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A STOCHASTIC APPROXIMATION TYPE EM
ALGORITHM FOR THE MIXTURE PROBLEM

UNE APPROXIMATION STOCHASTIQUE DE
L'ALGORITHME EM POUR L'ESTIMATION DE MELANGES

Gilles CELEUX Jean DIEBOLT
INRIA, Rocquencourt CNRS, Paris 6

Abstract: The EM algorithm is a widely applicable approach for computing maximum
likelihood estimates for incomplete data. We present a stochastic approximation type EM
algorithm: SAEM. This algorithm is an adaptation of the stochastic EM algorithm (SEM) that
we have previously developed. Like SEM, SAEM overcomes most of the well-known
limitations of EM. Moreover, SAEM performs better for small samples. Furthermore, SAEM
appears to be more tractable than SEM, since it provides almost sure (a.s.) convergence, while
SEM provides convergence in distribution. Here, we focus on the mixture problem. We state a
theorem which asserts that each SAEM sequence converges a.s. to a local maximizer of the
likelihood function and we give the asymptotic rate of convergence. We close this paper with
Monte-Carlo experiments which show that SAEM performs better than EM and SEM for small
samples.

Keywords : maximum likelihood, mixture, simulated annealing, stochastic algorithm.

Résumé : L'algorithme EM est trés répandu pour l'estimation par le maximum de
vraisemblance de parametres de modeles ou les données sont incompletes. Nous présentons
une nouvelle version stochastique de l'algorithme EM. Cet algorithme, désigné algorithme
SAEM, est une adaptation de I'algorithme stochastique SEM que nous avons précédemment
développé. Comme ce dernier, l'algorithme SAEM répond aux limitations bien connues de
I'algorithme EM ; mais de plus il se comporte mieux pour traiter de petits échantillons. Par
ailleurs, il est plus simple a appréhender que l'algorithme SEM dans la mesure ou il converge
presque sfirement tandis que l'algorithme SEM converge en loi. Ici, on limite la présentation
détaillée de I'algorithme SAEM au probléme des mélanges de lois de probabilité. On établit un
théoreéme qui assure que toute suite d'estimés par SAEM converge p.s. vers un maximum local
de la fonction de vraisemblance et précise sa vitesse de convergence asymptotique. On conclut
cet article par des simulations de Monte-Carlo qui montrent que SAEM se comporte mieux que
EM et SEM pour de petits échantillons.

Mots-clés : maximum de vraisemblance, algorithme stochastique, mélange, recuit simulé.



1. Introduction

The EM algorithm is a widely applicable approach for computing maximum likelihood
(m.1.) estimates for incomplete data. The first description and study of the EM algorithm dates
back to Dempster, Laird and Rubin {5]. Since this date, some authors have examined with
great attention the convergence properties of EM: e.g., Wu [12] and Redner and Walker [10].
EM has been successfully applied to a wide variety of problems. Moreover, Louis [7] and
Meilijson [9] among others have investigated methods of acceleration of its convergence. A
detailed account of EM focusing on the mixture problem is given in Section 2.

Despite several appealing features, the EM algorithm has severe limitations. Its limiting
position is strongly dependent on its starting position. It has been known in some instances to
converge to a saddle point of the likelihood function (1.f.) L. In some cases, its rate of
convergence is unbearably slow. Moreover, in many important situations, certain key
parameters of the model must be known before running the EM algorithm. If the value of one
of these parameters is wrongly set, then EM fails in the sense that, generally, it does not even
indicate that some assumptions on these parameters are not actually true. For instance, in the
mixture context, an important but delicate parameter of the model is the number of components
K of the mixture. Testing for the number of components in a mixture is an important but very
difficult problem which has not been completely resolved (see, e.g., McLachlan and Basford
[8], p. 21-29, and references therein).

In an attempt to overcome some of the above limitations of EM, we have defined and
studied a stochastic version of EM, that we have called the SEM algorithm, in Celeux and
Diebolt [2], [3] and [4]). In these studies, we paid special attention to the mixture case.

Our proposal for avoiding the problems of wrong (or slow) convergence of EM was to
incorporate a stochastic step between the E and the M steps, which we called the S step, hence
the name SEM.

The S step prevents the sequence (6"} from being immobilized near an unstable
stationary point of the log-likelihood function. In section 3, we briefly describe the SEM
algorithm and provide the detailed formulas for the mixture case.

But the usage of SEM has also some drawbacks. Firstly, since it converges weakly to a
stationary probability distribution, it needs experience to handle its numerical results.
Secondly, it tends to give unreliable results for small sample sizes, because in this case the
random perturbations of the S step are too important.

An alternative to the SEM algorithm is the subject of the present paper. It consists in a
stochastic approximation type algorithm derived from SEM, in which the variance of the
random drawings is to decrease to zero as the number of iterations increases to infinity. We
have called it the SAEM algorithm (Stochastic Approximation EM). SAEM has a median
position between EM and SEM. A detailed description of SAEM will be found in Section 4.

In this paper, we focus on the mixture case. The main result of this paper is Theorem 1,
which asserts that in the particular case of mixtures of densities from exponential families and
under technical assumptions, the sequence generated by SAEM converges almost surely (a.s.)
to a local maximizer of the 1.f. This theorem will be stated and proved in Section 5. Finally, in
Section 6, we will report numerical simulations where we compare the behaviour of EM, SEM
and SAEM in the case of univariate Gaussian mixtures for small sample sizes.

The results of our Theorem 1 and of the above-mentioned simulations suggest that
SAEM is likely to generally converge to the global maximizer of the 1.f., whatever its initial
position. This leads us to the conclusion that SAEM is a fruitful line of approach.

Since we will only consider the behaviour of SAEM in the mixture context, we give a
short account of the mixture problem. The observed R4-valued sample x = (x],...,XN) i$
assumed to be drawn from the mixture density

K
h(x) = kZI px h(x, ax), (1.1)



where the mixing weights pk satisfy 0 < px < 1 and sum to one and the densities h(x, ak) are
distinct members from the same exponential family. Note that the component densities of most
of the mixtures of interest are members of exponential families. The number of components K
is assumed known. Note that the functions h(x, ak) are densities with respect to a measure
which is either Lebesgue measure or counting measure on some finite or countably infinite

subset of R4, This allows us to treat mixtures of discrete or continuous distributions in one
exercise. The generic density h(x,a) has the form

h(x, a) = D(a)! n(x) exp{aT b(x)}, (1.2)

where a is a vector of dimension s, aT denotes the transpose of a,n : R4 5> Rand b : R4 - Rs
and D(a) = [ n(x) exp{aT b(x)} dy is a normalizing factor, for an appropriate underlying
measure | on R4, Within this framework, the parameter ¢ = (p1 ,..., PK-1, 41,..., aK) liesin a

subset of the (K-1 + sK)-dimensional Euclidian space E. The true parameter ¢ of the mixture is
to be estimated.

2. The EM algorithm

The EM algorithm is designed to find iteratively m.l. estimates in the context of
parametric models when the observed data can be viewed as incomplete. More precisely, the
observed sample x is assumed to be drawn from a parametrized family of probability density

functions f(x;$) defined on the sample space X equipped with some reference o-finite
measure. This observed sample x is assumed to be the image through a many-to-one mapping

n: Y — X of a complete sample y drawn from a density g(y;¢) defined on the sample space
Y. In all relevant situations, the space Y can be split into the product X x Z, where Z denotes

the space of the unobserved samples z, the mapping = is the projection on the first factor and
f(x;¢) and g(y;¢) are related by

foco) = [ gl(x20:0) dz. 2.1)

The EM algorithm is directed at finding the global maximizer, or at least a local

maximizer, of the likelihood function (1.f.) f(x;¢) by taking advantage of the fact that the m.l.
estimate of the complete data y = (x,z) can usually be expressed in closed form. The EM

method replaces the maximization of the unknown Lf. g(y;¢) of the complete data by
successive maximizations of the conditional expectation of log g(y;¢) given x for the current fit
¢" of the parameter. Let k(zlx;$) = g{(x,z);$}/f(x;$) denote the conditional density of z given

x and Q(¢';4) denote the conditional expectation of log g(y;¢') given x for the value ¢ of the
parameter:

Q(¢9) =E {log g(y;cp')lx;q)} = IZ k(zlx;9) log g{(x,z);¢'} dz. (2.2)

The expectation Q(¢';¢) is assumed to be well defined for every ¢ and ¢' in the parameter
space.

