-

View metadata, citation and similar papers at core.ac.uk brought to you byt CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Towards a meta simplifier

Christele Faure

» To cite this version:

Christele Faure. Towards a meta simplifier. [Research Report] RR-1402, INRIA. 1991. inria-

00075158
HAL Id: inria-00075158
https://hal.inria.fr /inria-00075158
Submitted on 24 May 2006
HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50449677?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00075158
https://hal.archives-ouvertes.fr

Rapports de Recherche

:

: :
: N° 1402 %
f Programme 2
Calcul Symbolique, Programmation

g et Génie logiciel

TOWARDS A META SIMPLIFIER

I¥rS

T

T n

: |
Christéle FAURE
Avril 1991
(AR
*RR . 1482 %

&ffmmmmm& - N e it e e) 1(—\75

=y

Programme 2
Christeéle Faure'
faure@psyche.inria.fr

Vers un méta simplificateur

Dans les systemes de calcul formel actuels, le mécanisme de simplification est
faiblement paramdétré. Si la définition dexpression plus simple ne satisfait pas
Putilisateur. il n’a que peu de moyens de la modifier, et méme pas du tout en ce qui
concerne les opérateurs courants (4, %, —,abs, log...). Il est alors obligé de redéfinir
intégralement de nouveaux opérateurs (avee de nouveaux noms) correspondant &
scs besoins. De notre point de vue, un simplificateur doit étre completement
personnalisable et ne peut U'étre que si les connaissances algébriques ntilisées sont
séparées du processus de simplification.

Dans ce rapport. nous présentons un modele de simplificateur composé de deux
partics : la base qui contient toute la connaissance, et le moteur qui effective-
ment simplific les expressions. Tout d’abord, nous décrivons deux catégories de
connaissances de base @ les équations et les fonctions de calcul, ainsi que les deux
processus qui les manipulent. Comme nu simplificateur est toujours connecté a
un systenme. nous définissons ensuite les interactions entre un simplificateur et son
systéeme hote.

Towards a meta simplifier

In distributed computer algebra systems, the simplification process modifies each
input expression to fit a certain definition of “simplicity”. This definition is given
(through the written simplifier) by the system designer and not by the user. How-
ever this definition may not correspond o the user’s notion of simplicity. We
consider that simplifiers cannot be customizable as far as the simplification knowl-
edge is encoded in the simplification functions. ‘

In this paper. we present a model of simplifier divided in two parts @ the base
that contains all the knowledge and the engine which really computes simpli-
fication. First. we descrihe two basic kinds of knowledge (equations, evaluation
functions), and their two associated processes. Since a simplifier is always con-
nected to a syvstem, we try then to define the interactions between a simplifier and
a host system.

VINRIA. Centre de Sophia-Antipolis. 2004 route des Lucioles, 06565 Valbonne Cedex.
ou Université de Nice-Sophia Antipolis, Dépt. de Mathématique, Parc Valrose, 06034 Nice
Cedex, France.

1 Introduction

In a computer algebra system, the simplification process modifies cach input
expression to fit a certain definition of “simplicity”. This definition depends
on the habits of the user (for instance the notations he is used to), and the
further use of the result. When a system designer implements a simplifier,
he tries to make this definition more precise (in particular for the usual
operators like +, —, *,-), and he assumes that it is the standard one. However
this definition may not fit the user’s one, therefore the use of the computer
algebra system is less attractive or completely irrelevant for a given purpose.
Therefore the design of an easy customizable simplifier is an important issue
for making computer algebra systems more usable.

To make simplifiers completely customizable, we think that the “knowl-
edge” involvedmust be separated from the simplification process itself. Tor
example, the simplification of the expression ((2 + —2) + 3) 4+ 1 must give 4.
The knowledge involved in this simplification consists of two rewrite rules :
X + zero — X and — X + X — zero, an equation : X +Y =Y + X
(commutativity) and the evaluation function that adds two integers. First
the system simplifies the sub-expression 2 + —2 to zero by using the second
rule modulo the equation, the new expression zero+ 3 is simplified to 3. The
equation and the two rules have been used by the system to evaluate 341 in
4. More generally, the same kind of knowledge is needed : equations, rewrite
rules and evaluation functions. In this description, we don’t take into account
functionalities such as substitution, search of specific sub-expressions.

