvious De Morgan formulas :

2(a) := 7a 9(7a) := a for a atomic
°(AAB):=-7AV-B 7(AVB):=-AA-B
VxA := IxnA ~dxA = VxA

in such a way that 7-A is identical to A ; as usual A 3 B will abbreviate A V B.

Here it is time to open (and quickly close) a syntactical discussion. Our identification of

=-A with A forces negation to be involutive ; but there are two obvious traps that one should
avoid about this identification
TRAP n° 1: the belief that it is enough to declare 7A equal to A ; cimeteries are full of
unimaginative attempts starting with the adjunction of an equation to intuitionistic logic
-typically variants on the theme of "symmetrical cartesian closed categories" and other Loch
Ness monsters—. Declaring =2A isomorphic with A may simply produce inconsistencies,
typically categories in which there is at most one arrow between objects etc. and which should
rather be called... Boolean algebras.
TRAP n° 2: the belief that this syntactical identification is essential to our approach; in
reality this identification is just a facility to reduce the number of formulas, of rules etc. This
is made possible by the presence of a denotational isomorphism between =~A and A. The fact
that this isomorphism can be seen as an identity simplifies presentation but plays no role. And
by the way another crucial isomorphism is the associativity of disjunction which is by no way
forced by an equality : AV (B V C) and (A V B) V C remain distinct formulas.

In spite of its great number of rules (six for each binary connective A, V, 3) the reader
may be tempted to reconstitute a two-sided version of LC which may be more user—friendly.
The essential novelty of LC, the stoup, will now occur twice in two—sided sequents : they are
of the form A ; I' - A ; 1T where the sequence A, II consists of at most one formula, negative if
in A, positive if in II. This two-sided version is not only more user—friendly, it also yields via

jean-yves girard



~10-

the negative stoup A ;... a way to legalise a very important intuitionistic facility : what is
usually called a headvariable in A—calculus or a main hypothesis in natural deduction. This
suggests the creation of an improvement LI of the familiar intuitionistic sequent calculus LJ.

section 1.1. the polarity of a formula
The notion of polarity of a formula is a way to get rid of the essential non—determinism
of cut-elimination.
DEFINITION 1
The polarity (+ or —) of a formula is defined as follows :
- atomic formulas (in particular V and F) are positive
- negation of atomic formulas (in particular 7V and -F) are negative
- for compound formulas polarities follow the following tableau

A B AAB | AVB | A3B | VxA JdxA -A
+ + + + - - + -
- + + - + - + +
+ - + - —

tableau 1 : polarities

Of course the polarities shown in the columns for 9 and - are not part of the definition,
but should be read either as a lemma about the polarities associated with the defined
connectives or as the definition to adopt in the two-sided version.

There are some remarks to make just about this meaningless table :

1- V has not been identified with the negation of F because we want to have positive
constants for the two truth values

2- atoms are declared positive ; in reality in a pair (A,7A) of literals one must be positive,
and we decide to write this one as an atom...

3- polarities of the connectives A, V, 3, = follow an obvious truth table (+ for false, — for
true). But this means very little : since we managed to keep many classical tautologies (De
Morgan, associativity of disjunction etc.) at the level of isomorphisms, a "polarity table" is
practically forced to be isomorphic to a truth table. The fact that V and F are both positive
should refute the suspicion of a trivial relation to boolean algebra.

a new constructive logic : classical logic
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4- the case of quantifiers is quite unfortunate : one would for instance love to have VxA
positive when A is positive. This is not possible, for deep proof-theoretic reasons (related to
the well-known fact that intuitionistically V does not commute with ~~).
5- observe that one can always replace a formula by an equivalent one of a given polarity. For
instance A AV (or 3xA, x dummy) is equivalent to A and positive, A V 7V (or VxA, x
dummy) is a negative equivalent of A. So what does the limitation of 4- actually means, since
we could decide to introduce -say (x)A- positive with the meaning of ¥xA A V 7 This still
means something : we can define (x)A from VxA but VxA (i.e. its proof-theoretic behaviour)
cannot be recovered from (x)A.
6- the only serious limitation that we can observe is the following : if we want to respect
proof-theoretic behaviour, it will not be possible to subsitute a negative formula for a positive
atom ; typically we can instanciate p=2p into P23 P but not into N2 N; if we want
something like N 3 N, we shall be forced to use N* 3 N* (see notations below). In particular, if
we were working with second-order system, the quantification would range on predicates of a
fixed polarity (positive for instance would be enough). In terms of polymorphism the reader
may think that the fact that VaA refers only to half the available alphas is a strong
limitation... but one has also to take into account that extant polymorphism (like the one of
system [F) is based on the negative fragment of intuitionistic logic, which is negative in our
sense (the confusion of terminology is on purpose).
NOTATIONS

In the sequel, P, Q, R, ... will refer to positive formulas, L, M, N, ... to negative ones.
When we do not want to specify the polarity of a formula we use A, B, C, ... Atoms will be
written p, q, r,... (they are positive) or pt;...ty if we absolutely want to display their predicate
structure.

A* will always refer to the positive formula A A V, A~ to the negative formula A V V.

section 1.2. : an interpretation inside intuitionistic logic

In order to avoid confusions we shall adopt a different system of notations for
intuitionistic connectives : N, U, J, (x), (Ex) ; our negation symbol will be ~, but with the
meaning of A J ¢, where ¢ is an unspecified formula ; our constants will be ¢rue and false.
With these conventions it will be easier to deal with classical, intuitionistic and linear features
at the same time without generating confusions.

One of the main constructive tools related to classical logic has been by means of
Godel’s ~~—translation and its variants. The translation is well-known, and is based on the
idea of adding "enough" ~w~  typically on atoms, disjunctions and existences. But this
translation has a very bad structure :
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defect n° 1: not compatible with substitution ; if A° denotes the translation, A[B/a]° is not
A°[B°/q] : this is because the transformation is not identical on atoms.
defect n° 2: megation is not involutive; for instance A[B/a]° and A°[B°/o] are related
through the erasing of certain double negations (passing from ~~~A to ~A) ; but this erasing
is not harmless, and for instance if we try to restore the erased double negation, we arrive at a
proof with a completely different behaviour from the original one. In terms of A-calculus
passing from ~~v~A to vwmA with a transit through ~A consists in replacing Z of type ~awvA
by Z' = Aw:vvA . w(Ax:A.Z(Ay:~A.y(x)). For instance Z may be of the form Aw:~~ALt, with t
of type p, depending on certain variables, but not on w, and 7’ is now Aw:~v~vA w(Ax:A.t). In
particular, if a is of the form Az:~A.u, we get Z(a) = t whereas 2°(a) = u. (The reader familiar
with the Curry—Howard isomorphism will relate this to the example already mentioned of
Yves Lafont ; more precisely Z(a) and Z’(a) are two ways of interpreting the same classical
cut between two weakenings ; this example is also the Tarpeian Rock of Boolean categories,
symmetric A-calculi and other atrocities).
defect n° 8 : disjunction is not associative ; we just saw how sensitive ~~—translation is to
removal /adjunction of double negations; in particular this poses a problem with ternary
disjunction which is represented as ~~(~~(A UB) U C) or ~~(A U ~~(B U C)) depending on
the bracketing ; in particular extracting programs from proofs can be sensitive to nonsense like
bracketing of a disjunction. In such an example, of course the translation can be optimised
into ~~(A U (B U C)), and this kind of improvement may already be useful in practice... but
precisely these kind of local, limited cooking recipes should be superseded by a general theory.

The basic idea will be to distinguish between formulas which are single negations and
formulas which are double negations. This distinction cannot be justified on pure intuitionistic
grounds and this is why we shall in fact work with pairs (A,¢) of a formula and a polarity (+
or -). In fact whereas A is arbitrary when e = +1 (it will be eventually double-negated, but
the later is the better), A must be a negation ~B when ¢ = —1. Notationally speaking we shall
content ourselves with a notational trick (which is awfully ambiguous, comrade Brezhnev !) :
P will denote a pair (P,+) and ~P (deciding to display the negation) a pair (~P,-). The
ambiguity coming from the fact that nobody can prevent me to take a negation ~Q for P
disappears if one remarks that what we shall do is compatible with the polarity tableau ;
moreover, in practice, all positive formulas coming from our ~~-translation will never be
negations.
PROPOSITION 2

Classical formulas are interpreted as follows in intuitionistic logic :
i) atomic formulas p, V, F by p, true, faise respectively
ii) their negations 7p, 7V, °F by ~p, ~irue, ~false
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iii) compound formulas by means of the tableau

A B AAB AVB A=B VxA IxA =A
P Q PNQ PUQ ~(PN~Q) ~Ex~P | ExP ~P
~P | Q| ~PNQ | ~(PN~Q) PUQ ~ExP | Ex~P | P

P | ~Q | PN~Q | ~(~PNQ) | ~(PNQ)
~P | ~Q | ~(PUQ) | ~(PNQ) | ~(~PNQ)

tableau 2 : ~v~v—translation

(As with definition 1, the columns for = and 2 are not exactly part of the definition.)

The remarkable fact about this translation lies in the following result
THEOREM 1

The translation of definition 2 is compatible with substitutions respecting polarities ;
moreover it enjoys a certain number of remarkable isomorphisms in the category SET of sets :
i) involutivity of negation : 7"7A ~ A
ii}) De Morgan isomorphisms : (A AB)~ AV -B;(AVB)~-AA-B,;
A3 B~-AVB;VxA~3x A ; ~IxA ¥ Vx A
iii) associativity isomorphisms: AV (BVC)~(AVB)VC;AA(BAC)~2(AAB)AC;
and therefore ( AAB)3C~A3(B23C); A3(BVC)~(A3B)VC
iv) neutrality isomorphisms : AVF~A; AA-F~A
v) commutativity isomorphisms : AVB~®BVA;AAB~BAA (henceA2B~-B31A)
vi) distributivity isomorphisms with restriction on polarities :
AAPVQ~(AAP)V(AAQ);AV(LAM)~(AVL)A(AV M) (therefore
A3(LAM)2(A2L)A(A2M);(PVQ)2A~(P2A)A(Q24))
vii) idempotency isomorphisms : P* ~ P ; N~ ~ N ; and therefore A** & A*; A=~ ~ A-
viii) quantifiers isomorphisms : A A 3xP ~ 3x(A A P); AV VxN 2 Vx(A V N) ; and therefore
A3 VxN~Vx(A=3 N);3xP 3 A~Vx(P3A)
proof : the compatibility of the translation w.r.t. substitution is immediate. For the
denotational isomorphisms, it is unfortunate that the denotational semantics of intuitionistic
disjunction is quite bad, and only works in the category SET (which is a brutal denotational
semantics) ; later on the semantics will be defined without any reference to intuitionistic logic,
and theorem 2 will be restated in terms of more constructive semantics. In the category SET,
false is the void set, true is a singleton, X ) Y is the function space, X N Y is the cartesian
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product, X U Y is the disjoint union, quantifiers behave like infinitary versions of A and V.
i) and ii) have a clear meaning only if negation and implication are primitive; with our
conventions they mean the correctness of the two unnecessary columns for - and 2.
iii) by De Morgan we can content ourselves with disjunction. A few typical cases are enough :
PU(QUR)~(PUQ)UR(case +, +, +)
~(P N ~(Q UR))~~((PN~Q)N~R) (case -, +, +) ; essential use of (A U B) ¥ ~A 1 ~B
~(P N (Q N ~R)) ~~((PNQ)N~R) (case -, -,+)
~PN(QNR))~~(PNQ)NR) (case -, -, =)
iv) for instance for disjunction : PU @ ~ P (case +), ~(P N ~{) ~ ~P (case -) ; in the latter
case the isomorphism ~@ =~ true (i.e. the fact that ~{ is a singleton) is essential.
v) is immediate from the symmetry of N and U.
vi) for instance distributivity of A over V follows from: AN (PUQ)~(ANP)U(ANQ).
vii) is obvious ; it is worth to remark that P~ is ~(~P N ¢rue) hence since true is a singleton,
P- is ~~P, seen as ~(~P) ; in the same way (~P)* is ~P, but in which the frontal negation is
forgotten ; since positive formulas are eventually used (see below) double-negated, the
meaning of (~P)* is also to prefix a double negation.
viii) is a quantifier analogue of vi). W

Once for all we can make the abuse of identifying a formula with its intuitionistic
translation ; however it makes a lot of difference whether we consider a formula as classical
(inside LK) or intuitionistic (inside LJ) : this is why we shall use two distinct symbols ~¢ and
+i to distinguish between classical and intuitionistic sequents. Later on, there will be no need
to use = for LC, since the presence of the stoup indicates a that we are in LC.
DEFINITION 3§ :

A classical sequent ~¢T' of LK is interpreted as follows : let I' = Py,...,Pp,~Qy,...,~Qn
(we cheat with the exchange rule as usual) ; then »~c I is interpreted by the sequent -I' »i ¢,
i.e. 8Py,...,~Pp,Qy,...,Qn 1 p (remember that ¢ has been used to define the "negation").