Starting from an initial position ¢9, the standard iteration ¢" — ¢"+! of the EM algorithm
consists in the steps E and M.

E step : Compute Q(d;0M).
M step : Choose ¢"*! to maximize Q(¢;¢") in ¢.



The basic property of EM is that, if we define L(¢) = log f (x;0), then L{T(¢)} = L($)

for each ¢.

We now turn to a detailed description of EM for mixtures of densities all belonging to
some exponential family. First, we describe the incomplete data structure of the problem.
The complete sample y = (x,2) = {(x, zi), i = 1, , N}, where the vector of indicator
variables zj = (zjj, j=1,...,K) is defined by zj; = 1 or 0 accordmg as xj has been drawn from
the density h(x,a; j) or not. The random variables zy, ..., zN are i.i.d. following a multinomial
distribution cons1snng of one draw of K categories with probabilities pj,...,pK, respectively.

Owing to independence, the conditional density k(zlx;$) of z given x can be split into the
product [T k(zjlx;¢) where
1

k(zixizg) =B ROXiAE)) 2.3)
2 pj h(xj,aj)
Fl

with p(zj) = pj and a(z;) = aj if zjj = 1. We define the probability a posteriori that x; has been
drawn from the jth mixture component by

4 (xj) = k(zj 1 xj; ¢) if zjj = 1. 2.4)

Since the mixture component densities are from some exponential family, it follows from

(2.3) and (2.4) that the tj(xi) 's are C*= functions of ¢. In this particular context, (2.1) takes the
form

f(x;¢) = H 2 pj h(xi,a;j) (2.5)
i=l 1

Hence, the log-likelihood function L() = log f(x ; ¢) is a C* function of ¢. Similary, (2.2)
takes the form

N K
Q(¢'5¢) = zl zl tj(xj) {log p'j + log h(x;,a’j)}. (2.6)
1=l )=

The nth iteration ¢n+! = TN (¢") of EM can be summarized as follows (see (5.3) p. 222 of
Redner and Walker [10] or Titterington, Smith and Makov [11]).

E step : Compute the probabilities a posteriori t}'(xi), i=1, .., Nandj =1, .., K, using (2.3)
and (2.4), as

p; h(xi.a})
6 (i) =% Q2.7)
): P, h(X.,a)

M step: Compute



N
p;Hl =306 MN =LK, (2.8)
i=1 ’

and

N n

2 6§ (xi) bx)

1=
a™! = . j=1,.,K 2.9)
th (xi)

TMZ

—

Clearly, Tn is C. In view of (2.9), the estimates a;‘ , n 2 1, remain in the convex hull B of

b(x1), -.., b(xN). Thus, the estimates ¢, n = 1, remain in the bounded convex subset
C=(0, DK-1 x BKof E. (2.10)

The EM sequence {¢"} can be viewed as generated by a discrete-time dynamical system

¢o"+1 = Ty (¢7), where Ty denotes the nonlinear operator of the EM algorithm. Here and in the
sequel, the subscript N indicates dependence on the sample x = (xj, ..., xN). Furthermore,

L(¢) can be thought of as a Lyapunov function of this dynamical system. In all pertinent
applications, no working analytic expression of Ty is available. Hence, any study of the

convergence properties of {¢"} involves assuming hypotheses on TN and Q(¢'; ¢).

Wu's [12] very careful theoretical study reveals that no general convergence result for the
EM sequence can be derived, except under strict assumptions. In the case of mixtures of
densities all belonging to some exponential family, Redner and Walker [10}, Theorem 5.2 (p.

223), have proved the following local result: the sequence {¢"} is ensured to converge to the

consistent m.1. estimator ¢n of ¢, provided that the initial position ¢0 is close enough to ¢n.

This result is of theoretical primary importance. Its local nature highlights the main
limitations of EM, since it does not guarantee that the sequence {¢"} converges to QN as n—eo,
whatever its starting point. Numerous numerical experiments report that the limiting position of
EM can actually depend greatly on its initial position (see, e.g., [2], [8] and [11]) and happens
to be a saddle-point of the likelihood function.

Two additional mathematical results of Redner and Walker [10] will be used in the proof
of our Theorem 1. Their Theorem 4.1 (p. 218) and Theorem 5.1 (p. 223) state that, in this
particular mixture case with all densities belonging to the same exponential family, all the fixed

points of TN are stationary points of L and L{Tn(¢)} > L(¢) whenever TN(0) # 6.
3. The SEM algorithm

The SEM algorithm has been designed to give an answer to the fundamental limitations
of EM mentioned in Section 2. It incorporates a stochastic step (S step) between the E and the
M steps. This S step is directed by the following Random Imputation Principle (RIP):

generate a completed sample y? = (x, z") by drawing it at random from the conditionnal

density k(z | x ; $") given the observed sample x and for a current fit ¢" of the parameter.
Once the S step has been performed, the new estimate ¢™+! of the parameter is the m.1.

estimate computed on the basis of the completed sample y" = (x, z") and, in all relevant

situations, an analytic expression of ¢"*1 as a function of y™ can easily be derived in closed
form. In this section, we outline the main properties of SEM in the mixture context. First, we



describe the three steps of the standard SEM iteration ¢" — ¢™*1, starting from the initial value

¢0.

E step : Compute the conditional density k(zlx;¢") ;

S step:  According to the above mentioned RIP, draw at random a complete sample y" =
(x,zM) from k(zix;9") ;

M step :  Define ¢! to be the solution of the m. 1. equations based on the completed sample
yr = (x, z"), i. e. solve 0 g (y"; ¢) / 3 ¢ = 0. In all relevant situations, the M step
can be expressed in closed form.

In the context of mixtures of densities from the exponential family (1.2), the nth iteration
¢" — ¢! of SEM can be summarized as follows.
E step: Compute t;'(xi), i=1,.,Nandj=1,.., K, using (2.7).
S step: Fori =1, .., N, draw independently the random indicator variable z'i‘ from a

multinomial distribution consisting of one draw of K categories with probabilities t?(xi),

te(xi). If

N
N1F zi2c(N)forallj=1,.., K, (3.1)

=1

then the M step described below can be accomplished. Here, c(N) is a threshold satisfying

0 <c(N) < 1 and c(N) — 0 as N — oo. The role of the condition (3.1) is to avoid the occurence
of numerical singularities. For instance, for the normal mixture problem, ¢(N) must be chosen
2 (d + 1) / N so that, with probability 1, the covariance matrices derived from (3.3) are
nondegenerate. On the other hand, for a mixture of exponential distributions, c(N) 2 1/ N.

Now, if N1 3; z;} < ¢(N) for some j, 1 <j <K, then we perform the S-step again as follows.

We draw the new z: s from some ad hoc preassigned distribution on Z designed to ensure that
condition (3.1) holds.

M step : Compute ¢"+1 as follows:

N
p}‘+l=Zz?j/N forj=1, .., K (3.2)
i=1
and
N n
'Elzij b(x;)
1=
a™!'=——— forj=1,..,K (3.3)
i N
2"



The formulas (3.2) and (3.3) have been derived from (2.8) and (2.9) by substituting z?j

for t}'(xi) according to the RIP. It results from (3.1) that the SEM estimates ¢™ remain in the
compact convex subset

HN = [c(N), 1 - c(N)]K-1 x BK (3.4)

of E. Recall that E denotes the Euclidian space where the parameters ¢ = (py, ..., PK-1, a1, ...,
ag) take their value, B denotes the convex hull of b(xy), ..., b(xN) and b(x) is defined in (1.2).