This new approach enable the user to give all the equations, the rewrite
rules and the evaluation functions he needs, in order to get output expressions
the way he wants them. This information is structured around the notion
of operator, and stored in a base. “All information about each operator is
grouped, but the information about each domain? is scattered”, this seems
much more flexible than a domain oriented base, even if it is a less compact
description.

The base described before is the first part of the meta-simplifier, the sec-
ond part, called the engine effectively simplifies expressions. This process
splits in two parts : the first one manages the equations and rules and the

2A domain is a representation of a type and the operators related to it, like in
Scratchpad[JSW86).

second one manages evaluation functions.

Clearly, when nothing is stored in the base the simplifier does nothing, the

output expression is the same as the input expression.

To define an operator the user gives its name, the equations and the evalua-

tion functions related to it. '
The simplifier described in this paper has been implemented in connection

with the computer algebra system Sisyphe3. We give a general approach and

we briefly analyze the implications of the interaction between a simplifier and

an host system.

In the following sections, we describe how a new operator can be defined in

the base, and how the engine uses those definitions to simplify expressions.

2 Defining an operator by equations

Each exisling system gives a way of declaring equations, either by attaching
equationnal properties to operators (for instance, in Macsyma[The83], one
declares properties by declare(f,linear),declare(g, multiplicative)), or by
declaring rewrite rules (in Macsyma, an example of declaration is
tellssimp(Dlz](A, B), B(z) xdif f(A(z), X) — A(z) »dif f(B(z),x)), where z
is a pattern variable and X is the differentation variable). A rewrite rule is
nothing but an oriented equation.

Rewrite rules are operationally more intersting than equations. But
among usual equations, X + Y = Y + X (commutativity) cannot be ori-
ented to make a rule, so we deal with it through a property. All orientable
equations can be declared in the form of rules, but we have noticed that the
same sets of rules are given several times with different operator names. For
example the set of rules {X + —X — zero, X + zero —» X, —(-X) — X}
and {X * inv(X) — one, X * one — X,inv(inv(X)) — X} are similar if
we introduce three parameters, which are (4, —, zero) in the first case and
(*,inv,one) in the second one.

In order to factorize those similar declarations, we defined properties equiv-
alent to them. Another advantage of grouping rewrite rules in properties is
given by the possibility of writing optimized algorithms, which do the same
work as rewrite rules. All the equations involved in the definition of useful
mathematical structures (group, ring, field) are then defined by properties.

3Developed by INRIA and University of Nice.

In the following, we will describe the action of the engine at the first level
using the properties of the root operator of the term.

2.1 Simplification modulo one basic property

This section describes the simplification of a term modulo one property of
its root operator. We choose to define a set of general properties in order to
have many possible applications. These properties allow the user to define
usual mathematical structures such as group, ring, field ... then they are
called basic properties.

So an operator could be : associative, g-symmetric, idempotent, nilpotent,
n-homogeneous,

or could have : a unity element (which is a constant function), a symmetric
function, an absorbing element (constant function).

Each property is taken care by a specific algorithm which takes a term
as input and simplifies it modulo the property. To simplify a term modulo a
property, the system “asks” the base whether the operator has this property,
if the answer is yes, it applies the corresponding algorithm.

We decide to simplify associative term in their flattened form : (a + (b +
c)) = (a+ b+ c¢). In order to simplify a g-symmetric term t; with respect
to some operator g, we sort? the first-level sub-terms of ¢; and get ¢,, if the
signature of the permutation is —1 then the result is g(t;) otherwise it is t,.
For example, commutativity is a consequence of the previous property with
g = tdentity- function.

The previous choices for simplified forms modulo associativity and
g-symmetricity imply the following definition for a generalized sub-term
of the term op(a,...,a,) (after simplification modulo associativity and g-
symmetricity). Its operator is op and its arguments are :

e in associative/g-symmetric context : an ordered sub-set of {a,,...,a,}
(for example a + ¢ is a generalized sub-term of a + b + ¢),

e in associative context : a sub-sequence of ay,...,a,
(for example m, - m, is a generalized sub-term of m; - m, - m3),

e otherwise : ay, ..., an.

4This algorithm is parametrized by orders over integers, strings, polynomials ...