It is time to make a few more essential remarks
1- for sequents consisting of one formula (what sequent calculus is eventually about); —C ~Q is
interpreted as Q +i @, i.e. ~Q as expected, but ~¢ P is interpreted as ~P +i ¢, i.e. eventually
as ~~P. In other terms double negations are not removed but only delayed as much as
possible.
2- the problem about the polarity of VxP is just that since ~~ does not commute with V| it is
no longer possible to delay the formation of the double negation, and we are forced to produce
(x)~~P, which is better written ~Ex~P, i.e. negatively. This writing is the best, since in terms
of sequents we mean ~Ex~P (i.e. (x)~~P) whereas the positive one would have the weaker
meaning of ~~(x)~~P. This weaker form should not be the only available expression of VxP.
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To any proof in LK of a sequent ~¢ I' one can associate a proof in LJ of ~I' »i ¢ : since
our translation is provably equivalent to usual ~~-translation, the reader will find no
difficulty to reduce this remark -as stated— to familiar results. @l

However, what is the point of the remarkable isomorphisms of theorem 1, if we make no
effort to exploit them ? This is why we state the
WRONG THEOREM

The translation of definition 2 and the denotational semantics of intuitionistic logic in
SET yield a denotational semantics of LK in SET.
sloppy proof : by induction on a proof 7 of =¢I' in LK we give a proof =’ of the associated
sequent 7' i p in LJ, and we associate to 7 the denotational semantics of 7°. The crucial case
is that of a cut : we have to transform -T', »P »i p and ~A, P +i ¢ into -I', 7A wi ¢ ; first
prove 1A i ~P and then by a cut, prove ', "A +i p. -1

This proof is extremely convincing for the following reason : the non-determinism of
classical logic comes essentially from the cut-rule for which several cut—elimination protocols
are possible ; now the distinction positive/negative yields a unique way of interpreting cuts.
But wait a minute ! the rule which behaves very closely to a cut-rule is the introduction of
conjunction : a cut between A and -A is basically the same thing as introducing A A =A. The
step we went through during our sloppy proof corresponds to an introduction of a conjunction
P A ~P of two formulas of distinct polarities... if we look at the problem as a problem of
conjunction rules, it is not unlikely that conjunction of formulas of the same polarity might be
problematic... In fact the sloppy proof stumbles on the rule of introduction of a conjunction of
positive formulas (for negative ones not the slightest problem).

The problem, stated in intuitionistic terms, reduces to the following : we are given
intuitionistic proofs of -I', »P +i p and -A, ~Q +i p, and we want to produce a proof of
al, A, ~(P N Q) i ... suddenly we discover that we do not know how to do it ! More
precisely if we want to do it without introducing cuts, no obvious way ! But at least we can do
it with cuts ; let us try : by I we get [ w1 naP| =A i ~~vQ) hence it suffices to remember
that ~»wP, ~vnvQ, ~(P N Q) w1 pis provable :

P,Q 1 PNQ priygp
P,Q,~(PNQ) »i ¢
P,~(PNQ) +i ~Q i p
P,vnQ,~(PNQ) =1 o
~Q,~(PNQ) »i ~P priyg

NNP,NNQ’N(PnQ) i @
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and we are done... NO !! Here we meet one of the big mysteries of classical logic, the reason
why it cannot have any categorical semantics : ~~P, »~vQ, ~(P N Q) »i ¢ is provable, but in
two different ways : besides the proof @, just written, there is another proof @, of the same
sequent in which ~~P is introduced before ~~Q. As we shall see below there is no way to
identify these two proofs : any attempt to do so will produce an immediate collapse of the
system, like in those categories which are indeed Boolean algebras.

To the proof 6; we associate the A-term (in the context X : »wP, Y : ~anQ),
Z:~PNQ)):) u[X)Y,Z] := X(Ax:P.Y(Ay:Q.Z(<x,y>))) where <x,y> is the pairing
function, whereas 6, can be represented by t5[X,Y,Z] := Y(Ay:Q.X(Ax:P.Z(<x,y>))). There is
no possibility of equating these two terms. In fact if X and Y are respectively replaced by
A = )Az:~P.a and B = Aw.~Q.b, we get t,{A,B,Z] = a, t5[A,B,Z] = b.

This example is still related to the counterexample of Yves Lafont already twice
quoted : typically if 2, 7"A +i ¢ and A, "B +i p come both by weakenings from cut—free
proofs of -[' +i ¢ and =A +i ¢ we must construct a cut—free proof of T, 7"A, 7"(AAB)+ip
from what is available, i.e. our proofs of -I' +i ¢ and A i p. There is of course no good
solution, unless we make some useful hypothesis, typically about polarities of A and B... When
A and B have been declared negative (A = ~P, B = ~Q) then 7(A A B) is P V Q and we can
pass from I, P i p and ~A, Q +i g to ', 7A, P V Q »i ¢ by usual left disjunction rule.
When A (= P) is positive and B (= ~Q) is negative, the use of the canonical proof of
~P~Q, ~(P N ~Q) i p amounts to a weakening from ~A wi ¢ and symmetrically in the
case negative/positive. But there is no reasonable way to decide the remaining case
positive/positive.

This impossibility of getting a nice direct denotational semantics for LK is the reason
for our introduction of a refined sequent calculus, LC.

section 1.3. the sequent calculus LC

A sequent of LC will be an expression ~ ['; IT where I' and II are sequences of formulas,
and II is either empty or consists of exactly one positive formula. The space after ";" is called
the stoup ; the part I' of the sequent is called the body and what is in the stoup is called the
head. Usual sequents of LK correspond to sequents of LC with empty stoups.

Proof-theory has many reasons to distinguish one formula in a sequent :
1° traditionally in intuitionistic sequent calculus, the right hand side
2° in A-calculus the notion of headvariable (or main hypothesis in natural deduction)
3° in linear logic programming, Andreoli & Pareschi [AP] introduced something like a stoup
to help proof-search
4° modalities like ! distinguish a unique formula in a sequent
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IDENTITY/NEGATION
~ PP
identity
~ ;P ~ P AT ~ I',N; ~ N,ATT
- I',AGID - [ A1
p—cut n—cul
STRUCTURE
~ ;10 - I';P
- o(T);11 - I',P;
ezchange dereliction
~ ;10 - LA AT
- A1 - [L,AI
weakening contraction
LOGIC
- ;V ~ [,AF;II
- ;P - 4;Q ~ I',A,B;10
~ I'L,A;PAQ ~ [ AVB;1I

when AVB is negative

- [;P - A,N; = TN - 450
~ [',A;PAN - I',A;MAQ
- M0 - [,N;II - ;P - [';Q
- F,MAN;H - F;PVQ L F;PVQ
~ [,A;T ~ I',N[t/x]; - I';P[t/x]
- I, VxA;I ~ I[;3xN ~ I';IxP

provided x 18 not free in I",I1
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This calculus enables us to state our actual
THEOREM 2
The calculus LC has a denotational semantics in SET.
proof : there is a more or less transparent translation of LC sequents into intuitionistic ones :
+~ I'; becomes I' ~i o whereas + I'; P is translated as -I" i P. All the rules of LC are easily
interpretéd in a non-ambiguous way using this translation. i
However, it is not clear that LC is a reasonable formalism for classical logic. In fact
sequents »~ I'; P are something new that cannot be tied to any classical intuition ; but sequents
+ I'; are the exact analogues of sequents »¢ I'. In other terms, there is a translation from LK
to LC . As far as provability is concerned the translation is faithful, i.e. ~¢ I" is provable in LK
iff = T'; is provable in LC. Proof-theoretically speaking the situation is much more complex :
this translation introduces cuts, i.e. certain proofs considered cut—free in LK will have cuts in
LC. A step of this translation is conjunction introduction which splits into four cases,
typically : from » I, P; and +~ A, Q; it is possible to get ~ T, A, P A Q; by means of two
n-cuts with the proof
~ P;P ~ 1Q;0Q
- =P,-Q;PAQ
- ﬂP,ﬂQ,PAQ;
however the order of performance of these two n—cuts does matter, in other terms the passage

from LK to LC is non—deterministic. But, once polarities have been fixed, non-determinism is
wholly located inside introduction rules of formulas P A Q.
THEOREM 8

The Hauptsatz holds for LC. Moreover the cut-elimination procedure leaves the
denotational semantics invariant.
proof : it would be long and tedious to justify this fact that can be perfectly understood from
the translation of LC into LJ. We just explain how the two cut-rules are handled :

i) a p—cut (also called P-cut when P is specified)

- I';P ~ P,A;Tl
- F,A;H

is eliminated by induction on the proof »’ of the second premise »~ ~P, A; II ; for induction

loading one proves slightly more : 7’ is a proof of = A, A; Il where A is a repetition of -P. The
crucial step is when 7 ends with a rule introducing an occurence of 7P in A ; of course a
subordinated induction on the proof of = I'; P is necessary in that case.
ii) a n—cut (also called N-cut when N is specified)
- ',N; ~ N,A;IT
- F,A;H
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is eliminated by induction on the proof n’ of the second premise v 2N, A; I1 ; for induction
loading one proves slightly more : 7’ is a proof of +~ A, A; II, where A is a repetition of -N.
The crucial case is when 7’ ends with a dereliction rule introducing an occurence of °N in A in
which case our n—cut is replaced by a p~cut. B

As one can see the structure of cut-elimination is extremely complex with a lot of
nested inductions... to illustrate this, let us come back to the problem of introduction of
conjunction : if «T', A; and = A, B; are cut—-free provable, then by the provability of
1A, B, A A B; and two n-cuts, one gets a proof of = I', A A B; that we can make cut—free
by theorem 3.
PROPOSITION 1

If =T, A; and + A, B; are cut-free provable, sois+~T, A, AA B; .
proof : we give a direct argument which is just an explicitation of the cut-elimination
procedure ; we consider the case where A and B are positive,i.e. A =P, B=Q
LEMMA 1

Given cut—free proofs m of = I', A; II, where A is a repetition of P, and A of ~ A; Q one
can build a cut-free proof pof =T, A, P A Q; II.
proof : induction on 7, the crucial case is that of a dereliction : from » I, A’; P conclude
+I', A; ... the induction hypothesis yields p’ of - T, A, P A Q; P and a conjunction between p’
and A yields =T, A, P A Q; P A Q and one ends by dereliction + contraction. |
LEMMA 2

Given cut—free proofs 7 of = I', P; and A of » A, A; I, where A is a repetition of Q one
can construct a cut—free proof pof =T, A, P A Q; I1.
proof : by induction on A, the crucial case is that of a dereliction : from ~ A, A’; Q conclude
~ A, A; ... then the induction hypothesis yields p’ of = T', A, P A Q; Q, and if we apply lemma
1to7and p’, weget T, T, A PAQ,PAQ; from which p is easily obtained by means of
contractions. |
... the theorem is easily reduced to a particular case of lemma 2. |

The construction just given is violently asymmetrical in P and Q; in terms of
cut—elimination, it depends on the order in which the two n-cuts have been performed.

section 1.4. the disjunction property

In this section we discuss the disjunction (and existence) properties of classical logic.
These properties are well-known to fail classically and the existence of a sharper formalism
like LC cannot change anything to that. However certain essential facts must be observed
i) Kreisel noticed the crucial fact that classical arithmetic enjoys existence property for X§
formulas. This existence property is obtained by various techniques, but not by any
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immediate corollary of the Hauptsatz.
ii) if we focus, not on provability, but on proofs, it is not unlikely that something can be said
concerning the behaviour of disjunction (or existence).