The process {¢"} generated by the SEM iterations n = 1, 2, ... on the basis of a given sample
X1,..., XN Of size N is an homogeneous Markov chain for which ergodicity usually holds. In

the mixture case, the ergodicity of {¢"} has been established in Celeux and Diebolt [3]. When
ergodicity holds, ¢™ converges in distribution, as the iteration index n — oo, to the unique
stationary distribution AN, which is supported by a subset of Hy (see (3.4)). Since the sample

X1, ..., XN is fixed, ¢" cannot be expected to converge in a stronger way (e.g., in probability or

wp 1).
Thus, in the strictest sense, the estimate provided by SEM is not pointwise and is nothing

but the probability distribution AN. A natural pointwise estimator of ¢ derived from AN is the

A . A .
mean ON of AN. Note that there is no reason why ¢ N should be equal to the m.l. consistent

- estimator N of the parameter ¢ (for the existence of a m.1. consistent estimator in the mixture

case, see Redner and Walker [10)).
Under technical conditions on the EM operator Ty, the more restrictive of which is that
TN has only one stable fixed point, Celeux and Diebolt [3] have established that, if X denotes a

r.v. drawn from the stationary distribution Ay, then N/2(X - ¢N) converges in distribution, as

the sample size N — oo, to a Gaussian r.v. with mean 0 and regular variance matrice I" which
can be expressed in terms of the true mixture parameters. Moreover, Celeux and Diebolt [3]

have proved that, under the same assumptions, $N - dN = O(N-1/2) and the variance matrix of
AN takes the form I'/N + o (1/N) as N — oo, As a consequence, it results that for almost all
samples, the distribution AN = A(x], ..., XN) converges to the Dirac distribution 8¢ in the weak
topology as N — oo,

Empirical means of the ¢™'s when n is large enough provide satisfactory approximations

of $N- Numerous numerical experiments (see, €.g., [2]) show that $N is close to ¢N for
moderate or large sample size. These experiments also show that SEM overcomes most of the
limitations of EM, provided that the sample size is not too small. In contrast, when the sample
size is small, the magnitude of the random perturbations is too large. In such a situation, the

sequence {¢"} generated by SEM hits the boundary of HN very often. Each time such an event
happens, ¢ starts afresh from a preassigned distribution concentrated on H;, as explained in
the above description of the SEM algorithm in the mixture context. Thus, the stationary
distribution AN cannot take into account much information on the underlying EM operator Ty.

In such a situation, the mean $N of AN is no more a reliable approximation of ¢n and the whole
SEM methodology fails. This is the main reason why another version of the SEM algorithm
has to be defined and studied. This new version is the SAEM algorithm.

In order to prepare Section 4, we close this section with an identity which expresses the
SEM sequence as a randomly perturbated dynamical system. We have



o™+ 1 = TN(9M) + UN(9T, zM), (3.5)

where UN(O, zM) = MN(z) - TN(9™M), with M denoting the operator which conducts to ¢n+1
from z" via the M step of SEM. The r. v. Un (¢", z") is conditionally independent of (¢9, ¢!,
..., 01-1) given o0, its conditional expectation is small but not necessarily zero and its
conditional variance matrix has order N-! as N increases to oo,

4. The SAEM algorithm
In this section, we describe the SAEM algorithm for the mixture problem. Our approach
is to modify the SEM algorithm in order to replace convergence in distribution by almost sure

convergence (which is much easier to handle) and to attenuate the erratic behaviour of SEM in
case of small samples without sacrificing the stochastic nature of the algorithm.

This is accomplished by replacing UN($", z™) by Y,UN(9™, zM), where Yo = 1 and {7y} is

a sequence of positive real numbers decreasing to zero at a sufficiently slow rate as n — oo,
Thus, any SAEM sequence has the form

¢n+1 = TN(O™) + YaUN (0",2"). 4.1)
The standard SAEM iteration ¢® — ¢"*! proceeds as follows.

E step : Compute t;'(xi), i=1,...,Nandj=1, ..., K, using (2.7).

S step :Fori =1, ..., N, draw independently the random indicator variables z? from a
multinomial distribution consisting of one draw of K categories with probabilities t'll(xi),

tg(xi). If (3.1) holds, then the M step described below is accomplished. If (3.1) does not hold,

then we draw new zjj's from some preassigned distribution on Z designed to ensure that
condition (3.1) holds.

M step : Compute ¢p"+! as follows:

N
pjf‘” =NTY (- o) +mzf] forj=1,..K, (4.2)
i=
and
N n N n
3. € xi) b 3. 25 blx)
1= 1=
a}'+1=(l-yn) S + Yo —— forj=1,...K.  (4.3)
3t (x)) s 2"
i1 J i=1 Y

Some comments are in order. Informally, the SAEM algorithm can be schematized by the

equation SAEM = (1 - y)EM + ySEM, i.e. we go from pure SEM at the beginning towards
pure EM at the end.



1

Since a}” is a convex combination of two elements of B, it is still in B. As a

consequence, we have from (2.7) and (3.1) that, foralli=1,...,Nand j=1, ..., K,

c(N) mg
t;‘(xi) >+ . (4.4)

glp'; h(xi, a;)

where mg = inf {h(x, a) : x =x1, ..., XNy and a € B}. Now, since the p?’s are £ 1, we have

t}‘ (xi) 2 c(N), (4.5)

my
KMp
where Mg = sup{h(x, a) : x =x1, ..., XN and a € B}. To guarantee that mg > 0 and Mg < oo, it

is sufficient to assume that h(x, a) is positive and continuous, since {xi, ..., XN.} and B are
compact. We assume that these conditions will be in force throughout the remainder of this

paper. Now, from (4.5) and since Ej p}' =1, it results that, foreachj =1, ..., K,

py =1 -i:jp?
<1- iKK%(;“" c(N)
<1- %c(N). (4.6)

Hence, each SAEM estimate ¢ remains in the compact convex subset

GN = [c(N), 1 - ¢(N)]K-1 x BK 4.7)

of E, where ¢'(N) = &00 c(N). Moreover, from (4.2) and (4.3) it follows directly that

I UN (9, z) | is uniformly bounded when ¢ € GN and z satisfies (3.1).

SAEM exhibits some striking similarities with simulated annealing. Simulated annealing
is a general approach for solving approximately large combinatorial optimization problems
when no additional information about the structure of the function to be optimized is used. The
simulated annealing method shares with SAEM the basic property of not terminating when
reaching the first local optimum they encounter. In both cases, this is possible since the

transitions " — ¢"+1 corresponding to a decrease (resp. increase) of the function to be
maximized (resp. minimized) can be accepted, in some limited fashion, with non-zero
probability. Moreover, in both cases the probability of accepting such transitions decreases to
zero as the algorithm proceeds. By contrast, it must be stressed that SAEM primarily takes care

of searching a significant local maximum of the log-1.f. L(¢) defined on some continuous
parameter space (see, €.g., Section 6, where we deal with Gaussian mixtures), whereas

simulated annealing is concerned with the search for the optimum of functions defined on
discrete spaces. Moreover, SAEM is a tailored algorithm designed to find a stable fixed point

of the log-1.f. L(¢), by taking advantage of the basic properties of the EM algorithm

(especially, that each EM iteration increases the L.f.). Finally, even if SAEM were used to deal
with a discrete parameter space, it could be expected to be more efficient than simulated



annealing since it is based on the discrete-time dynamical system EM which increases L(¢) at
each iteration.

S. The a.s. convergence of SAEM in the mixture case

The algorithm SAEM has been described in detail in Section 4, see (4.2)-(4.3). In this section,
we will establish Theorem 1 which asserts the a.s. convergence of SAEM. Throughout this
section and the Appendix, we will denote TN, GN and UN by T, G and U, respectively, for the
sake of brevity. Before proceeding to state and prove Theorem 1, we give a result which

precises some important properties of T(¢) and L(¢) in the mixture context. This is the object of
the following proposition, where <h, h'> denotes the standard inner product of the Euclidian

space E. Recall that E is the (K - 1 + sK) - dimensional space where the parameters ¢ take
value.

PROPOSITION 1. Let ¢* be any fixed point of T. Then,
(i). There exists a symmetric definite positive matrix A = A(¢*) depending on &* such that

<ADT(¢*) h, h'> = <Ah, DT(¢*) h'> forall h and b’ in E. (5.1)

(ii). The eigenvalues of DT(¢*) are positive real numbers.

(iii). Any fixed point o*of T is stable iff it is a proper maximizer of the log-likelihood function
L. It is hyperbolic iff it is a saddle-point of L. It is unstable iff it is a proper local minimizer of
L.