One can notice that a generalized sub-term is simplified modulo associativity
and g-symmetricity.

All our other properties are equivalent to rewrite rules, therefore the
action of the simplifier can be described by the applied rules :

Assertion rule
projector(f) f(f(z)) = f(=z)
involutive(f) f(f(z)) — =
tdempotent(f) f(z,z) - z
nilpotent(f,n, h) fUf(f.f(z)) = h
has-zero-l(f, zero) f(zero,z) —
has-zero-r(f, zero) flz,zero) —
has-abs-l(f, ab) f(ab,z) — ab
has-abs-r(f,ab) f(z,ab) — ab
has-symmetric-l(f,h) f(h(z),z) — zero
has-symmetric-r(f, h) f(z,h(z)) — zero
ext-op(f1, f2) f1(s1, fi(s2, t2)) = fi(fa(s1, 82), ¢2)
n X m-morphism(f,g,h) f(z1y . g(2), . 2™), o z,) —
R(f(zy1y ey @}y eey Tn)y o f(T1y ey Ty ey Tn))
n-homogeneous(f, g, h) f(z1,.., 9(a, zi)y ...y zn) —
h(a, f(Z1y ey Tiy ooy Tn)

Example : The operator + can be defined by the following assertions :
associative(+), g-symmetric(+, Fid)®, has-zero(+, zero),
has-symmetric(+,~). The term n+y+(—n+z) is simplified to n+y+—n+z
by associativity, n + = + y + —n by commutativity, z + y + zero because of
the symmetric, z + y because of the zero.

2.2 Simplification modulo a set of basic properties

One can attach a set of properties to an operator, we describe the simpli-
fication of a term modulo such a set. Simplifying a term modulo a list of
properties is equivalent to rewriting a term modulo a set of rules, it implies
the choice of a strategy. But our case is much easier than the general rewrit-
ing problem because we know all the authorized properties in advance and

5Fid is the name of the identity function, so this declaration is equivalent to
commutativity.

we have results about the canonicity([Hul80]) of sets of rules equivalent to
those properties.

We define an order over those properties, it's a partial order because we
only sort coherent lists of properties. Given a term and a sequence py, ..., p,
of properties (sorted), we use those properties from 1 to n. Each p; is used
every time it’s possible, the output term is still simplified modulo py, ..., p;_;5,
then the system has only to simplify it modulo p,;,, ..., ps.

The most part of our authorized properties are mutually exclusive and the
only ordered one are : ext-op < idempotent < has-symmetric < has-zero <
has-abs.

Simplifying a term modulo p; < ... < p, and associativity(A) or g-
symmetricity(C), consists in simplifying it first modulo associativity, second
modulo g-symmetricity, then modulo (A4,C,p,) ... (A,C,p,). The two prop-
erties A,C cannot be “forgotten” in the following simplifications because
they induce the definition of generalized sub-terms. For example if — is the
symmetric of + with zero for zero, we want n+z +y+ —n” to become = +y.
This is only possible if the system knows that + is AC, then n + —n is a
generalized sub-term for n+z+y+ —n and the system computes z +y + zero,
y + zero is a generalized sub-term for + y + zero and the system computes
T+y.

In the case where the list of properties associated to the root of the input
term contains a sequence s of ordered properties and a list ! of other uncom-
parable properties, the system simplifies the term modulo { and then modulo
s. Indeed, our uncomparable properties can change the root operator of the
term, so there is no need for simplifying the input term if it is completely
changed (even the root operator is changed). To simplify a term modulo the
previous list | = (..., [,), the system acts as if it was a list of rules, it uses
each [; every time it’s possible with i from 1 to n and then do it again while
the term changes.

For example, * can be defined by :
assoctative(x), g-symmetric(x, Fid), has-zero(*,one),
has-symmetric(*,inv), has-abs(x, zero), 2 X 2-morphism(*,+, +)8,

8This property is given by the order. For example, using “has a zero” before “has a
symmetric” isn’t valid because the use of “has a symmetric” can generate a “zero”, then
we have to use “has a zero” a second time.

"The order between involved terms is n < r < y < —n < zero.

2-morphism(*, —, —).