This is why the following theorem is quite reasonable.

THEOREM 4

i)if ~; P V Q is provable, then either »; P or »; Q is provable

ii) one can extract unambiguously from a cut-free proof of - P V Q; either a proof of
~PVQ;Poraproofof =PV Q; Q

iii) when P and Q are purely positive (i.e. have no negative subformulas) we get more :
when ~ P V Q; is cut—free provable, we can extract unambiguously from the proof a proof of
~;Por+;Q
proof : i) is immediate : no choice for the cut~free rules to be applied last.

ii) is obtained as follows : we look for the last rules and they must be structural yielding
proofs of ~ A; IT with A, II a repetition of P V Q ... the only way to break this is through a
disjunction rule with premise ~ A; P or + A; Q. The result follows from a structural
rearrangement of A.

iil) in order to prove the result, we work like in ii) so as to arrive to ~say~ ~ A; Q ; then all
sequents above =~ A; Q must be of the form +~ A’; R with R a subformula of Q and A’ a
repetition of P V Q : look at the rules. But the only axioms ~ A’; R are with A’ empty, and we
can simply erase all bodies of sequents in our proof... and we get a proof of ~; Q.

Part iii) of our theorem is far from being very impressive since purely positive theorems
are quite rare. However the result is already very interesting for a formula like V V V whose
cut-free proofs can therefore be used to program booleans : let us write it V, V V, to
distinguish the two occurences of V : we get the
COROLLARY

A cut-free proof of Vi V V, comes either from the axiom + V; or from the axiom » V,
by structural manipulations.
proof : corollary of iii) H

What happens for existence ? Roughly the same as for disjunction :

i) if = ; JxA is probable then » A[t/x]; is provable for some term t (moreover if A is positive
we can claim that =~ ; A[t/x] is provable

ii) from a proof of = IxP; we can extract unambiguously a term t and a proof of -~ IxP; P[t/x]
iii) the case of a theorem =~ JxP; with P purely positive does not occur non trivially in
predicate calcaulus (however this case should become prominent in extensions to systems of
arithmetic) ; in that case one extracts a proof of & ; P[t/x] .
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section 1.5. open problems in the syntax

There are a lot of important questions left aside by this paper ; let us mention :

i) find a better syntax (which would be to LC what typed A-calculus is to LJ) for
normalisation, typically with a Church-Rosser property. Using intuitionistic translation,
natural deduction style (or A-calculus style by Curry-Howard isomorphism), could be fine,
but it stumbles on two major defects : the fact that disjunction and existence work badly, and
the fact that the translation dualises everything. A kind of proof-net could be the solution,
and the fact that proof-nets are not available for full linear logic could be compensated by the
fact that only certain linear configurations (see part 2) are used. While we are writing these
lines, a new kind of syntax called free deduction is developed by Michel Parigot, and it is not
unlikely that it could help to solve the problem.

ii) find the right formalisation of Peano arithmetic with the property that %9 formulas
are purely positive. This involves a specific treatment of equality, of bounded quantifiers. The
immediate output of this would be that a classical 1§ theorem would be transformed into an
algorithm by direct cut—elimination in a system of LC-sequents.

ili) find the right extension to polymorphism. The interest of a good polymorphic
extension is that classical logic offers new facilities of programming, and that we now know
that the basic meaning of specifications of the form "data type D to data type D’" —which is
the core of the typed approach to programming and which is represented by proofs of D 3 D’-
will be respected.

The classical quarrels about syntactical style —say between the Martin—-Lo6f style and
the polymorphic style of system [F- will surely be influenced by the "classical test" :
1° whereas polymorphism insists on defining data types by means of second order universal
quantification, the Martin—-Lof style prefers inductive definitions. The classical case will be
better behaved with inductive definitions, since universal quantification yields negative
formulas, whereas we would prefer to have data types positive (more : purely positive) which
can be achieved in inductive definition style. However polymorphism retains all its usual
interest.
2° on the other hand Martin-Lof insisted on a unified treatment of implication and universal
quantification by means of the primitive IIx € A B[x] and this seems to be quite unfortunate
in classical terms since we are forced to declare this construction negative, whereas an
implication can be positive... here classical logic seems to arbitrate against the proposal of
Martin-Lof...

iv) the retrospective study of the unbelievably complex "cross-cut" procedure of classical
logic LK. For instance, if we take LK with polarities so as to distinguish between two
conjunction rules, can we choose between the critical pairs of Gentzen’s procedure so as to
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achieve a cut-elimination procedure which is denotationally invariant.

v) last but not least : put classical, intuitionistic and linear logic inside the same system (that
one would call LOGIC) in such a way that these three systems appears as fragments. For
instance the stoup seems to be a common feature (in linear logic something like that has been
introduced by Andreoli & Pareschi for the purpose of focalisation in linear logic
programming). It is not possible to work directly with a translation in linear logic : the
semantics of chapter 2 does not yield a translation classical B linear since we assume
something about the structure of atoms. In the long run, this is the most challenging question,
whose answer would definitely increase the flexibility of logic.
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chapter 2 : the denotational semantics of classical logic

The denotational semantics that one can obtain through ~~-interpretation is not quite
satisfactory, essentially because it involves such a monster as the category SET. This is why
we move to a more constructive semantics, in terms of the now familiar coherent spaces
introduced in [G1] under the name "binary qualitative domains" and which are at the root of
linear logic. The main reference if of course [G2], but an annex with the main definitions and
properties is included in this paper (the exponentials are slightly modified in order to get a
semantic proof of the disjunction property, see theorem 9). Whereas chapter 1 was
emphasising the relation between intuitionistic and classical logic, we shall now mainly
discover the deep links which tie linear and classical logics.

2.1. correlation spaces
DEFINITION 4

A negative correlation space (NCS) consists in a coherent space S together with :
i) a clique L(S)C S
ii) a clique +¢ € (S# S) = S ; we use the notation x +y + z to mean that ((x,y),z) € +g.
These data must enjoy non-trivial properties :
i) neutrality of 1(S) :Vx Iy € L(S) x +y P x
il) commutativity of +g : ifx+yrztheny +xhHz
iii) associativity of +g ify+zHtand x +t#Hu, then there is a v such that x +y P v and
v+zhu

One easily checks that the y of i) and the v of iii) are unique. For instance in iii) the
solutions v of x +y ¥ v are pairwise coherent, whereas the solutions v of v+z#ru are
pairwise incoherent... As a consequence of iii) one can write "ternary sums" x +y + 2z b u, and
more generally ¥ x; B y (with two degenerated cases : ¥ x;  y means y = x; when the sum
consists of one element and means y € L(S) when the sum is empty).
PROPOSITION 2

The following are (naturally) equipped with a structure of NCS :
i) T, 4, any space 7X
ii) S & T when S and T are already NCS
i) S® T when S and T are already NCS
iv) in particular coherent spaces which are "with" of spaces ?X; are NCS ; this class is closed
under i), ii) and iii).
proof : iv) : the class of spaces &7X; can be closed under & and % only up to isomorphism ; for
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instance the "par" of two such spaces "is" still of the same form because of the isomorphisms
(X®Y)~?XB?Y, and distributivity isomorphisms. For the other points, we give the
precise definitions of the data 1(S) and +g-

)yr)=0;+ =0

1(2) = {0} 5 +, = {((0,0),0))

1(7X) = {[]}; +ox = {((s,8'),545") ; 5,8 € | ?X| As =5}

i) L(S& T) = {(x,0); x € L(S)} U{(y,1) ; y € L(S)} (i.e. = 1(S) U 1(T))

(a,j) +(b,j)P(ck)ffi=j=k and a+brc (wrt +g or +p) depending on the common
value 0 or 1 of i, jand k.

iii) L(SB T) = 1(S) x L(T)

(x,x") + (y,y") B (22,2") iff X’ + y’ B 2 and x" + y" b 2".

The fact that these data enjoy the desired properties is immediate. W
DEFINITION 5

A positive correlation space (PCS) is the linear negation of a NCS. In other terms a
PCS consists of a coherent space C equipped with :

i) an anticlique 1(C) c C!
ii) +o € C = (C ® C) ; one uses the notation x b y +z for (x,(y,2)) € +¢

These data must enjoy neutrality, commutativity and associativity properties which are
deduced from those of definition 4 :

VxIy € 1(C)xrx+y
xHy+zimpliesxHz+y
uP x +tandtry+zimplies the existence of v suchthat ur v+zandvih x +y.

We also introduce the notation x + ¥ z; symmetrically to the negative case; in
particular x B ¥ x; means x € L(C) or x = x; when there is zero or one summand.
PROPOSITION 8

The following are (naturally) equipped with a structure of PCS :

i) 0, 1, any space 'X

ii) C ® D when C and D are already PCS

iii) C ® D when C and D are already PCS

iv) in particular the coherent spaces which are "plus" of spaces !X; are PCS ; this class is
closed under i), ii) and iii).

proof : immediately reduced to proposition 2. |

PROPOSITION 4

Let C be a PCS and assume that x b X x; ; then the atoms x, xy, ..., X, are pairwise
coherent.
proof : one constructs for each integer n a clique +ng in C- ? C:
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- for n = 0, then @ C := 1 and we define a clique in C = 1 by +°C = {(x,0) ; x € 1(C)};

- for n = L+ 1s the trace of the identity map of C ;

~ o =g

- for greater values we can define +ng from +e using the rules of linear logic ; in fact there
are for instance two candidates for a0 but associativity equates them...

It is immediate that (x,(x,,...,xn)) € +nC iff x » ¥ x;, and this shows that, given x, all
sequences (x;,...,xn) such that x b ¥ x; are pairwise coherent. If x B ¥ x; then x b ¥ y; for any
permutation (y;) of (x;), hence x; < x; ; also by neutrality, x ¥ X z; where (z;) is chosen so as
to get z; = x, hence x < x; and by symmetry x < x;. B
DEFINITION 6

i) assume that the proof 7 of = T', A has been interpreted by a clique 7* and that I'* is a
sequence of negative correlation spaces; then we can interpret the "proof" p of +T,!A
obtained from 7 by an of course rule by means of the set
p* = {x[ay,...,ak] ; Ixy,.-..Xk (X121,..., Xkak € T* AL x5 P x)}

ii) assume that the proof = of ~I' has been interpreted by a clique 7* ; then if A is
interpreted by a negative correlation space, we can interpret the "proof" p of - I, A obtained
from 7 by a weakening rule by the set p* ;== {xn; x € 7* An € L(A)}.

iii) assume that the proof = of =T, A, A has been interpreted by a clique 7* and that A
has been interpreted by a negative correlation space ; then the "proof" p of » I'; A obtained
from 7 by a contraction rule is interpreted by the set

*:= {xc; Ja,b (a +brcAxab € 1)}

The crucial point in i) is that ¥ x; # x forces the x; to be pairwise incoherent (dual form
of proposition 4), hence since the x;a; are pairwise coherent this forces [a;,...,an] € [!A].