Proof of Proposition 1. We first prove (i). The relation (3.19), p. 9, of Dempster, Laird
and Rubin [5] asserts that, if the matrix D20 Q(¢* ; ¢") is regular, then

DT(¢*) = D20H($" ; ¢*) (D20 Q%" ; ¢M)}-L, (5.2)

where Q(¢'; ) has been defined in (2.2) and (2.6), H(¢'; ¢) = E{log k (z1x; ¢) 1 x; 0} =
L(9) - Q(9'; ¢) (see (2.3)) and D20 denotes the operator of second derivatives with respect to the
first variable. Suppose first that we have proved that the symmetric matrices D20 H(¢" ; ¢*)
and D20 Q(¢* ; ¢*) are definite negative. Writing B = - D20 H(¢" ; ¢*) and C = - {D20 Q(¢* ;
¢")}-! and defining A = B-1, it follows from (5.2) that

<ADT(¢*)h, h'> = <Ch, h'> = <BAh, Ch'> = <Ah, DT(¢*)h'> for all h, h' in E,

which is (i). Now, (5.1) means that DT(¢*) is symmetric with respect to the inner product <h,
h'>A = <Ah, b'> of E, implying that DT(¢*) is diagonalizable with real eigenvalues.
Moreover, (5.1) implies that these eigenvalues are positive. So, it remains to check that D20
Q9" ; ¢*) and D20 H(¢" ; ") are definite negative. We begin with D20 Q(¢* ; ¢*). In view of

(2.6), the matrix D20 Q(¢* ; ¢*) has zero nondiagonal blocks, whereas its diagonal blocks are
given by

z

—

@2/ 3p?) Q(.;¢*>|p,~=p;= > {t}(xa)/p}z}, i=1,..K (5.3)

and
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N . * .
(82 /38) Q5 0" gj=a, = - 3 0 @2/9)) log h(xi, aiaj=a - J = 1, .. K (5:4)
i=

respectively, where t;(xi) is given by (2.7) with ¢ = ¢*. Since all the t;(xi) 's are positive, the

right-hand side of (5.3) is negative. In addition, since the h(x, a) 's are issued from some

exponential family, the terms (92 / aaj?) log h(xj, aj)| aj = a;‘ in the right-hand side of (5.4) are

the opposites of covariance matrices. Hence the right-hand side of (5.4) is definite negative.
We now turn to D20 H(¢* ; ¢¥). We have (see Appendix, p. 232, of Louis [7])

N - - K »* * *
D20H(¢"0") = ¥ < S(xi,0") ST(x;,6") - _Eltj(Xi) S(Xi,¢j) ST(Xi,‘DJ-) ; (5.5)
J:

i=1

where

S(xi0) = @/30) log {pj hixi, a))igj=g i =1, . Nandj=1,... K, (5.6)

and
- K * *
Sx;, 0 =3 tj(xi) S(xi,d)j), i=1,.,N (5.7)
1

K-1
with ¢ = (pj, @) forj=1, .., K- 1 and ¢g = (1 - Z Pj» aK)- Recall that ST denotes the

F
transpose of S. From Cauchy-Schwarz inequality and m view of (5.5)-(5.7), it follows that
D20H(¢* ; ¢*) is definite negative. Finally, (iii) follows from (ii), using
D2L(¢*) = {1- DT(¢*) } D0 Q©*; ¢"). (5.8)

The relation (5.8) is established in Dempster, Laird and Rubin [5] (p.10). Hence, the proof of
Proposition 1 is complete.

As there exists no tractable analytic expression for T(¢) and U(9, z), it is necessary to
provide some technical assumptions which are simple enough to allow a complete resolution of
the problem of the a.s. convergence of the algorithm SAEM. We now introduce the
assumptions that we will need.

(H1) The set F of those fixed points of T which are contained in the compact subset G of E is
finite.

(H2) For any ¢* € F, the matrix D2 L(¢*) is regular. (Recall that the fixed points of T are
stationary points of L.)

(H3) There exists at least a stable fixed point of T in G.

(H4) There exists p > 0 such that T(G)P is contained in G.

11



Here, T(G)P = {¢p€ E: d(¢,T(G)) < p}, where d(¢,T(G)) = inf llp - wyil.

YeT(G)

(HS) For any ¢ € G, any hyperplane H of E such that T(¢) € H and any half-space D of E

spanned by H, the set of those points of the form T(¢) + U(¢, z), z € Z, which are in D is
non-empty.

We are now in a position to state our Theorem 1.

THEOREM 1. Suppose that the assumptions (H1)-(HS5) hold. If {Y,)} is a sequence of
positive numbers decreasing to zero as n — oo and such that Y, ~ c n'* or Y, ~ ¢ (log n)"v as

n — oo for some positive constant ¢ and some L, 0 < U < 1, or v >0, then the sequence {$")}
generated by SAEM converges almost surely to a local maximizer of the log-likelihood

function 1.(9), whatever its starting point ¢0.

Remarks

(@)

(ii)

(iii)

Assumption (H3) is satisfied, e.g., if the consistent m.l. estimator ¢N of the true
parameter ¢ of the mixture is in G. As G is defined by the very weak constraints
¢'(N) £pj<1-c(N)forj=1,.. K (see (4.4)-(4.7) above), Assumption (H3)
appears to be a very mild condition.

Assumption (H4) seems more restrictive. Roughly speaking, we can consider that (H4)
is essentially equivalent to the following assumption (but we have no proof of this

equivalence): the vector field VL(¢) (gradient of L), ¢ € G, satisifies
< VL(¢), N(9) > < 0 for all ¢ € dG,

where dG denotes the boundary of G and N(¢) denotes the unit vector normal to dG
pointing outward G. Since the number of components K of the mixture is assumed

known, hence is correct, and if the consistent m.1. estimator ¢y is in G (see (i) above),
this assumption gives a reasonable description of the behaviour of T near 0dG.
Assumption (H4) is technically essential since it guarantees that for all n large enough,

" remains in G.

Assumption (HS) seems very technical in nature. It is closely related to Assumption (H4)
for the following reason. The set S of points of C (defined in (2.10)) of the form T(¢) +
U(9,z),z€ Z, is equal to the set of points of C accessible in one iteration of SEM,
starting from ¢. Owing to the multinomial nature of the random drawings z involved by

the RIP in the S-step (see Section 3), the number of distinct elements of S is equal to KN,
Recall that K = 2 is the number of components of the mixture and that N is the sample
size. Even for moderate sample sizes, this number is huge. For instance, if K =2 and N

= 50, KN is larger than 1015, Moreover, it appeared implicitly through simulations that
the points of S are rather homogeneously distributed in C. Now, since by (H4) we have
d(T(9), dG) 2 p > 0, points of S can be found all around T(¢). This gives a rough
justification of our assumption that (H5) holds. Assumption (HS) is technically important
in the proof of our Theorem 1 (stated above) for the following reason. The conditional
expectation EZ{U(¢, z) | ¢} is generally different from O for ¢ € G. Assumption (HS)
takes care of this drawback by proposing a reasonable and tractable condition in order to
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replace the centered nature of the perturbation term U(¢, z). Assumption (H5) will be
used in the proof of Proposition A.1 in the Appendix.

(iv) The assumptions concerning the asymptotic behaviour of the sequence {Yn} in the
statement of our Theorem 1 have been chosen in this concrete form for clarity's sake. The
result stated in this manner is less general, but has the bonus of avoiding some rather

obscure regularity conditions. The essential requirements about {Y,} that we need are that

Yn decreases to 0 as n — oo, im (Yo /Yn+1) = 1 and Ty Yn = o°.
n—oo

(v) For EM, the possibility of convergence to a saddle-type point of the Lf. is always
present. On the contrary, Theorem 1 ensures that SAEM does not converge to such a
point a.s. Moreover, inspection of the proof below shows that SAEM does not
necessarily terminate in the first local maximum encountered, as does EM.