The term a * (¢ + inv(a) + one) is simplified :

modulo associativity to a * (¢ + tnv(a) + one),
commutativity to a * (¢ + inv(a) + one),
2 x 2-morphism(*,+,+) to a * ¢ + a * inv(a),

then the term a * inv(a) is simplified

modulo symmetric to one,

and the complete term a * ¢ + a * inv(a) is simplified to a * ¢ + one.

2.3 Extended example

This example deals with euclidian geometry in R3, the involved operators
are : +,—,zero,*,one,nv, -, mul,t, tilde. Where - is the product between
matrices, mul the product between a scalar and a matrix, ¢ is the transpo-
sition operator and tilde is the operator suchas X - Y = X AY. Constants
are introduced : Id (the identity matrix), Mzero (the matrix zero), /7d (the
identity function), X0,Y 0,20 (the unit vectors over the axes).

The following package of properties and rules is a sample which can be
useful in mechanics. More precisely, those properties associated to the set of
rules is the one chosen in the simplifier of Gemmes[CG89] which is a program
written is Maple and developped by Aerospatial. Properties of the operators
—, v, -, mul,t, tilde :

Name | Assertions Name | Assertions
t tnvolutive(t) ' mul | has-zero-l(mul, un)
1-homogen.(t, mul, mul) has-zero-r(mul, Id)
1 X 2-morphism(t, +,+) has-abs-l(mul, zero)
1 X 1-morphism(t, —,—) has-abs-r(mul, zero)
v | tnvolutive(inv) ext-op(mul, *)
- involutive(—) . assoctatrve(-)
1 x 2-morphism(—, +,+) has-zero(-,Id)
tilde® | 1 x 2-morphism(tilde, +,+) ext-op(mul, *)
1-homogen.(tilde, mul, mul) 2-homogen.(-,mul, mul)
2 x 2-morphism(-,+, +)

For the operators + and * we keep the declarations described in the previous
sections (respectively 2.1 and 2.2).

9We denote tilde(X) whether X or tilde(X).

Rules :

Mzero — Mzero t(1d) — Id
m-m — Mzero rot(az,0) - az — azx
~mul(s,m) — mul(—s,m) | rot(az,0)-t(rot(az,0)) — Id
mul(s,—m) — mul(-s,m) | Y0- X0 - =20
X0.20 — -Y0 Z0 - X0 — Y0
X0-Y0 — 20 70-Y0 — —X0
Y0- Zo - X0 t(rot(az,9)) - rot(az,0) — Id

rot(Z0,0) - X0 — mul(sin(0),Y0) + mul(cos(0), X0)
rot(Z20,0) - YO — mul(cos(0),Y0) + mul(sin(0), X0)
iy - my — g+ — (7 -)
rot(az,0)-m — rot(az, 0)-m- t(rar(a:z:, 8))
First we introduce the following notations :

Ry = rot(Z0,thetal) & R, = rot(Z0,theta2)

¢i = cos(thetal) & ¢ = cos(theta2)

s1 = sin(thetal) & s = sin(theta2).
Now the term :

—tulde(R1 - mul(ry2, X0)) - Z0 + telde(R1 - R2 - mul(r23, X0)) - Z0
is simplified (given properties) to
—(mul(ryz, tzlde(R1.X0).20)) + mul(rys, tilde(R1.R2.X0).20)
and is simplified (given properties and rules) to

mul(ryz * (61 * 83 + ¢ * 81) + —(r12 * 51), X0)
+mul(—(re3 * (c1 * ¢ + —(81 % 82))) + T12 ¥ 1, Y0)

In this example one can notice that most of the rules compute formal
evaluation, for example the rule t(/d) — Id “evaluates” the transposition
function in the point Id. The declared properties for +, —, *,nv, - fit the
standard behavior required for any simplifier.

2.4 Definition of complex properties

In our current implementation, the basic properties are associated to oper-
ator “by hand” using a function called declare. The operator “declare” is

8

o«

associative and will be interpreted as “put all this information in the base”.
We want to introduce a sort of language by assertion in order to express
complex properties. Then if the user asserts a complex property, the sys-
tem computes all the basic declarations (in term of basic properties).