Here we have to make an important categorical remark ; as observed first by Yves
Lafont [L], the spaces !X are commutative comonads (it is by the way unfortunate that the
definitions of monad and comonad were both given in terms of tensor product : ?X is not a
monad !). Now our last definition shows that in the interpretation of the rules for ?, only the
rule of dereliction (which uses a relation between A and ?A) is about the actual "?" ; all the
other ones work with arbitrary "cocomonads". In order to square the picture, it therefore
suffices to observe that ? and ! are solution of an obvious universal problem. Typically, !X is
the "universal comonad (co)generated by X", and the rule "of course" interprets precisely the
solution to an obvious universal problem (the cofree comonad in [L]).

DEFINITION 7

i)let AC I Z, D where = and D are respectively a sequence of NCS and a PCS ; then A
is said to be central when the following holds :
1-if x5y; € Afori = 1,...,n and ¥ x; ¥ x then there is a y such that xy € Aandy » X y;
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2-if xy € A and y ¥ ¥ y; then there are x;,...,xn such that ¥ x; ¥ x and xiy; € A fori.=1,...,n

ii) a clique AC C = D (C and D PCS) is said to be central when the isomorphic clique
A'CIFCL, D (A= {xy; (xy) € A}) is central. :

iti) a linear map f between PCS C and D is said to be central when Tr(f) is central as a
cliquein C = D |

The notion of central clique is... central in this paper. Definition i) is the important one
and ii) is just a bureaucratic variant ; iii) indeed presents central cliques as the traces of
certain maps ; if one translates conditions 1- and 2- one will discover that central mabs are
just those preserving the "sum". More precisely f is central if for any n (n = 0, 2 suffice for
obvious reasons) +np of = ?f 0 +npy (+nC has been introduced in the proof of proposition 4
as a clique, and here we refer to the associated linear map from C to ® C; ®{ is the linear
map from ® C to ® D canonically induced by f). In terms of categoriesnwe ggt the following
universal clxllaracter’i]sation of "of course" :

THEOREM §

Let X be a coherent space ; then consider the PCS !X and the linear map 6y (6 for
dereliction) from !X to X defined by Tr(éy) = {([x],x) ; x € | X|}. Then'given any PCS C
and any linear map f from C to X, there is a unique map !f from C to 'X en_]oymg
i) byolf=f -

ii) 'f1s central

proof : up to trivial manipulations (write - CL, X or I C4, !X instead of C = X or C = !X), If
is obtained from f by an "of course" rule. More precisely

Tr('f) = {(c,[x1,---,xx]) 5 Feg,-sex ((€,%1),0--» (Ckoxx) € Tr(f) Acw i)}

1) is obtained as follows : Tr(éy o 'f) = {(c,x) ; (c,[x]) € Tr('f)} ; but since ¢c; P ¢ exactly when
¢ = ¢y, (c,[x]) € Tr(!f) iff (c,x) € Tr(f). Hence Tr(&y o if) = Tr(f).

ii) splits into two parts :

1- if (cy,8:) € Tr(!f) for i =1,...,n and c ¥ X c; we must find an s such that (c,s) € Tr(!f) and
s P ¥ si. The ci are pairwise coherent (proposition 4), hence since the {ci,si) are pairwise
coherent, the s; must be pairwise coherent as well ; then ¥ s; is defined in !X and we can take
s = ¥ s;. Now writing s; = [Xiy,...,Xij,...], we get s = ¥ [xj;] ; by the definition of !f we can find
cij such that c; b 2 cij and (cs5,xi5) € Tr(f). If we obseJrve that ¢ b E Cij, we get (c,s) € Tr(f).
2- if (cs)€ Tr( f) and sH Xs; then we must find c,... cn such that c¢rP Xc; and
(ci,81) € Tr(Mf) for i = 1,...,n. We write s; = ¥ [x;;], and the definition of 'f yields cj; such that
cH E cij and (cij,xi5) € Tr(f) Now one easilly checks the existence of (unique) c; such that
¢k Yci and ¢ b X cyj ¢ this is a consequence of associativity of +o- Then the definition of !f
yields (ci,s1) € Tr(!).

The unicity of !f is more or less obvious and therefore omitted. I
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PROPOSITION 5

i) the 44~ (seen as linear maps from C to @ C) are central

i1) if f is a central map from Cto D, if g is a central map from D to E then gofis a
central map from C to E

iii) if f and £ are central maps from C to D and C’ to D, then the (canonical) linear
map {® f* from C® C’ to D ® D’ is central

iv) the canonical maps from C to C ® D and D to C ® D are central

v) if f is a central map from C to D and g is a linear map from D to X, then
g of) = (lg)of
proof : all these properties are more or less obvious ; for instance v) is a consequence of the
unicity part of theorem 5. |

2.2. the denotational semantics of LC
DEFINITION 8
To each formula A of classical logic we associate a correlation space A*; when A is
positive, A* is a PCS and negative formulas are interpreted by means of NCS.
i) we have to specify p* when p is a proper atom of the language ; we define (7p)* := p*L.
ii) the logical atoms V and F are respectlively interpreted by the trivial PCS 1 and 0.
iii) compound formulas by means of the tableau

AAB AVB A2B VxA JxA -A
C®D ceD CL®7D | &?C; | &C; Cl
!S®D | S®B?D | SiéD &S ®!1S; | Si
CO®!IT | 7CBT | CiBT

S&T SAT 7S4BT

i oln|af »
Lo T L T L R — T I -~

tableau 3 : correlation semantics

(As with the previous tableaux, the columns for = and 2 are not exactly part of the

definition ; C, D, E stand for arbitrary PCS, and S, T, U for arbitary NCS. In the case of

quantifiers, A[x] is interpreted by a family (C;) or (S;) indexed by the domain of

interpretation of terms and the interpretation involves generalised & or @ over the domain.)
The actual starting point of this work is the next theorem :
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THEOREM 6

The exact analogues of the isomorphisms of theorem 1 hold for correlation spaces.
proof : let us state these isomorphisms :
i) involutivity of negation : "X ~ X
ii) De Morgan isomorphisms : /(X A Y) 22X VY ; (X VY)2 XA Y,
X23Y~aXVY;VxX~ IxaX ; +3xX ~ VxX etc.
iii) associativity isomorphisms: XV(YVZ)2(XVY)VZ;XA(YAZ)~(XAY)AZ,
and therefore (XAY)3Z2X3(Y32);X2(YVZ)2(X3Y)VZ
iv) neutrality isomorphisms : X VO~ X ; X A1~ X
v) commutativity isomorphisms : X VY Y VX ; XAY~2YAX,; hence X3 Y~Y 23X
vi) distributivity isomorphisms with restriction on polarities :
XACVD)2(XAC)V(XAD); XV(SAT)(XVS)A(XVT); and therefore
X2AT)2(X3S)AX3T);(CVD)aX~(CaX)A(D3X)
vii) idempotency isomorphisms : C* ~ C ; S ~ S ; and therefore X** ~ X*; X*- ~ X~
viii) quantifiers isomorphisms : X A 3xC~ Ix(X A C) ; X V VxS ~ Vx(X A S) ; and therefore
X3 VxS~ Vx(X2S);3IxC = X ~Vx(C 3 X).
proof : i) and ii) have a clear meaning only if negation and implication are primitive ; with
our conventions they mean the correctness of the two unnecessary columns for - and 3.
iii) by De Morgan we can content ourselves with disjunction. A few typical cases are enough :
C®(D@®E)~ (C®D)®E (case +, +, +)
SB?DO®E)~(S®D)B?E (case -, +, +) ; crucial use of 7(X @ Y) 8 ?X B 7Y
SB(TR?E)~(SBT)?R?E (case -, -,+)
SB(TABU)~(SBT)ABU (case -, -, ~)
iv) for instance for disjunction : C® 0 ~ C (case +), S % ?0 ~ S (case -) ; in the latter case the
isomorphism 70 2 1 is essential.
v) is immediate from the symmetry of ® and 3.
vi) for instance distributivity of A over V follows from: E®(C® D)~ (R®C)® (R ®D),
IS®@(CeD)~(IS®C)@(!S®D).
vii) is obvious ; it is worth to remark that C-is 7C % 1, hence since 1 is neutral w.r.t. &, C" is
?C; S is S ® 1 which is S. In the same way, C* is C whereas S* is !S.
viii) is a quantifier analogue of vi). W
DEFINITION 9

If X is a correlation space, then X~ is defined as X if X is negative and as ?X if X is
positive. If = is a sequence of correlation spaces, then I-¢ =; denotes the coherent space I+ =-
(which is canonically equipped with a structure of NCS); if = is a sequence of correlation
spaces and C is a PCS, then IF¢ Z; C denotes the coherent space I =Z-, C.
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THEOREM 7

To any proof 7 of a sequent + I'; T of LC one can associate its denotation 7* ; 7* is a
clique in the coherent space ¢ ['*; [1*, and in case II is non empty 7* is central.
1- the denotation is non-trivial (there are two proofs of the same sequent with distinct
denotations)
2- the denotation is closed under logical rules (this means that when we apply a rule to a
proof p to get a proof =, then 7* depends only on p*)
3- the denotation is invariant under cut-elimination.
proof : we now give the precise definition of 7* by induction on 7 :
i) if m is an identity axiom = -P; P, then 7*:= {pp;p € |P*|} is a central clique in
e P*L; P* (= Ik P*L, P*) since it is (isomorphic to) the trace of the identity map from P* to
P* which is central...
ii) case of a p—cut : we start with p* C - ['*-, P* and A* C IF P*1 ) A*- [T*, then we can easily
form a clique 7* C I+ T'*-, A*- [1* by applying the cut-rule of linear logic. However, in case
[T* is non—empty, we must check the centrality of 7* ; this can be reduced to preservation of
centrality by composition and tensorisation (proposition 5)
iii) case of a n—cut : we start with p* C IF I'*~) N* and A\* C I ?N*L1, A*- II* from which we
first form a clique !p* CIFT*-IN* (of course rule) and by cut with A* we get
7* C Ik T'*-, A*-, I1*. When II is non-empty, the centrality of 7* is justified in the same
sloppy way than in ii) (the centrality of !p* is used)
iv) from p* C I I'*-, IT*, we can define 7* C I+ o(T*-), I1* by means of ¢ ; if II* is non-empty,
then the transformation preserves centrality
v) from p* C I+ ['*-) P* we define 7* C I ['*-, ?P* by 7* = {x[p] ; xp € p*}
vi) from p* € [*-) [T* we define 7* C I+ [*-, A*-, [T* by means of a weakening rule ; in case Il
is non~-empty, one must check that this operation preserves centrality : but weakening on A*-
behaves like a composition with the map +¢ from (A*")L to 1 and which is central...
vii) from p* C I'*-, A*", A*" [I* we define 7* C - ['*-, A*", [I* by means of a contraction
rule ; in case II is non—empty, one must check that this operation preserves centrality : but
contraction behaves like a composition with the map +; from (A*")! to (A*~)L ® (A*")L and
which is central too...
viii) the axiom » ; V is interpreted by the clique {0} € IF 1 which is central
ix) the axiom + F; is interpreted by the clique d C I+ T
x) from p* C I I'*-) P* and A* C IF A*-, Q*, one can form 7* C I [*-, A*", P*® Q*:
™ := {xy(p,q) ; xp € p* A yq € A*};if p* and A* are central, so is 7* (proposition 5)
xi) from p* C I T'*-, P* and A*C Ik A*-, N* one can form 7*C IF ['*-, A*¥" P*®IN*:in a
first step form 'A* C Ik A*-, IN* then proceed as in x); centrality of 7* follows from the
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centrality of p* and of any !f

xii) from p* C Ik I*-, M* and A* C |- A*-) Q*, one can form 7* C F I'*~, A*- IM* ® Q* : this
is symmetric to xi)

xdii) from p* C IF *-) M*, ITI* and A* C IF ['*-, N* [1* one can form 7* C IF ['*-) M* & N*, II*
by applying a with rule ; in case Il is non-empty, centrality is preserved

xiv) from p* C |- I'*-) A*- B*-, IT* we can define 7* C |- I'*-) A*- B B*-, [T*. But if one of A
and B is negative, then (A V B)*- = (A V B)* = A*- 8 B*-; this transformation preserves
centrality in case II is non empty

xv) from p*C IFT'*" P* we can define 7*C I I'*-, P*® Q* by a left plus rule; this
transformation preserves centrality (proposition 5)

xvi) from p*CIFT'*- Q* we can define 7*CIFT*- P*® Q* by a right plus rule; this
transformation preserves centrality

xvii)-xix) the case of quantifiers is left to the reader... no problem and limited interest.