Proof of Theorem 1. Before proceeding, we mention some notation and conventions which
will be adopted throughout this proof and in the Appendix. We will denote by F the finite set of

the fixed points ¢™ of T in G, see (H1). The notation Il h Il will indicate the usual Euclidian

norm on E, with < h, k > denoting the corresponding inner product. For each ¢* € F, we
define

A@0*)=- D20 H(o*; 9", (5.9)

a symmetric definite positive matrix, where D20 H(¢* ; ¢*) has been defined in the proof of

Proposition 1. When no risk of confusion can arise, we will denote A(¢*) more compactly by
A and we will write

<h,k>pA=<Ah,k>forallhandk inE (5.10)
and
lhlla=<h,h>4forallhinE. (5.11)
As E is finite-dimensional, there exists positive constants Ca and D4 such that
Callhll< lhlla < Dallhllforall hinE, (5.12)

and we will define

Co= min Cp, A =A@, (5.13)
¢ eF

which is positive since #F is finite. Moreover, for any C2 function f : E — R, we will denote
the value of the quadratic form D2f(¢) at h € E by D2f(¢) (h), i.e., in matrix notation,

D2f(¢) (h) = hT D2f(¢) h forall h in E, (5.14)

where h is written in vector form in the right-hand side of (5.14) and hT indicates the transpose
of h.

Furthermore, we will consider the following subsets of E. We will denote by B(¢, r) the open
ball with center ¢ and radius r, i.e.
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B@;r)={¢+h:llhll<r} (5.15)

and, similarly,

Ba (@;r)={0+h:Ilhilp<r}. (5.16)
Given ¢* € F, we will define
Vi (0") =B(0"; Cv!?) NG, (5.17)
HVn (6*) =BA (¢" ; HCv ) NG (5.18)
and
Bp(¢")=Ba (" ;Km) NG (5.19)

for all n 2 1. Here, Cy, H > 1 and K denote positive constants to be suitably chosen in the
course of the proof. When no risk of confusion can arise, the dependence of Vp, (), HVy,
(¢*) and B, (¢*) on ¢* € F will be suppressed in the notation. The subset of G defined by

Ap=G - U Vp (") (5.20)
¢ e F

is a compact subset of G. Throughout the proof, the integer n 2 1 will be assumed large
enough to ensure that By, is contained in Vy, and Vj, is contained in HVp,.

One of the key observations on which the proof relies is that there exists a constant SUP < oo
such that

t U(d, z) | < SUP for all ¢ € G and z satisfying (3.1). (5.21)

Finally, we will write

Il DL(¢) l = sup | DL(¢) (h) |, (5.22)
hil<1
D2 L(p) Il = SUp | D2L(¢) (h, k) | (5.23)
WhiLltkl<1
and
IDT(@)l= SUP I DT() (h) Il (5.24)
Hhil<1

and note that the constants

b= sup Il DL(¢)Il, (5.25)
e G

B = sup IIDZL(¢) I, (5.26)
oe G
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Cr= sup IIDT(®) Il (5.27)
¢e G

and

b= sup ID(LoT) (@) II<b Cr (5.28)
e G

are finite since the corresponding functions DL(¢), D2L(¢), DT(¢) and D(L o T) (¢) are
continuous on the compact subset G of E.

The proof is organized as follows. It is divided into 3 steps. In Step 1, we establish that after
each entrance in Ay, the sequence {¢m ) will escape from Ay, for some finite m > n. In Step 2,
we essentially prove that, if DT(¢*) has at least an eigenvalue larger than 1 (i.e., 0* is
unstable) and ¢, has entered Vp(¢*) for some n, then with probability 1 the sequence {¢m)

cannot remain in Vp, () for all m > n, provided that the constants Cy and H > 1 have been
suitably chosen. In Step 3, we conclude the proof of Theorem 1 by collecting the various
results obtained in the first two steps. Step 2 is in turn divided into three parts : Points 1, 2 and

3. In Point 1, we establish that if ¢* is unstable and n is large enough and ¢, has entered By

(¢™), then ¢ exits from By, (0*) for some finite m > n with probability 1. In proving Point 1,
we make use of a crucial but technical result that we have stated as Proposition A.1 and
postponed in the Appendix in the interests of clarity. In Point 2, we prove that, if K has been

chosen large enough, then a. s. ¢n exits from HVy, (¢*) after a finite time. In Point 3, we
prove that, given any ¢* € F (stable or unstable), if ¢, has entered Vy, (¢*) at some time n =t
and has exited from HV, (¢*) at some time n = n* > t, then

L(¢m) > sup L(¢) for all m = n*, (5.29)
e Vo u (%)

provided that H > 1 has been chosen large enough and that the entrance time t is assumed
sufficiently large. Inequality (5.29) is crucial, since it implies that ¢™ can never re-enter
Vm (¢*). The proof of Step 1 involves establishing Lemma 1, in which lower bounds for
inf¢ € An (Lo T - L) (¢) and L(¢"+1) - L(¢™) for " € A, are derived. The proof of Point 3 in
Step 2 relies on several technical inequalities stated in Lemma 2 and Lemma 3.

Step 1. We claim that Cy can be chosen so large as to ensure that, if ¢, has entered Ay for
some n, then oy, will exit from Ay, for some finite m > n, a. s.

Proof of Step 1. We preface the proof with a lemma.

Lemma 1. (i)There exists a positive constant 0. such that the inequality

cn= inf LoT-L)y@zaCly, (5.30)
¢€An
holds for all n 2 1 sufficiently large.

(i) The constant Cy in (5.17) can be chosen so large that
LO™1) - L(9") 2 (@/2) C5 Yo (5.31)

for o™ € Ay and for all n 2 1 sufficiently large.
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Proof of Lemma 1. Since L and T are C*°,sois Lo T - L : E — R. From Proposition 1, it
follows that (Lo T - L) (¢) reaches its minimum value at ¢ = ¢* € F. From Assumption (H2)

and Proposition 1 it results that the symmetric matrix D2 (Lo T - L) (¢*) is definite positive.
This implies that

D2(LoT - L) ®*) (h) = Amin @ I h 12 forallh € E, (5.32)

where the positive number Amin (0*) denotes the smallest eigenvalue of D2 (Lo T - L) (¢*).
Since #F is finite, 4 & = min yv ¢ £ Amin (¢*) > 0. Thus,

D2(LoT-L)@*)()=4allhliZforall e Fandh e E. (5.33)
Now, a quadratic Taylor expansion of Lo T - L about ¢* gives
(LoT - L)(®"+h)=(1/2)D2(LoT-L) (¢") (h) + O(i h 113). (5.34)

Substituting (5.33) into (5.34) we obtain that, if Il h Il < € for some sufficiently small € > 0,
then

LoT - L)@ +hy=alhl2. (5.35)

Inequality (5.35) implies that

inf (LoT - L) (¢* +h):¢* e F,Cy ¥ <lihli<e} 2 Cly, (5.36)

whenever n 2 1 is large enough to ensure that Cy y:‘/ 2 < . Thus it remains to examine the

infimumof (Lo T - L) (¢) whenoe Aqjandpe U B(¢* ; €). By the continuity of Lo T
€ F

- L and the compacity of Ay, we have that ¢y > 0. We will prove (5.30) by contradiction. If

(5.30) did not hold, then we would have cp < C%, Yn for some subsequence {n'} of {n}. For

simplicity, we write n' = n. From the continuity of Lo T - L and the compacity of Aj, there
would exist gn € Ap satisfying

M=@LoT - L) (gn) <& Cy Yo (5.37)

By compacity, there would exist a subsequence {gp(y)) converging to some g€ G asn — oo,
implying (Lo T - L) (g) =0, hence g € F. Put ¢* = g and suppose that n is so large that 8B(n)
has the form ¢* + h, with Il h Il < &. Then, using (5.35) and (5.37) we would have

oll 0" - ggmyI2 <L oT - L) (gam)) = Npmy< @ C} B,

implying that ggn) € V@) (¢*), thus contradicting gB(n) € Ap(n). This proves (i). We now
turn to (ii). By making use of a linear Taylor expansion we can derive that, if ¢" € Ay, then
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L(™1) - L(o") > C%, Yn - b1 SUP Tp, (5.38)

in view of (5.21), (5.25) and (5.30). Thus, if Cy is chosen so large that o c? > 2b; SUP,
then (5.31) holds. This proves (ii).