For example the complex property group(fi, f2, f3) can be expressed as :
group(fi, fa, fz) — declare(associative(f,), has-zero(fy, f3),
has-symmetric(fi, f2),involutive(f,))
From the previous definition of a group, the definition of commutative group
is easy :
commutativegroup(fi, fa, f3) — declare(group(fi, f2, f3),
' commutative(f1))
commutative(f;) — declare(g — symmetric(fy, Identity))
Now if the user asserts commutative-group(+, —, zero),
the system will rewrite it in declare(group(+, —, zero), commutative(+))
then in declare(declare(associative(+), has-zero(+, zero),
has-symmetric(+, —), tnvolutive(-)),

declare(g-symmetric(+, 1d)))
then because “declare” is associative
in declare(associative(+),

has-zero(+, zero),

has-symmetric(+, —),

involutive(—),

g-symmetric(+, Identity)).

We think that this is an easy and concise way of giving properties to opera-
tors.

3 Defining an operator by evaluation func-
tions

In existing systems (except Scratchpad), evaluating a term consists in calling
the evaluation function attached to the root operator of the term on its
arguments. Each evaluation function is associated to an operator name and
tests dynamically the types of its arguments. The code of the function that
adds two arguments is essentially the lisp function :

(de add (el e2)
(selectq (type-of el)
(integer
(selectq (type-of e2)

(integer (add-integer el e2))
(polynomial (add-int-poly el e2))
(matrix (add-int-mat el e2))
(t (make-term + el e2))))

(polynomial ...)

(matrix ...)

(t (make-term + el e2)))).

The user cannot modify the source of such functions, therefore he isn’t able
to define new semantics for those operators.

We point out another solution which consists in splitting those evaluation
functions in the primitive ones (add-int-poly, add-integer, add-matrix) asso-
ciated with their functional types (integer xinteger — integer). A primitive
evaluation function associated to its functional type is called an interpre-
tation, and is denoted by (integer x integer — integer,add-integer). In
this context, evaluating a term is consists in two separated phases : a type
checking, and a call of the function if it matchs.

The previous code of “add” is equivalent to a lot of interpretations :

(integer x integer — integer, add-integer),
(integer x polynomial — polynomial, add-int-poly),
(integer X matriz — matriz, add-int-mat),
(polynomial x polynomial — polynomial, add-poly),

(matriz X matriz — matriz, add-matriz),

Generally, in computer algebra systems, conversions exist between types
of objects, but they are implicitly encoded in evaluation functions. For exam-
ple defining (integer x polynomial — polynomial,add-int-poly) is equivalent
to defining (polynomial x polynomial — polynomial,add-int-poly) and the
conversion from integer to polynomial. Defining conversion leads to decrease
the number of interpretations to be defined. The user is given this facility but
he can also give all the functions so that it doesn’t increase time computation
by computing conversions.

10

The previous code of “add” is now equivalent to only three interpretations :

(integer x integer — integer, add-integer),
(polynomial x polynomial — polynomial, add-poly),

(matriz x matriz — matriz, add-matriz),

associated to two conversions : integer conprt polynornazal,

. convert .
integer ~— matriz.

3.1 Evaluation

In order to evaluate a term, the system considers all the interpretations. For
each one, it applies the function every time a generalized sub-term (definition
in the section2.1) matches the functional type.

Example : The following interpretation is attached to the operator + :
(integer X integer — integer,add-int).
To evaluate 2 + nl + 3 + n2 + 4, the system considers the interpretation,
search a generalized sub-term that matches the functional type. It finds the
generalized sub-term 2 + 3, computes apply(add-int,2,3) = 5 then tries to
evaluate nl + n2 + 5 + 4. This last term is evaluated in the same way to
nl + n2 + 9 which cannot be evaluated again.

3.2 Evaluation modulo conversions

. convert
We can see the relation “can be converted to”, denoted by ~—"" as an order-

ing between types, T} < T, means T) “°™%"* T,. Then we can define equiva-
lence classes between types by class(Ty) = class(T3) © Ty < T, and T, < T;.
We call numerical types!?, the types used to define functional type, and

convert
—

formal types!! the equivalence classes associated to . For example if

two kinds of integer called I, and I, are implemented, with I; <25 I, and
I, 2% g they belong to the same class, which can be called Finteger.
Declaring a conversion between two numerical types means to declare a
conversion between each couple of types of their two classes. For example
given the class (Integer,I;, I;) and the class (Polynomial,P,, P;), the decla-

convert

. . . convert convert
ration Iy "= P is equivalent to I, " — P, or I "— P ... So when

10A numerical type is a name associated to a representation.
1A formal type is a name associated to several numerical types, then several
representations.