1- comes the fact that the two proofs of V V V mentioned in the corollary to theorem 4
have distinct semantics ; 2- is immediate ; the precise verification of 3- is very long and
without surprise. i

P-cuts commute with each other ; centrality extends commutation to n—cuts :
PROPOSITION 6

Consider cliques aClkc =, S, T, bCic=SL cClke =", T4 with b central ; then
the cliques d, d’C ke E, =*) Z";I1 obtained by applying a n—cut and a p-cut (and which
correspond to the two different order of performance of these cuts) are equal.
proof: we give the proof only in a significant particular case, where acC ¢S, T;
bC k¢ EL; S4 cC ke TL; D. Then we can associate to a, b and ¢ linear maps f from S! to T,
g from E to S! and h from !T to D, g and h being central. Now the problem is to compare
ho () ogand ho!(fog); but proposition 5 v) yields {(fog) = (f) o g. W
DEFINITION 10

Let = be a sequence of NCS and let C be a PCS ; a clique aC I+ Z, 7C is central (w.r.t.
C) if one can write a as §(b) := {x[c] ; xc € b} for an appropriate central clique bC I+ Z, C.
PROPOSITION 7

A n-cut between p* CIF¢T'* N¥*; and a central clique §(b)C IFc AN* A¥*; yields the
same result as a p—cut between b C ¢ A*; -N* and p*.
proof : immediate computation using 6X olf=1f 1
THEOREM 8

Let aclcZ, Z; where = is a sequence X;,...,Xx of correlation spaces, and let
bj C ke 25, Xit; (i = 1,...,k) be cliques such that for all negative X; (except perhaps for one of
them), b; is central w.r.t. X;i. Then the clique in I-c =2, =;,..., Zk; obtained by applying k
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n—cuts between a and the b; does not depend on the order of performance of these cuts.
proof : let Y := Xy, let E" := Y,,...,Yi (observe that k¢ =, =°; is equal to F¢ =", =’; ) and let
¢; T Ike 255 Y45 be defined by ci:= 'b; if X is positive and b; = §(c;) if X; is negative and b;
is central ; if X; is negative and b; is not assumed to be central, then ¢; := b;C k¢ =4, Yi;; .
Now our k n—cuts can be replaced by k cuts between a and the c;, and all these cuts but
perhaps one are p-cuts (by proposition 7 when Xj is negative and b; is central and by the
definition of the semantics of n—cut when Xj is positive). The result follows by an immediate
generalisation of proposition 6. W

It is time to give a last look at the problems of the conjunction in LK ; the problem is
(given cliques a € IFc A*; and b € ¢ B*; ) to build a clique c C ¢ I'*, A* (A A B)*; and the
obvious way to do it is by means of two n—cuts with the clique &* C IFc ~A* =B* (A A B)*;
which interprets the canonical proof x of = 1A, 7B, A A B; . We denote the two possible
cliques by <a,b>; and <a,b>,. Now by theorem 8 these two "pairs" are equal in the following
cases : ‘
i) A (or B) is negative
ii) A and B are positive and a (or b) is central ; of course when both a and b are central
a = 6(a’), b= §b), sois c = <a,b>; = <a,b>, and ¢ = §(c’) where ¢’ is obtained from a’
and b’ by means of the conjunction rule of LC.

Now traditional constructivism is based on an implicit conjunction property : a cut-free
proof of - A A B is the pair of a proof of = A and a proof of = B. Now observe that :
i) from a clique ¢ C IFc A A B; we can recover cliques pry(c) C A; and pry(c) C B; (n—cut with
(A AB), A;or-(AAB),B;)
ii) pri(<a,b>;) = a, pry(<a,b>;) =b, for i =1, 2 in particular when both of A and B are
positive, since we know that <a,b>; may be distinct from <a,b>; (see the refutation of our
wrong theorem (section 1.2.) : from 6,* = 6,* we would get a* = b*) ; from the projections of
a clique c C k¢ (A A B)*; there is no way to recover ¢
ili) in fact the conjunction property fails as soon one of A or B is positive ; for instance take a
clique a C k¢ C, C; and cliques b, ¢ € ¢ Y; and form cliques d’ € k¢ C A Y, C; (use a and b),
then d"ClkcCAY,CAY,; (use d’ and c) and finally d C k¢ C A Y; (use contraction). pry(d)
is equal to b or to ¢ (which one depends on which occurence of C is preferred in the
semantical form of the weak disjunction property, see next section). But if pry(d) = b there
will be no way of recovering c...
iv) the conjunction property holds when both of A and B are negative ; the reader might be
curious to learn what happens to the counterexample of iii) when C and Y are replaced by
NCS S and T. We have first to observe that the formulation of conjunction is additive
(S & T), i.e. that we have to modify contexts by weakenings : b is changed into b’ C IFc T, S;
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and cintoc’C k¢S & T, T; : some asymmetry has been introduced by the order in which the
conjunction rules have been performed. Now the clique d"C#cSA T, S A T; is equal to
aU{x;z;x,€b,z € 1(S)} U {zxy;2 € 1(S) U 1(T), x, € c}

(we assume |S| N |T| = 0 to simplify notations)

now if we apply contraction to d" we obtain d which is a union o U 7 of a clique in IF¢ S; and a
clique in k¢ T; . The points x;z do not contribute to 7 because x; =~z (mod. S & T) when
z € |S|, and by proposition 4 (dualised) x; + z ¥ y is impossible ; but one point zx, (with
z € L(T)) does contribute to 7, namely the unique z € L(T) such that z + xo ¥ x, and yields
Xo in 7. We see that 7 is equal to ¢, and the apparent contradiction is explained. This is
another illustration of the sensitivity of the semantics -i.e. of the behaviour w.r.t.
cut—elimination to apparent innocuous permutation of rules.

The failure of the conjunction property (more precisely of any reasonable formulation of
this informal idea) definitely establishes the impossibility of any direct categorical semantics
of classical logic, since classical conjunction is not a product. On the other hand we insist on
the fact that the categorical paradigm is still relevant to classical logic, typically through the
use of central cliques, which are the morphisms of PCS. In some sense there is a categorical
backbone (the category of PCS) of classical logic. More precisely we shall see that correlation
domains are defined by dualisation or bidualisation of the notion of central clique.

2.3. correlation domains

Our basic problem is the following : we can associate to each classical proof 7 of a
sequent w ['; [T a clique 7* C IFc ['*; [T*. However there are many cliques in IF¢ T'*; IT* that are
not of the form 7* ; for example, if A is not provable no clique in IF¢ A*; is of the form 7*.

The idea would be to add to the definition of a correlation space X the notion of being a
"total clique", with the idea that total cliques are something like the interpretation of proofs
of X. But this conflicts with consistency ~if we want for instance to have total cliques in any
space—. For that reason we shall not look at X but at IF¢ X 1; . Formulas ~ A, V; are always
provable (first prove + V; then weaken on A), but there is also the possibility of proving » A;
and then weakening on V which is the one which actually interests us, not to speak of
intricate interleavings of both formulas... This suggests the following definitions :
DEFINITION 11

Let C be a positive correlation space; the bilinear form associates to any cliques
aClcC, 1;and fCIFc CL, 1; a clique (a,f) in k¢ 1; : first perform a n-cut between « and £,
then a contraction and get (a,8) C I~c 1;. Next observe that IFc 1; is the coherent space ?1
whose atoms are of the form n.[0] for n € N (pairwise incoherent) : it follows that (q,B) is
either empty or a singleton {n.[0]}. We define <q,/>:=n when (ef)= {n.[0]} and
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<a,f> := -o when (a,4) = 0.

The notation a L fis shorthand for <a,f> = 1. It means that (a,8) is the denotation of
the canonical proof of ~1; .

PROPOSITION 8

Let ac ke C,1; fr ke CL, 1; : then <a,> # - iff there are atoms z(m.[0]) € a and
21(P1.[0]),..., zx(px[0]) € B such that z = [z,,...,2x], in which case <a,f> =m +p; + ... + px.
proof : immediate denotational computation. |l
DEFINITION 12

A negative correlation domain (NCD) S is a negative correlation space Ss together with
a set Sq (the correlations of S) of cliques in IF¢ Sg, 1; which is the orthogonal of a set of central
cliques (w.r.t. Sgt)in ke Sgi | 1;

A positive correlation domain (PCD) C is a positive correlation space Cg together with a
set Cq (the correlations of C) of cliques in IF¢c Cg, 1; which is the biorthogonal of a set Z of
central cliques (w.r.t. Cs) in lF¢ Cg, 1; (Z can be taken as the set of central elements of Cq).

The nightmare of denotational semantics is empty domains. Here we can sleep well :
PROPOSITION 9

A correlation domain is never empty.
proof: by applying the criterion of proposition 8, we get <{[J[0]},0> =1, hence
<{[J[0]},8> =1 for any BCIkcCst, 1; and this shows that {[][0]} € Cq for any positive
correlation domain. On the other hand, take the clique A = {z[0] ; z € L(Ss)} in IF¢ S, 1; and
cut it with a central clique a in F¢ Sgi, 1; : a contains an atom [z][] with z € L(Ss) and it is
immediate that a L §, hence negative correlation spaces are non—empty. W
DEFINITION 18

i) the negation of (Cs,Cq) is defined as (Cs,Cq4) ; the negation of (Ss,Sq) is defined as
(Sst,S41) (in Cqi, Sqt the symbol (.)L refers to the orthogonality defined in definition 11).

ii) the conjunction of correlation domains is defined as follows
1- (Cs,Cq) A (Dg,Dg) = (Cs® Dg,ZLL) where the set Z is obtained by taking all pairs
(6(a),8(B)) of central correlations in C and D, then applying conjunction, contraction and
dereliction to (a,B) so as to get a central cliquein k¢ C® D, 1,

2- (Cs,Ca) A (Ts,Tq) = (Cs ®!Ts,ZL L) where Z is obtained by taking all pairs (§(e),8) of a
central correlation in C and a correlation in T, then applying of course to § to get !§ then
conjunction, contraction and dereliction to (a,!8) so as to get a central clique in IF¢ C ®!T, 1;
3~ (Ss,Sq) A (Ds,Dyq) is defined in a symmetrical way

4~ (Ss,S4) A (Ts,Tq) = (Ss & Ts,Sq & T4q) : Sqa & T4 refers to all cliques that can be obtained
by conjunction from a clique in Sq and a clique in Tgq.

iii) the disjunction of correlation domains is defined as follows :
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1~ (Ss,Sq4) V (Ts,Ty) = (Ss B T,2L), where the set Z is obtained by taking all pairs
(6(a),6(8)) of central correlations in Syt and Tst, then applying conjunction, contraction and
dereliction to them so as to get a central clique in ¢ Sgd ® Tyl | 1;

2~ (Sg,S4) V (Ds,Dg) = (Ss B 7Dy, Z4) where Z is obtained by taking all pairs (6(a),0) of a
central correlation in Syt and a correlation in Dgt, then applying of course to § to get ! then
conjunction, contraction and dereliction to (a,!8) so as to get a central clique in
e Sek ® 1Dy, 1;

3~ (Cy,Cq) V (T4, Ty) is defined in a symmetrical way

4~ (Cs,Cy) V (Dy,Dy) = (Cs @ Dy,Z211) where Z refers to all cliques that can be obtained by
left disjunction and dereliction from a such that §(a) is a central correlation in Cq or right
disjunction and dereliction from § such that 6(8) is a central correlation in Dg.

iv) the negative correlation domain F is defined as (7,7Fq4), where <Fy consists in all
cliques (i.e. only the empty one) in IF¢ 7, 1;. Its negation (0,Fq4) is such that Fq contains only
the clique {[][0]} of IF¢ 0, 1; i.e. is the biorthogonal of the empty set.

v) the positive correlation domain V is defined as (1,Vq4) ; Vg is the biorthogonal of the
set consisting only of the central clique {[0][}}. In fact V4 contains only another clique, namely
{{l[0]}. The negation (L1,7V4) of V is reduced to the only clique {0[0]}.