We are now in a position to complete the proof of Step 1. The proof is by contradiction. If ¢™
remained in Ap, for all m 2 n, then we could deduce from (5.31) and Y. ¥, = o= that L(¢™) —

o0 as m — oo, thus contradicting the boundedness of L on G. This completes the proof of Step
1.

Step 2. Suppose that DT(¢*) has at least an eigenvalue larger than 1. We claim that, if ¢, €
Vn(¢") for some n > 1, then with probability 1 ¢, will not remain in Vi (¢*) for allm = n.

Proof of Step 2. The proof of Step 2 will be dissected in stating and proving Points I, 2
and 3 below.

Point 1. We claim that, if ¢ € By (¢¥) for some n = 1 and provided that the constant K in

(5.19) has been chosen large enough, then with probability 1 ¢y, will not remain in By, (¢*)
forallm=n.

Proof of Point 1. Since we have assumed that DT(¢*) has an eigenvalue A > 1, it follows
that there exists v € E satisfying

DT(@*)v=Avandliviiga =1, (5.39)

where A has been defined in (5.9) and Il v I = < Av, v >1/2 has been defined in (5.10)-
(5.11). Define

Qn =<V, 0"- 0" >4 and wy, = < v, U(O", z1) >4. (5.40)

Then, from Cauchy-Schwarz inequality together with (5.39) and (5.40) and in connection with
a quadratic Taylor expansion of T about ¢*, it follows that

el =<V, M- 0" >p =< v, T(O") - T(®") + 1o U@, z") >4 (since T(¢*) = ¢%)
=<v,DT(") (0" - 0*) >a + O(qﬁ) +Yn Wn=<DT(@") v, " - " >a + O(qﬁ) +Yn Wn

=A<V, 07 0" >A +O(QD) + Yo Wn,
whence

Gn+1 = Adn + O(Q2) + ¥n Wn. (5.41)

For any integers n and j > 1 and any positive a, we introduce the event Ep j = E;j v E;]j , with
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E:‘-J = {qn 2 0, wnp > Q, .., Wn+j > a} (542)
and
E;],J = {qn < O, wp <-4, ..., Wn+j < 'a}. (543)

Proposition A.1 in the Appendix implies that the positive number a can be chosen so that,
given any j 2 1, the events Ep j, n 2 1, occur infinitely often (i.0.) almost surely. Define r 2 1

to be the first entrance-time of ¢, in By, posterior to a given t 2 1 assumed sufficiently large. Of
course, r is assumed finite.

Applying Cauchy-Scharwz inequality to gy = <v, ¢" - ¢*>, Point 1 will be proved if we can
prove that with probability 1

I qn | 2 Ky, for some finite n 2. (5.44)
We will prove (5.44) by contradiction. To this end, assume that the event

Q= (Iqn! <Ky, alln>r) (5.45)

has positive probability. Then, by using Proposition A.1 as indicated above, the event Q¢

= Qr N {Eyj occurs i.0.} has positive probability. Now, assume that 0 € ; and let n be any
integer 2 r such that Ep, j occurs. If qp 2 0, then using (5.41) and (5.42) we obtain that

Qn+1 2 a¥n - Co Y,z, (5.46)

for some positive constant cg (independent of w). Similarly, if qn <0 then we have

Qn+1 £-(a¥n -Co Yﬁ). Moreover, we may and will select n so large that

1 - (coYn/a)21/2. (5.47)

Observe that we can suppose without loss of generality that q 2 0, since (5.39)-(5.45) are

invariant under the transformation gy — - qp. Comparing (5.46) and (5.47) and using (5.41),
it follows that

i1y
g2 @) 2 My, (5.48)

so that qn+j 2 Kvn+j provided that j has been chosen so large as to guarantee that (/)N >

2K (recall that A > 1) and n is assumed so large that Yn+j > ¥n / 2. (Recall that in Proposition
A.1 mentioned above, the choice of a and the choice of j are independent.) This completes the
proof of Point 1.

Point 2. We claim that, if K is large enough, then, if 9" € V, but ¢" ¢ By, then ¢™ will exit
from HV, in a finite time, whatever H > 1.

Proof of Point 2. Let b > 0 be such that A > 1 + b and K so large that
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AK - H2CZ - SUP > (1 + b) K. (5.49)

Then, in view of (5.21) and (5.39)-(5.41) it can be deduced that

| Qnak | 2 (1 + b)K Kynax (5.50)

1/2

- Since, givenn 2 1, (1 + b)K Ynsk — o as

forallk > 1 such that!| qp4k-1 | < HCy ¥

k — oo, the proof of Point 2 is complete.

Point 3. Let ¢* be any fixed point of T in G. Assume that at some time t, {¢"} has entered V;

(¢*). Denote by n* the first exit-time of {¢? ; n >t} from HV* (¢*). Assume that n* is finite.
We claim that the constant H > 1 above can be chosen so large as to ensure that

L(¢m) > su\? L(¢) for all m 2 n*. (5.51)
€ Vp*

Remark that this statement is true for all the fixed points. Point 3 will also appear to be crucial
in Step 3.

Recall that t is an entrance-time of ¢" in Vy. Of course, t is assumed finite and sufficiently
large.

Proof of Point 3. We let k 2 t denote the last exit-time from Vp before n*, 1.e. ¢" is in HV,
but ¢™ is not in V, for all n, k < n < n* - 1, and ¢"* is not in HV+. We first need to prove

preliminary technical inequalities involving both T(¢) and L(¢) for ¢ in Vy or in HVy,. These
preliminary results are established in Lemmas 2 and 3 below.

Lemma 2. For any fixed point ¢* € F and any positive constant D, there exists ng such
that

(LoT - L) (@* +h)2(a/2) Co D2 for all hsuch that

Ihli<eandhlla>Dy" and alln>ng, (5.52)

where € > 0 has been defined in the proof of Lemma 1 and C has been defined in (5.13).

Proof of Lemma 2. The proof of Lemma 2 closely parallels the proof of (5.36) in the proof
of Lemma 1 and will not be detailed here. Next, we establish the following inequalities.

Lemma 3. Let ¢* be any fixed point of T in G. Assume that at some time t {¢"} has entered
Vi (0*). Denote by n* the first exit-time of {¢™; n > t} from HVp* (0*). Assume that n* is
finite. Denote by k, t < k < n*, the last exit-time of {$™; n > t} from Vi (0*) before n*.

(1) If nis large enough, then

Sug | L(¢) - L(6*) 1 < by c2 Yno (5.53)
be Vp v
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sup | (L oT)9)-(LoT)P")I<by C%, Yn (5.54)

¢e Vp
sup I (LoT)(¢)-L(9)I<(by +b2) C% Yo, (5.55)
d€e Vp
where by and by have been defined in (5.25) and (5.28), respectively.
(1) If k is large enough, then
IL(9K) - L(¢*) | < (4by + 2bp) CZ . (5.56)
(iii) If k is large enough and if we let n* =k + p, then

p21, (5.57)

provided H > 1 has been chosen large enough,

I T@k+P-1) - ¢ la 2 HCy /2) 12, (5.58)
and
I1gk+>-L - 9" Il 2 (HCy/ 2C1 DA) % s (5.59)

where Ct and Dp have been defined in (5.27) and (5.12), respectively.

Remark. If ¢* is an unstable fixed point, it has been proved in Point 2 that n* was finite a.s.

Proof of Lemma 3. Inequality (5.53) (resp. (5.54)) follows from a linear Taylor expansion
of L(¢) (resp. (L o T) (¢)) about ¢*, and Inequality (5.55) follows by adding (5.53) and (5.54).
Next, we turn to (5.56). Splitting L(¢¥) - L(¢*) into a sum of two terms and using (5.53) in
connection with the fact that ¢k-1 € Vi as well as a quadratic expansion of L($) about T(¢k-1)
yields, in view of (5.55)
I L(9K) - L(0*) I < I L(¢K) - L(@k-1) | + 1 L(¢k-1) - L(6™) !