11

the formal types are defined, it’s enough to declare the one-sided conversions
between them.

To evaluate a terrn modulo the interpretations of its root operator, the
same algorithm is used. The only difference comes from the matching func-
tion between a sequence of terms and a functional type. v
In this context, a sequence of terms {,, ..., ¢, matches a numerical functional
type Ty x ... T, = T4, if the numerical type of each term in the sequence
ntype(t;) can be converted in the corresponding type 7; in the functional

type.
In the presence of conversions, the system applies the evaluation function
in a different way than before : it first computes the conversions of the

arguments, then applies the right function. In order to convert a numerical
object the system has only to convert it to a term (it writes it : i.e. this is
equivalent to the pre-processing applied before the display of an expression)
and then has to convert this term to a new numerical object (it reads it). We
notice that if it is not the most efficient way, it’s the most easy and general
one.

4 Interactions with an host system

Basically, beside the library, a computer algebra system consists of three
components a parser, a simplifier and a display process. If the simplifier is
completely customizable, the two other ones must be also customizable. For
example, if “+” is declared associative, one may want it to be infix and n-ary

Then the base contains algebra knowledge (properties, interpretations) as
well as syntactical knowledge (infix, prefix, postfix, matchfix, right and left
priorities ...) associated to operator names.

In existing systems, numerical types are predefined. Even if one was able
to define new types, they couldn’t be taken into account. In our system,
numerical types are free, but they must be declared. According to an object
oriented approach, to define a numerical type, one must give a name (7T'), and
some fields (ay, ...,a,). But this is not sufficient because the system needs a
function to read an object of type T, and another one to display it. Those
functions are used in order to compute numerical conversions (see 3.2).

12

]

5 Final remarks

At this time, such a simplifier is implemented in Le-Lisp with a parser and
a display function similar to those of the computer algebra system Sisyphe
([GGPY0]). A base has been built which uses Sisyphe as a library of lisp
functions. The only difference between this system and Sisyphe itself comes
from the lack of error detection. For example one can write trace(3), the
system will probably not find any interpretation to trace over integers, and
the output term will be the same as the input term. We think that some
users may need to raise type ecrrors, so a formal type-checker is in the course
of implementation. The user will have to associate all the authorized formal
(with formal types) functional types to each operator. Type checking will be
computed only if the user requires it.

The simplifier we have described can be seen as an advanced interface
between the user and a library of algorithms. In order to have the term
op(z,y, z) simplified by the system, the user must link op with a function f
in the library, and its numerical functional type (we did so to connect our
simplifier and the system Sisyphe). If f has got implicit properties he must
associate them to op, furthermore he must declare the numerical types (names
and structure), and the conversions. It’s an advanced interface because, first
it doesn’t compute only over numerical objects but also over formal ones
(when the formal type check will be implemented), secondly the action of
this interface is completely defined by the user. Finally, given an engine,
many simplifiers can be created modifying the knowledge base and linking it
to an existing computer algebra system.

References

[CG89] Y. Papegay C. Garnier, P. Rideau. Modelisation dymamique lit-
terale. In Computer methods in applied mechanics and engenier-
ring, pages 215-225, Elsevier Science Publishers B.V., Versailles,
1989.

[GGPY0] André Galligo, José Grimm, and Loic Pottier. The design of
SISYPHE : a system for doing symbolic and algebraic computa-

13

[Hul80]

[ISW86]

[The83]|

tions. In A. Miola, editor, LNCS 429 DISCO’90, pages 30-39,
Springer-Verlag, Capri, Italy, April 1990.

JM. Hullot. Compilation des formes canoniques dans des thé-
ories équationnelles. PhD thesis, Université de Paris-Sud (centre

d’Orsay), 1980.

Richard D. Jenks, Robert S. Sutor, and Stephen M. Watt. Scratch-
pad II: An Abstract Datatype System for Mathematical Computa-
tion. Research Report RC 12327, IBM, November 1986.

The Mathlab Group. Macsyma Reference Manual, version 10.
MIT edition, 1983.

14

Imprimé en France
par
- I'Institut National de Recherche en Informatique et en Automatique

ISSN 0249 - 6399