PROPOSITION 10

i) the spaces defined are correlation domains

ii) all canonical isomorphisms of chapter 5 are still valid in terms of domains.
proof : i) is trivial except for case 4- of conjunction ; if we use the notation &{a,f) for
the conjunction of a € Sg with § € T4, and the notations 18(a’) and r®(3’) for the left and
right disjunctions applied to a’, 8 with 8(a’), 6(3) in Sqt or T4, then it is immediate that
<6(1®(a’)),&(a,B)> = <é(a’),a> and < 6(r®(3)),&(a,0)> = <§(5’),6>. From this it is easy
to show that Sq & Tq is the orthogonal of a set of central correlations.

ii) this is trivial and very boring ; moreover this can be obtained as a corollary to
theorem 10. B
DEFINITION 14

Let X be a correlation domain ; a clique a C 1< Xj; is said to be total when the clique
6(a) € Irc X, 1; obtained from a by weakening (6(a) := {x[] ; x € a}) is a correlation of X. We
shall implicitely use (especially in the proof of theorem 10) the remark that -when
BClkcZ, 1- the clique (6(a),B) can be directly obtained through a cut between a and G
(since weakening plus contraction simplify).

For the next results we adopt the following obvious generalisation of our definitions :

i) if = = Ay,...,Ap, then IF¢c Z; denotes the correlation domain isomorphic to Ay™ % ... B Ay~
(ke =;)q is therefore a set of cliques in the coherent space I-¢ =, 1;
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ii) we also transfer the concept of totality to sequents I-¢ =; by isomorphism.
PROPOSITION 11

Let C be a positive correlation domain, and let a C 7C be a total clique in C. Then there
is a unique atom z € 1(C;) such that {z] € e.
proof : elements of 1(Cs) are pairwise incoherent, whereas those of a are pairwise coherent ;
therefore z must be unique if it exists. Now by proposition 9 the clique
B := {z[0] ; z € L(CsL)} is a correlation in ~C, which implies that <6(a),B> =1, and by
proposition 8 there must be an atom [z][] in §(a) with z € L(Cst) = 1(Cs). W
THEOREM 9

Let C and D be positive correlation domains, and let a C (C V D); be a total clique in
C V D. Then one and exactly one of the two domains is principal: this means that there is a
unique atom z € 1(C V D) such that [z] € a, and the principal domain of a is the one from
which z comes from.
proof : this is just a restatement of proposition 11: for simplicity let us assume that
[C| N |D| =@, so we can write 1(CV D) = 1(C ® D) = 1(C) U 1(D). Then z € 1(C) or
z€1(D). w

Theorem 9 is the semantic counterpart of the weak disjunction property (theorem 4 ii)).
Technically speaking the change from sets to multisets finds its reason in this theorem : if we
had been working with sets, our bilinear form could only distinguish between -m, 0 and > 0
and it would be impossible to get a singleton [z] in proposition 11. The semantic analogue of
part i) of the theorem (the fact that a central correlation in a sum C V D is a correlation in
one of the summands) is trivial, but a semantic interpretation of part iii) is less obvious.
DEFINITION 15

A positive correlation domain (Cs,Cq) is said to be discrete when the following holds :

i) 1(C) = | C| (hence the atoms of C are pairwise incoherent and x b xy,...,xn iff x = x;,...,xn)
ii) Cq is defined as the biorthogonal of the set of singleton cliques {[z][]} : besides these
cliques, Cq contains only another one, namely {[][0]} (these cliques are all the total ones in
IF¢ C, 1, see proposition 12).

The class of discrete PCD is closed under ® and ® ; moreover a clique in ?(C @ D) (C, D
discrete) is either a clique in C or a clique in D, and since the ambivalent clique {[]} is not
total, we get an analogue of theorem 4 iii). Discrete PCD are a good candidate for a semantic
interpretation of strict positivity . Are they really general enough ? We think so, since usual
data types (booleans, lists, trees) can be interpreted by discrete PCD.

THEOREM 10

Let 7w be a proof of »T'; Il and let #* C k¢ I'*; [1* be its interpretation according to

theorem 7 ; then
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i) if Il is empty, then 7* is total in IFc I'*;
ii) if I = P then «* is total in IFc I'*, P*; |
proof : the proof is by induction on a proof 7 of a sequent + I'; Il and follows a rather uniform
pattern, that we illustrate by an example :
assume that 7 proves ~T', A; P A Q from proofs A of = T'; P and p of ~ A; Q. The hypothesis
is that 6(A*) and &(p*) are total and we need only to prove that &(x*) is total. Totality of
6(A*) means that if I take correlations ay,...,ap in the spaces A;*1-,.. A *l- (we assume
I' = Ay,...,A}) with a; central when Aj is negative, if I perform p n~-cuts (irrelevant order, see
theorcm 8) between &(A*) and ay,...,ax and then contractions, then the result -which is
central by proposition 11 and theorem 7- is a correlation in Ik¢ P* 1; which can be written
6((A*;ay,...,ap)). In the same way (if A = By,...,Bg) and f,...,0, are correlations in the spaces
By*1-,....By*L, then 8((p*;B4,...,8¢)) is a correlation in ¢ Q*, 1; . Finally observe that 6(7*)
is total iff for all a,...,ap,B,...,0q (chosen as above) then &((7*;ay,...,ap,B,...,8q)) is a
correlation in k¢ (P A Q)*, 1; . Now the important point to notice is all the operations
involved (especially the cuts, see theorem 8) commute, and so
6((r%;a1,...,ap,51,....0q)) = 6((A%;e,...,ap) ® (p*;51,...,8q)) if we use @ to denote the
operation of definition 13 ii) 1 (without the final dereliction). The result is therefore reduced
to the fact that if 6(a) and 6(b) are correlations in P* and Q*, then &(a ® b) is a correlation
in (P A Q)*, which is precisely what the definition was saying. i

The robustness of the notion is expressed by the following result :
PROPOSITION 12

A clique ais total in IF¢ X, V; iff a is a correlation in X.
proof : to say that aC I X-, ?1 is total means that for any correlations 8 and + in =X and ~V
respectively (with § central in case X is negative) then the result of the two cuts and a
contraction is the clique {[0]}. But 7 is the clique {0[0]} and cutting with 7 has no effect. In
other terms a is total iff <a,8> = 1 for all #in the appropriate set, i.e. if a is a correlation. |l

The proposition illustrates the fact that correlations are just total elements ; but one
must first "square" the space by a disjunction with V to get "enough" total elements.

We introduce our last definition :
DEFINITION 16

We first introduce the notation cut(!a,7) : if @€ X~ is a total clique in the correlation
domain X, then we can view a as a total clique in the NCD X~ ; then we can form a central
clique !a in the PCD X~*; finally if 7 is any total element in ¢ ~(X"*), V, V; we can form by
cut a clique cut(!e,7) in k¢ V, V; . Now two total cliques @ and B in X~ are said to be
observationally equivalent (notation a X 8) when cut(!a,7) = cut(!8,7) for any total clique 7
inlkc S, V,V;.
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PROPOSITION 18

Assume that a U Fis a clique ; then a % 3.
proof : simply observe that there are exactly two total cliques in I-¢ V, V; and that their union
is not a clique. Hence if a U 3 is a clique, then cut(!a,7) U cut(!8,7) Ccut(!(a U 8),7) is a
clique, and this forces cut(!a,7) = cut(!5,7). R
THEOREM 11

Observational equivalence is a congruence.
proof : in fact the result can be reduced to compatibility with cut, especially n-cut. In
particular if a® 8 are total in IF¢ X; and 7 is total in ¢ =X, Y; we want to prove that
cut('a,) ® cut(!3,7) and for this we must cut with a total 4’ in k¢ =(Y~*), V, V; , i.e. show
that cut(!cut(!e,7),7’) = cut(!cut(!8,7),7’)). But this can be rewritten as
cut(a,cut(!7,7’)) = cut(!B,cut(!y,7’)) (we strongly use the fact that !a and !8 are central),
and the last equality is a consequence of a X 5. B

The notion of observational equivalence is to pass "boolean tests" ; however just
limiting them to something like cut(a,7) = cut(B,7) for any total 7 in IFc 2Y, V, V; does not
seem to be enough to ensure that ® is a congruence. Technically speaking cut(a,<) is linear in
a when X is positive, and it seems impossible to restrict to linear tests.

2.4. open questions in the semantics

i) the immediate question is how to accomodate polymorphism. The problem is to
explain how a construction may depend on a parameter a. The idea would be to follow the
pattern of (G1] and
1- to introduce a notion of embedding of PCS, namely a central map between X and Y which
corresponds to isomorphisms between X and the restriction of Y to a subset. These
embeddings must be central.
2- to observe that the interpretation of proofs is functorial w.r.t. embeddings, something like
T*(X) = £1(r¥(Y))
3- then using direct limit and pull-back preservation prove a normal form theorem
4~ from the normal form theorem deduce a NCS (case of ¥) or a PCS (case of 3). However it
seems that here we meet some problems
5- it seems that PCS are not direct limits (w.r.t. the category of embeddings) of finite
ones (problems with centrality) ; so one has to do something if one looks for a “natural"
semantics
6~ it seems definitely impossible to have polymorphism in @ without fixing the polarity ;
typically the semantic interpretation 7*(X) of a cut between +~ a, Vj; and + Ja, V,; (where
both cliques come from + V; by weakening) is interpreted by a different clique in = V;, Vy;
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(there are only two total ones) depending on the polarity of a : therefore this cut can be
polymorphic in X only if the category of embbeddings (or anything playing the same role) is
the disjoint union of a category of PCS and a category of NCS...

ii) the most interesting problem is the completeness conjecture. Remember that Gddel’s
completeness theorem states that a classical first order formula which is true in all models is
provable in classical predicate calculus. Now if we consider the universal closure of a first
order formula w.r.t. its predicate and function constants, we get a second—-order formula with
no parameter at all. For these formulas, Godel’s theorem says "if A is true, then A is
provable". Godel's incompleteness theorem states that the result does not extend to wider
classes, for instance to existential closures.

Godel’s theorem says that first~order predicate calculus contains all logically valid
formulas and that it is impossible to add anything ; but does it contain all logically valid
proofs ? Cut-elimination seems to answer "yes" : if we prove a 1st order formula A in a
calculus enjoying cut—elimination, then we can use the subformula property to show that A is
provable by first—order means. But would it be possible to give a pure semantical proof of this
fact. This is why we state our
completeness conjecture

Let A be a first—order formula depending on predicate and function symbols p, gq,... and
let o(C,D,...) C ¢ A[C,D,.../p,q,...]*; be a family of total cliques depending functorially over
the interpretations C,D,... of p,q,... ; then there is a proof = of =~ A; in LC such that for all
C,D,... the interpretation #*[C,D,...] is observationally equivalent to a(C,D,...).

If the interpretion of polymorphism is carried out properly, a slightly enhanced version
can be stated: let A be a closed second order formula without negative (resp. positive)
occurences of second-order YV (resp. 3), and let a be a total clique in -c A*; : then there exists
a proof 7 of = A; in LC such that a & 7*.