< (2by +by) C‘zl Yk-1 + SUP A ESL\I/[;( 1 I DL{T(®)} | k.1 + O(le(_l). (5.60)

By a linear Taylor expansion of DL{T(¢)} about ¢* and DL{T(¢*)} = 0, we have

sup I DL{T($)} | <P CrCy -1 (5.61)
¢ € Vi1

where B has been defined in (5.26). Substituting (5.61) into (5.60) gives, in view of lim k_yeo
/%1 =1,

I LK) - L(9*) 1 < (2by + b2) C2 vk + oY),

which implies (5.56) whenever Y is small enough. This proves (ii).
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We now turn to (iii). We first prove that p > 1, i.e. that 0Kk € HVi. As ¢kl e Vi,

Il ok - ok-1 11 < (Cr Cy + Cy) 'Yli/% + SUP %k

from which it follows that, in view of (5.12),

Il ¢k - ¢k-11lp <D {(Cr Cy + 2C\) 1> + SUP ). (5.62)

Thus, the right-hand side of (5.62) is smaller than HCy y}(’z , provided that H > 1 has been

chosen large enough and k is assumed large enough. Hence (5.57). In order to prove (5.58)
we first observe that, as ¢x+p € HVi4p, p2 1 and limy_se, (Yn / Yn-1) = 1, we have

Il T(Pk+P-1) - ¢ 1l 2 1l §K+P - ¢ llA - Ykap-1 SUP

2 HCy ¥ + OCkep)

> HC, )W,

for all k sufficiently large, which is (5.58). Finally, a linear Taylor expansion of T(¢) about 0"
gives in view of (5.12),

Il T(Ok+P-1) - ¢* llg < C Dp Il Ok+P-1 - ¢* II. (5.63)
Substituting (5.63) into (5.58) yields (5.59). This completes the proof of Lemma 3.

We now return to the proof of Point 3. We first split

L(¢k+P) - L(¢*) = I + II + III, (5.64)
with
I = L(¢k+P) - L(¢k+P-1), (5.65)
I = L(¢k+P-1) - L(¢K) (5.66)
and
111 = L(¢X) - L(¢"), (5.67)

and we seek suitable lower bounds for I, II and III. First, from (5.56) it results that
| T | < (4b) + 2bp) C2 1 (5.68)
for all k sufficiently large. Thus, in order to prove (5.51), in view of (5.53), it suffices to

prove that,

I+112(4by +2b)) C2y+2  sup  IL(9) - L"),
¢ € Vksp
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where  sup  1L(0) - L") | € by CZ yxsp by (5.53).
€ Vkep

Since Yk+p < Yk it suffices to prove that
I+112 (4by + 2bp) C2 oy + 26y C- 1,

1.e.

1+112 (6b) +2b2) C2 Yk (5.69)

The idea of the proof of (5.69) is as follows. Since ¢k+9 € Agsp forall0< 2 <p-1,it
follows from (5.31) that I > 0 and II > O when k is large enough. If p is large, then II becomes
large. In this case, we will prove that

112 (6by + 2b2) C2 . (5.70)
If p 21 is small, then we will prove that, if H > 1 has been chosen large enough, then
12 (6b +2bp) C2 Y. (5.71)

More precisely, let pg 2 1 be a fixed integer to be chosen in the course of the proof. We first
derive a suitable lower bound for I. Since ¢k*P-1 € HVi,p-1, Il 9k*+P-1 Il < £ for k large enough,
where € > 0 has been defined in (5.35). Using (5.52) in Lemma 2 with D = HC,/(2Ct Da)

given by (5.59) in connection with an upper bound for IDL{T(¢k+P-1)}I similar to the right-
hand side of (5.61) with k + p - 1 replacing k - 1, we obtain

12 H2 M(Yk+pg / Y)Yk + o(¥), 1<p <po,

for some positive constant M. As limg_;e0 (Yx+pg / Yx) = 1, k may be chosen large enough to
ensure Yk+pg / Yk 2 1/2.

Hence, for k sufficiently large,
> (H2M/4) y for all p, 1 < p < po. (5.72)

Consequently, substituting (5.72) into (5.71) we see that (5.71) holds if H is chosen large
enough. We will now prove (5.70) and determine pg in the same exercise. The key observation

is that, since ¢™ € Ap, k <m < k+p-1,

2 k+p-1
II2(0/2) C, Ym- (5.73)
m=k
On the other hand, since p 2 1,
k+p-1 k+p
>omt 2 [ TPrrdee (1-py KR+ )R- 1. (5.74)
k=1

Since 1 < p < po, the right-hand side of (5.74) is equivalent to pk " as k — eo. Hence, for k
sufficiently large and 1 < p < pg, we have
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112 (a/4) C2 p. (5.75)

from which it results that

I 2 (/4) C pox (5.76)

for all p 2 pp. This implies that (5.70) holds if pg is chosen so large that (at/4)pg > 6b; + 2b).

The proof is similar if y, ~ c(logn)- v, where ¢ and v are positive constants. This completes the
proof of Point 3. Hence, the proof of Step 2 is completed.

Step 3. We will now collect the facts obtained above in order to complete the proof of
Theorem 1. First, observe that since # F is finite, we can choose ng so large as to ensure that

a HVy (0%) =2 (5.77)
¢*eF

for all n = ng.
* *
Let¢Me Vi ((1)0) for a (1)0 € F and some finite m 2 ng : from Step 1, such an m exists a.s.
* %
Either ¢" € HV, (¢0) for all n 2 m, or ¢, exits from HVp, ((1)0) at a finite time n = njy. In the

% %* * *
latter case, in view of (5.51), either ¢"! is in Vn; ((1)1 ) fora ¢1 in F such that L(¢1) > L((DO) or

0" € Ap;. In the latter case, it results from Step 1 that L(¢"!) < L@O"*1) < ... < L(¢") until
*
eventually 9" € Vp (6,) for a 0, in F such that L(@,) > L(9,). From (5.51) and (5.77), it

follows that L(¢") > L(¢"!) for all n > n;. We now prove by contradiction that there exists ¢*
€ F and n3 > ng such that ¢, is in HVy, (¢*) for all n > nj. This will imply the convergence of

sk % %k %
o" to ¢*. Otherwise, there would exist a sequence Vi Voo oo in F such that L(\yl) < L(\yz) <

..., implying the existence of an infinite sequence of distinct points in F. But this is a
contradiction since F is finite. It remains to prove that ¢* is a stable point. But, from Steps |

and 2, ¢* cannot be unstable, since ¢p, is necessarily in all the HVy, (¢*)’s for n large enough.
This completes the proof of Theorem 1. Incidentally, we have proved that

o™ - ¢*lla < HCy v/ (5.78)

for n large enough. This provides an asymptotic upper bound for the rate of convergence.
6. Numerical comparaisons of EM, SEM and SAEM
In this section, we compare the practical behaviour of the algorithms EM, SEM and

SAEM for estimating the parameters of a four-component univariate Gaussian mixture for
small samples, on a basis of a Monte-Carlo experiment. We chose the following values of the
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parameters. The proportions of the mixture were p; = p2 = p3 = p4 = 0.25 ; the means m; =
2,my=5,m3 =9 and my = 15 and the variances o- = 0.0625, o3 = 0.25, 63 = 1 and 7, = 4.

We generated 100 samples from this mixture: The first fifty ones with a size N = 100 and the
other ones with a size N = 60. Using these S0 samples for each sample size, the numerical
experiments were performed as follows. For each generated sample, we performed 200
iterations of EM, SEM and SAEM starting first with KINIT = 5 components, then with 4
components. The initial positions of the parameters was drawn at random in the following
way: The initial centers of the mixture components were drawn as follows. We first draw
uniformly KINIT points in {xi, ..., Xp}, then we aggregated the xi's around the nearest of
these points, thus obtaining a partition of the sample into KINIT clusters. Finally, the initial
parameters were computed on the basis of this generated partition using each cluster as if it
were a sample drawn from one of the components of the mixture. Note that new initial
positions were drawn before running EM, SEM and SAEM for each simulated sample; thus,
50 initial positions were drawn for experimenting the three algorithms over the 50 generated
samples of size 100 with the initial value KINIT = 5 ; 50 more initial positions were drawn for
KINIT = 4; then, 100 more initial positions were drawn in the same fashion for the 50
generated samples of size 60. Note also that we chose a comparatively large number of
iterations for EM instead of a stopping rule because the EM iteration number at which a given
degree of accuracy is first obtained can be very large (see Table 6.1, p.233, of Redner and
Walker [10])).