This enhanced version is the strongest plausible : since the existence of a total clique in
A implies the truth of the formula A, the conjecture for A implies Gédel completeness for A,
which fails for more general formulas.
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annex A : coherent spaces

We present here the basic definitions of the coherent semantics, together with the
denotational interpretion of linear proofs. We adopt a slightly different definition of "!" and
"?" (the original one in [G2] was stated interms of sets instead of multisets) ; this
modification is an essential ingredient of the theory of correlation domains.

A.1. coherent spaces
DEFINITION 17
A coherent space is a reflexive undirected graph. In other terms it consists of a set | X|
of atoms together with a compatibility or coherence relation between atoms, noted x <y, or
x <y [mod X] if there is any ambiguity as to X.
A cligue a in X (notation a C X) is a subset a of X made of pairwise coherent atoms :
aC X iff VxVy(x €a Ay €a3 x<y). In fact coherent space can be also presented as sets of
cliques ; when we want to emphasise the underlying graph (] X|,=) we call it the web of X.
Besides coherence we can also introduce
strict coherence : x ~yiffx<yandx #y
incoherence : x <X y iff 7(x ~ y)
strict incoherence : x ~ y iff "(x = y).
Any of these four relations can serve as a definition of coherent space. Observe the fact that <
is the negation of =~ and not of < ; this is due to the reflexivity of the web.
DEFINITION 18
Given a coherent space X, its linear negation X! is defined by
| X4 = [X]
xSy [mod X1]iff x <y [mod X]
in other terms linear negation is nothing but the exchange of coherence and incoherence. It is
obvious that linear negation is involutive : X{1 = X,
DEFINITION 19
Given two coherent spaces X and Y, the multiplicative connectives ®, 3, <= define a new
coherent space Z with |Z]| = |X| x | Y| ; coherence is defined by
(x,y) = (x,y’) [mod X ® Y] iff x = x’ [mod X] and y =y’ [mod Y]
(x,y) ~ (x’)y’) [mod X ¥ Y] iff x ~ x’ [mod X] or y ~ y’ [mod Y]
(x,y) = (x,y’) [mod X < Y] iff x © x’ [mod X] implies y ~ y’ [mod Y]
Observe that ® is defined in terms of < but % and < in terms of ~. A lot of useful
isomorphisms can be obtained

jean-yves girard




_40-

i) De Morgan equalities : (X®Y)4 = X1 BYL ;(XBY)L =X1®YL ;XY =X123Y
ii) commutativity isomorphisms : X @ Y 2 Y® X ; XBY~*YZX ;XYY X!
iii) associativity isomorphisms : X ® (Y®Z)~ (X®Y)®Z ;X B(YRBZ)~(XBY)RZ
Xo(Y=Z)2(X®Y)=Z;X=-(YBZ)~2(X=Y)RZ
DEFINITION 20

Up to isomorphism there is a unique coherent space whose web consists of one atom, 0 ;
this space is self dual, i.e. equal to its linear negation. However the algebraic isomorphism
between this space and its dual is logically meaningless, and we shall depending on the context
use the notation 1 or the notation L for this space, with the convention that 14 = 1, 11 = 1.
This space is neutral w.r.t. multiplicatives, namely
X1 X, XB1¥X;1oX2X, XoL~XL,

Once more this notational distinction is mere preciosity ; we shall have to extend 1 and
1 into correlation domains to see a genuine difference !
DEFINITION 21

Given two coherent spaces X and Y, the additive connectives & and @ define a new
coherent space Z with |Z| = |X| + | Y] (= | X|x{0} U | Y|x{1})
(x,0) = (x°,0) [mod Z] iff x © x’ [mod X]
(v,1) = (y’,1) [mod Z] iff y = y’ [mod Y]
(x,0) ~ (y,1) [mod X & Y]
(x,0) ~ (y,1) [mod X & Y].

A lot of useful isomorphisms are immediately obtained
i) De Morgan equalities : (X & Y)L =X1 @Y.l ; (X@Y)L =X & YL
il) commutativity isomorphisms : X & Y2 Y & X; X@Y~Y®X
iii) associativity isomorphisms : X & (Y& Z) ¥ (X & V)& Z; X®(YPZ)~(X®Y) D Z
iv) distributivity isomorphisms : X® (Y® Z) 2 (X ®Y)® (X ®Z);
XB(Y&Z)2(XBY)&(XTBZ); X=(Y&Z)2(X=Y)& (X =Z);
(XBY)=Z2(X=2Z)&(Y=1Z).

The other distributivities fail ; for instance X ® (Y & Z) is not isomorphic to
(X®Y)& (X®1Z).
DEFINITION 22

There is a unique coherent space with an empty web. Although this space is also self
dual, we shall use distinct notations for it and its negation, T and 0. These spaces are neutral
w.r.t. additives
Xe0vX; X&T12oX
and absorbing w.r.t. multiplicatives
X®0~0; XBToT;0XMT;X0oTYT.
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A.2. linear sequent calculus
IDENTITY/NEGATION

~T,A » AL A

- AAL - A
(identity) (cut)
STRUCTURE
- T
- I

(ezchange : T’ is a permutation of ')

LOGIC
T
-1 - I,
(one) (false)
~T,A + B,A ~ T',A,B
~ T,A®B,A — T, AB
(times) (par)
-,
(true) (no rule for zero)
~T',A +~T,B - A ~T,B
~ [, AkB ~ ', A®B ~ I',A®B
(with) (left plus) (right plus)
- 7',A T - LA - I',7A,74
- 7, 1A - I',74 - I',7A - I',74
(of course) (weakening) (dereliction) (contraction)
- T,A - At /x]
- I, VxA - I,3dxA
(for all : x is not free inT") (there is)
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The syntactical conventions are as follows : formulas are built from literals pt;...t; and
their negations pt;...tn! by means of the connectives 1, 1, T, 0 (0-ary), !, ? (unary) and
®, %, ®, & (binary) and the quantifiers Vx and Jx. Negation is defined by immediate De
Morgan formulas (exchanges 1/L; T/0;!/?;®/%;®/& ; Vx/dx), and linear implication
A - B as AL B B. A sequent + I refers to a sequence + Ay,..., Ay of formulas . The intended
meaning is A; ¥ ... B A, i.e. the comma is hypocrisy for "3".

A 3. interpretation of rudimentary linear logic

" and

Rudimentary linear logic is the fragment of linear logic without the exponentials
"?" In fact we shall content ourselves with the propositional part and omit quantifiers. If we
wanted to treat quantifiers, the idea would be to essentially interpret Vx and Jx as
respectively "big" & and ® indexed by the domain of interpretation of variables ; the precise
definition involves considerable bureaucracy for something completely straightforward. The
treatment of second-order quantifiers is of course much more challenging and cannot be
explained in a short appendix like here ; it is better anyway to reserve the precise treament of
second~order connectives to further work.

Once we decided to ignore exponentials and quantifiers, everything is ready to interpret
formulas of rudimentary propositional linear logic : more precisely, if we assume that the
atomic propositions p, q,r,... of the language have been associated coherent spaces
p*, q*, r*,..., then any formula A of the language is interpreted by a well-defined coherent
space A* ; moreover this interpretation is consistent with the definitions of linear negation
and implication (i.e. AL* = A*L (A < B)* = A* = B*). It remains to interpret sequents ; the
idea is to interpret ~ I (= » Ay,...,An) as A;* ¥ ... ® A,*. More precisely
DEFINITION 23

If =2 (=WFX,,..,Xp)is a formal sequent made of coherent spaces, then the coherent
space I E is defined by :

i) |F 2] = |Xy| x ... x | Xq]| ; we use the notation xy...x, for the atoms of I Z.
i) Xg...Xn = y1...¥0 @ 3 x5~ yi

T (=+Ay..,An) is a sequent of linear logic, then I T'* will be the coherent space
F A¥,...,Ap*.

The next step is to interpret proofs ; the idea is that a proof 7 of + I' will be interpreted
by a cligue 7* C I '*. In particular (since sequent calculus is eventually about proofs of
singletons »~ A) a proof 7 of + A is interpreted by a clique in I- A* i.e. a clique in A*.
DEFINITION 24

i) the identity aziom v A, Al of linear logic is interpreted by the set {xx ; x € | A*|}

ii) assume that the proofs 7 of =T, A and A of = AL, A have been interpreted by cliques
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7* and A* in the associated coherent spaces ; then the proof p of « I, A obtained by means of
a cut rule between T and ) is interpreted by the set p* = {xx’;3z(xz € 7* A zx’ € A*).

ili) assume that the proof 7 of =~ I' has been interpreted by a clique #* C I- I'*, and that
p is obtained from 7 by an ezchange rule (permutation o of T') ; then p* is obtained from p by
applying the same permutation p* = {o(x) ; x € 7*}.

All the sets constructed by our definition are cliques ; let us remark that in the case of
cut, the atom z of the formula is uniquely determined by x and x’. B
DEFINITION 25

i) the aziom v 1 of linear logic is interpreted by the clique {0} of 1 (if we call 0 the only
atom of 1).

ii) the azioms » T, T of linear logic are interpreted by void cliques (since T has an
empty web, the spaces IF T', T* have empty webs as well).

iii) if the proof p of +~ I, 1 comes from a proof 7 of = I' by a falsum rule, then we define
p* = {x0 ;x € 7}

iv) if the proof p of »T', A B B comes from a proof = of T, A, B by a par rule, then we
define p* = {x(y,z) ;xyz € 7*}.

v) if the proof p of - T', A ® B, A comes from a proofs rof +~ T, A and A of - B, A by a
times rule, then we define p* = {x(y,z)x’ ;xy € 7* A 2x’ € A*}.

vi) if the proof p of ~ ', A ® B comes from a proof 7 of ~ T, A by a left plus rule, then
we define p* = {x(y,0) ;xy € 7} ; if the proof p of + T, A@B comes from a proof 7 of
+ ', B by a right plus rule, then we define p* = {x(y,1) ;xy € 7*}.

vii) if the proof p of = T'; A & B comes from a proofs 7 of = ', A and A of -, Bby a
with rule, then we define p* = {x(y,0) ;xy € 7} U {x(y,1) ;xy € A*}.

Observe that iv) is mainly a change of bracketing, i.e. does strictly nothing ; if
|[A| N |B| =0 then one can define A & B, A® B as unions, in which case vi) is read
p* = 7* in both cases, and vii) is read p* = 7* U A*.

It is of interest (since this is deeply hidden in definition 9) to stress the relation between
linear implication and linear maps :

DEFINITION 26

Let X and Y be coherent spaces ; a linear map from X to Y consists in a function F such
that
i)ifac X then Fla)C Y
ii) if U b; = aC X then F(a) = U F(b;)

iii) if a U b € X, then F(a N b) = F(a) N F(b)
PROPOSITION 14
There is a 1-1 correspondence between linear maps from X to Y and cliques in X - Y ;
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more precisely
i) to any linear F from X to Y, associate Tr(F) T X = Y (the trace of F)

Te(F) = {(xy) ; y € F({x})}
ii) to any A C X = Y associate a linear function A(.) from X to Y

ifac X, then A(a) = {y; Ix € a (x,y) € A}
proof : the proofs that Tr(A(.)) = A and Tr(F)(.) = F are left to the reader. In fact the
structure of the space X - Y has been obtained so as to get this property and not the other
way around. @i

A 4. exponentials

This is the only section with some (limited) originality in this annex.
DEFINITION 27

Let X be a coherent space; we define yu(X) to be the free commutative monoid
generated by |X|. The elements of u(X) are all the formal expressions [xy,...,xs] which are
finite multisets of elements of | X|. This means that [x,,...,xq] is a sequence in | X| defined up
to the order. The difference with a subset of | X|] is that repetitions of elements matter. One
easily defines the sum of two elements of y(X) : [xy,....Xa] + [¥1,---,¥m] = [X15-- -, X0, ¥15---,¥m), and
the sum is generalised to any finite set. The neutral element of p(X) is written [].

If X is a coherent space, then !X is defined as follows :
[1X| = {[x1,---,xn] € p(X) ; xi = x; for all i and j}
¥ [x5] = X [y;] [mod !X] iff x; © y; for all indices i and j

If X is a coherent space, then ?X is defined as follows :
17X] = {[x1,---»Xn] € (X) ; xi < x; for all i and j}
% [xi] =~ X [y;] [mod ?X] iff x; ~ y; for some pair of indices i and j.

Among remarkable isomorphisms let us mention
i) De Morgan equalities : (!X)L = ?(X1); (?X)4 = I(X4)
ii) exponentiation isomorphisms: (X & Y) ~ (IX)® (1Y) ; (X ®Y) ~ (?X) # (?Y), together
with the "particuliar cases" T~ 1; 70 ~ L.
DEFINITION 28

i) assume that the proof = of «~ 7T, A has been interpreted by a clique 7* ; then the
proof p of = 7T, !A obtained from 7 by an of course rule is interpreted by the set
p* = {x1+...+xx[ay,-.-,2k] ; X131,.--, Xk3k € 7*}. Some explanation about the notation : each if
M is ?BL,...,7Bn, then x; is x;!,...,xi" 50 X3+...+Xk is the sequence x,'+...+xi},... . x 0. xk? ;
[ay,...,aK] refers to a multiset. What is implicit in the definition (but not obvious) is that we
take only those expressions x;+...+xk[aj,...,ax] such that x;+..+xx is defined (this forces
[as,...,ax] € |!A]).
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ii) assume that the proof 7 of » I has been interpreted by a clique 7 ; then the proof p
of - T', ?A obtained from 7 by a weakening rule is interpreted by the set p* := {x[] ; x € 7*}

iii) assume that the proof = of = T, 7A, 7A has been interpreted by a clique 7* ; then the
proof p of « T, ?7A obtained from 7 by a contraction rule is interpreted by the set
p* := {x(a+b) ; xab € 7* A a < b}. | :

iv) assume that the proof 7 of =T, A has been interpreted by a clique 7* ; then the
proof p of «T,?A obtained from 7 by a dereliction rule is interpreted by the set
p* .= {x[a] ; xa € r*}. :

Of course one can verify without difficulty that all sets constructed by definition 11 are
cliques in the associated coherent spaces. However only part iv) of definition 11 is actually
used in our construction, since i), ii) and iii) are generalised (see 2.1.) to the case of NCS.

In fact correlation spaces (i.e. comonads and their dual) make exponentials appear as the
solutions to certain universal problems. The replacement of sets by multisets is the essential
ingredient of our theorem 9.
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annex B : counterexamples and typical mistakes

Although the text is rather self-contained, it can be useful to examine some alternative
possibilities and see directly what can be wrong with them.

B.1. symmetric closed cartesian categories

The basic idea of extending the notion of cartesian closed category (CCC) —which is a
very good semantics for intuitionistic logic— to the classical case stumbles on a well-known
argnment of Joyal, that we shall sketch (the reader may also consult [LS), especially p. 67).
LiMMA 2

I s initial in a CCC K, then any 0 x A is initial too
proof : C is initial in K if Hom(C,B) has exactly one element for any object B in K ; the result
fcllows from the isomorphism Hom(0 x A,B) % Hom(0,A 3 B). @
LEMMA 2

If 0 is initial in a CCC K and Hom(A,0) # @, then A is initial too
proof : let f € Hom(A,0) ; from f we deduce canonically a morphism g € Hom(A,A x 0). Now
if h € Hom(A,B), we can write h = (h o m) 0 g ; but since A x 0 is initial (lemma 1) h o m is
equal to the unique element k of Hom(A x 0,B), hence h =k og and this proves that
Hom(A,B) has exactly one element. |l

Before stating Joyal’s theorem, let us remember that a category K is degenerated when
Hom(A,B) has at most one element for any A and B. If K is degenerated we can identify K
with a preordered set, namely Ob(K), with A < Biff Hom(A,B)# 0. In other terms the
morphisms convey no information. The meaning of Joyal’s remark is that "symmetric CCC",
"bi~CCC" etc. are just pedantic names for Boolean algebras. Logically speaking this means
that the brutal generalisation of CCC to the classical case is just a regression from a semantics
of proofs to a semantics of provability (i.e. to a semantics in the familiar model-theoretic
sense).
THEOREM 12

A CCC with an involution is degenerated.
proof : an involution is a functor * from K to Kopr such that for all A and B in Ob(K):
Hom(A*,B*) ® Hom(B,A) (bijection defined by fP {*) and A** = A. If 1 is terminal in K,
then 1* must be initial, and we can denote it by 0. Then observe that
Hom(A,B) # Hom(1 x A,B) # Hom(1,A 3 B) ® Hom(1,(A 3 B)**) ® Hom((A =2 B)*,0) ; if
Hom((A 2 B)*,0) # @, then (A 3 B)* is initial and so Hom((A 3 B)*,0) has only one element.
In all cases Hom(A,B) has at most one element and K is degenerated. W
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This shows that there is very little to expect from CCC (or A-calculus, combinatory
logic) in terms of classical logic, in fact there are only two possibilities :
- either one tries to weaken the axioms of a symmetric CCC : if we remove enough equations,
then we can get a non-degenerated category, but what is the point if certain terms do not
have normal forms ? (If we start removing equations, then it will be possible to produce a
morphism in Hom(a,a) —a being an unspecified atom- which is not provably equal to the
identity of a, the only cut-free morphism from a to a). So the only reasonable part of such
Loch Ness categories is the part which does not use any of the new classical "facilities".
- or one tries to cheat with the rule of B-conversion of A-calculus (in a symmetrised
A-calculus, we cannot have Church—Rosser) : for instance, if we adopt leftmost reduction,
Church-Rosser is vacuously satisfied... But this means that equality of normal forms is no
longer a congruence, since we may have u b u’ without having tu P tu’. From this it is plain
that the properties of such non—monotonic A-calculi are severely limited ; however -as
above- if one carefully avoids the new "classical"™ features, one gets a fairly good system...

Conditions i) and iii) in part B of our introduction were chosen to exclude such jokes.

B.2. the impossibility of a symmetric cut—elimination

It is not difficult to adapt the notion of multiplicative proof-net ([G2], see also [GLT]
for a sloppy introduction) so as to get a notion of classical proof-net : in fact it suffices to
introduce n—ary contraction links

A ... A
—

to get a reasonable representation of classical proofs.

Such links represent iterated structural rules ; in order to get a nice notion, we can agree
on the following : '
i) the number n of premises is never equal to 1 (in that case the rule is useless)
ii) the conclusion of the link is not in turn the premise of another contraction link (all
contractions are performed in one step)
iii) the premises of the link are not ordered, like in cut and axiom links

As far as we exclude O-ary contraction links (i.e. weakening links) then there is a
straightforward correctness condition for such proof-nets: it suffices to treat a n-ary
contraction link as a n—ary "par" link... If O-ary links are considered no non-trivial condition
is known, but the notion still makes sense.

But if classical proof-nets make sense, classical cut—elimination does not make sense at
the level of proof-nets : as soon as we want to normalise a cut whose premises are conclusions
of structural links, then we run into endless problems.
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EXAMPLE 1 : cut weakening/weakening
(m L (A)
. a -a .
A cut B

This represents the result of weakening a proof of » A into » A, a then weakening a proof of
= B into - B, -a and then making a cut on a. There are two ways to eliminate this cut :

() (A)
A B or i B

The original proof-net contains no information as to which solution should be chosen :

i) the original proof-net is symmetrical w.r.t. a and -a (if ~say- a does not occur in IT or A)
ii) even if we try to complicate the pattern and mention that a is "linked" to A and -a is
"linked" to B, then the choice between the two cut—free proofs will depend on a precedence
between a and -a; we can for instance choose the left solution, but this choice is not
compatible with a substitution a ¥ =a... unless such a substitution is forbidden. But to forbid
such a substitution is exactly the same as to introduce polarities.

But should we only blame weakening ? In fact if we refuse weakening (like in various
relevance logics) we still get the same problem. In the next example, weakening (0-ary
contraction) is not allowed, and we still get the same problem.

EXAMPLE 2 : cut contraction/contraction

Let a and b be atoms; the following proof-net Il is associated with a proof of

~aAb,aA-b,naADb -aA-b

|

a b 7a b b b a ab "a b
alAb ~aAb cut aA-b 2aA-b

If I systematically exchange a and -a in II, then I get another proof-net with the same
conclusions, which is exactly the original one ; if I do the same with b and b the result is still
the same. If there is any "uniform" cut-elimination procedure, this procedure shoud commute
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with substitution, hence one should get a cut-free proof-net with the same conclusions and
enjoying symmetries a/—a, b/-b. However one of the obvious choices, say A :

a b a l') na b 7a l[ b =b =b =b
aAb alAb =~aAb =aAb a =b na =b

| alAb =aAb aA-b ~aA-b

is invariant under the replacement a B -a, but not under b B 1b (we get

b b b b a =b a =b aa b =a =b
a b -a b aA-b aA-b saA-b saA-b

alAb =~alAb aA-b =~aA-b

which is by no means the same as A). As we shall now see, there is no "symmetrical
proof-net" with these conclusions, hence no uniform cut-elimination procedure.

Consider the four element group S consisting of
{identity ; exchange a/~a ; exchange b/7b ; exchange a/~a and b/~b}
then S acts transitively on II (seen as a graph) ; the fact that the premises of contraction and
cut links and the conclusions of axiom links are not ordered is essential. This group
corresponds (in a one-sided version of classical logic) to the result of various substitutions. In
particular, if there is any cut-elimination procedure compatible with substitution, then the
same group S should also act transitively on the "normal form" of our proof. Unfortunately
THEOREM 13

The only cut-free proof-net ending with (repetitions of) the formulas
aADb,aA-b, "aAb, maA b, a, a,b, bandon which S acts transitively are :

a na and b b
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proof : for induction loading, we admit repetitions of conclusions and also subformulas of the
original conclusions. Since weakening is not allowed, we have access to the correctness
criterion of [G2] and the proof is by induction on the number of links of the proof-net :

- one link : it must be an axiom link ; since the conclusions A, A of this link must belong to
the list given, this forces A to be a litteral and therefore the proof-net is trivial

- more than one link ; two cases occur

+ if there is a terminal contraction link then consider its orbit (which consists of 2 or 4
contraction links) ; then if we remove all these contraction links, we get another proof-net
which is still symmetric w.r.t. S, and with less links. The induction hypothesis tells us that
this proof-net is trivial, but there is no way to apply a contraction link to a trivial proof-net
and therefore we reach a contradiction

+ otherwise (since a proof-net is connected) there must be a terminal A-link which
splits (see [G2]) ; this link has an orbit of four elements, hence we get four splitting A-links. If
we remove these four links, we get five connected components if we consider these components
as five points then S acts transitively on them. Therefore one of them must be invariant (5
must be the sum of the cardinalities of the orbits which can only be 1, 2 and 4, and there must
be a 1 in this sum). Then this invariant component is symmetrical w.r.t. S and the induction
hypothesis applies to it : it must be trivial, e.g. an axiom link between a and -a. But one of
the two conclusions (say a) must be the premise of one of the severed A-links (let us say with
conclusion a A b). The orbit of the conclusion has four elements, whereas the orbit of the
premise a has only two elements, contradiction. |

The study of both weakening and contraction shows that formally symmetrical problems
cannot receive symmetrical answers: cut-elimination must break the symmetry. The
introduction of polarities is a way to indicate in which way the symmetry will be broken. If
this conclusion is rather obvious, what was less obvious is that polarities can be chosen in a
reasonably consistent way.

But as we said, we run into endless probmems and the introduction of polarities is not
enough to fix our "classical proof-nets". Polarities introduce hidden additive and exponential
features in proof-nets and we cannot stay within a simple-minded multiplicative
universe. The question of the right notion of classical proof-net is ~as already stated in 1.5.i)-
widely open.
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