Our procedure to obtain a reasonable value of the number K of components of the
mixture was the following. Each time one of the mixing weights p}' became smaller than 2/N,

we cancelled the corresponding j th component and started afresh, using the same initialization
scheme on the basis of the remaining components for 200 new iterations. Observe that this
procedure is just taking ¢(N) = 2/N in (3.1). The resulting K, that we denote KFINAL in Table
1 below, was the largest integer for which no cancellation occured during 200 consecutive
iterations.

In order to derive in a simple way, from the SEM scheme, a reliable pointwise estimate
of the mixture parameters, we used an hybrid algorithm. We ran 200 SEM iterations. Then we
ran 10 EM iterations starting from the position which achieved the largest value of the
likelihood function among these 200 SEM iterations.

The choice of the rate of convergence to 0 of the sequence {Y,} for SAEM is very
important and delicate, as for simulated annealing. From our experience, it seems that the

following cooling schedule turns out to give good results : Y, = cos na, for 0 <n <20, and ¥y
=c/n, for 21 < n <200, where cos (20 o) = ¢ / V20 = 0.3. The cooling schedule for n <20
made it possible to obtain a comparatively small number of overestimations of K, whereas the
schedule for n 2 21 fitted the assumptions on 7y, in Theorem 1. Note that the alternative rate ¥y

= ¢ (log n)"Y revealed to be much too slow. For conciseness we only report the SAEM results
using this particular cooling schedule.

EM SEM SAEM
Size 100 60 100 60 100 60
KINIT 15 | 4 5 4 |5 14 S5 4 15 4 S 4
S5 50 f - }50 ] - 1 - 0 - 7 - 5 -
KFINAL 4 0 |50 10 |50 |32 ]24])]7 7 142 |34 |43 | 27
3 0 0 10 JO J17 26 143 |43 |1 116 | 2 |23

Table 1 Estimation of the number K of components for
two sample sizes and two initial values of K.
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We summarize these numerical experiments in three tables. Table 1 displays the
frequency of KFINAL for the three algorithms from two positions of KINIT (5 or 4
components). From this table, it appears that EM needs to know the exact number K of
components for good performance, and that, when it is initiated with the good K, it does not
provide degenerate solutions, even for small samples. Concerning SEM, it turns out that its
ability to find out the right K as reported in [2] does not hold for small sample sizes: If the
results can be regarded as correct for the sample size 100 (56 good values out of 100 trials),
the performances are poor for the sample size 60 (14 good values out of 100 trials). From our
numerical simulations, it is clear that the estimation of K works better for SAEM, especially for
the small sample size N = 60.

EM SEM SAEM
Mean S.D. Mean S.D. Mean S.D.
P1 0.280 0.143 0.243 0.047 0.254 0.077
P2 0.262 0.101 0.238 0.039 0.242 0.070
P3 0.205 0.090 0.265 0.058 0.251 0.075
p4 0.253 0.097 0.255 0.044 0.253 0.064
mj 2.344 0.701 2.004 0.052 2.094 0.390
m2 5.958 2.096 4.980 0.127 5.194 1.038
m3 9.791 2.306 9.067 0.260 9.293 1.302
my 15.000 1.288 14.969 0.645 15.026 0.803
2
S| 0.714 1.073 0.061 0.018 0.194 0.583
2
Gy 0.770 1.550 0.220 0.078 0.415 0918
2
03 1.095 1.480 1.084 0.668 1.162 1.356
2
O4 3.910 3.250 3.642 1.997 3.613 2.463

Table 2 Means and Standard Deviation of the estimates of the mixture parameters for
sample size 100 using EM, SEM and SAEM when they provide the right value of K.
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SEM SAEM
Mean S.D. Mean S.D. Mean S.D.

P 0316 | 0.138 0.246 0.055 0.253 0.567
P2 0.257 0.115 0.259 0.060 0.257 0.060
p3 0.205 0.103 0.253 0.067 0.249 0.069
P4 0222 | 0.107 0.242 0.063 0.241 0.578
m; 2.454 | 0.757 2.037 0.219 2.042 0.237
) 6.222 | 19525 | 5.102 0.616 5.134 0.672
m3 10.129 | 2.534 9.139 0.787 9.162 0.890
my 15280 | 1.444 | 15070 | 0.638 | 15.013 | 0.734
G% 0.797 1.225 0.102 0.326 0.124 0.375
"% 0.962 1.882 0.254 0.136 0.304 0.540
°§ 0.893 0.963 0.877 0.597 0.909 0.662
03 3.252 2.997 3.343 2.476 3.493 2.236

Table 3 Means and Standard Deviation of the estimates of the mixture parameters for
sample size 60 using EM, SEM and SAEM when they provide the right value of K.

Tables 2 and 3 display the mean and the standard deviation of the estimates of the
mixture parameters using EM, SEM and SAEM when they provide the right value of K for

both sample sizes. Some comments are in order.

Since the samples were small, the likelihood functions were littered with many local
maxima, and thus the EM algorithm provided solutions which greatly depend on its initial
position. This is apparent from the mean values of the first two component parameters, which
are far from the true values, and from the large standard deviation of these estimates.

The behaviour of SEM is completely different from EM's one: either SEM stabilizes on the
right number of components, in which case it converges to the right solution, or it fails to find
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the true number of components, in which case we did not record its results. This is the reason
why the values of the means of the estimates of the parameters and the standard deviations are
small in Table 2 and 3.

As for SAEM, it provides the right value of K in much more cases than SEM. But, the
values of the means of the estimates of the parameters using SAEM are not as close to the true
values of the parameters as for SEM, although they are good, and the standard deviations are
sensibly larger than for SEM. This is a consequence of the fact that in some cases, the SAEM
sequence was captured by a wrong local maximum of the likelihood function, far from the
correct one.

Nevertheless, a detailed investigation of the results showed that EM provided good values of
K and of the estimates of the parameters 66 times out of 200 trials (N =100 and 60, KINIT =5
and 4), SEM provide good values 70 times out of 200 and SAEM provided good values 137
times out of 200. Finally, it can be seen that SAEM performs better for small sample sizes.

7. Conclusion

In this paper, we have introduced a new stochastic version of the EM algorithm for the
statistical analysis of finite mixtures that we called the SAEM (Stochastic Approximation EM)
algorithm. SAEM has a median position between EM and the SEM algorithm, an other
stochastic version of EM that we have previously studied.

Like SEM, SAEM makes use of a probabilistic teacher scheme, but in contrast with SEM the
random perturbations decrease to 0 as the iteration index grows to infinity.

From an heuristic perspective, we have compared SAEM with Simulated Annealing since
both make use of a sequence of positive numbers decreasing to 0 to attenuate the intensity of
the Monte-Carlo drawings.

We have studied in detail the behaviour of SAEM for mixtures of densities from some
exponential familly. We have established a theorem which asserts that, under mild
assumptions, the sequence generated by SAEM converges almost surely to a local maximizer.
of the likelihood function.

We have reported Monte-Carlo simulations which show that SAEM, like SEM,
overcomes the limitations of EM (dependence on initial position, possible convergence to a
saddle point of the likelihood function, the number of the mixture components has to be
known, ...) and that SAEM performs better than SEM for small samples. Moreover, SAEM
appears to be more tractable than SEM since SAEM provides almost sure convergence, while
SEM provides convergence in distribution. Therefore, we think that SAEM, with a slow rate

of convergence of {Yp}, could be implemented in currently available software.
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APPENDIX

Recall the definition of the event Epj,n21,j2 1, which has been given in (5.42)-(5.43). We
will prove the following technical result.

Proposition A.1. There exists a > 0 such that with probability 1 the event Eq j occurs for an
infinite number of integers n, whatever the fixed integer j 2 1.

Proof of Proposition A.1. We first establish the following lemma.

Lemma A.2. There exists a > Q such that

min+ = inf P; {w($,z) > a} >0 (A.1)
e G

and
min - = inf Pz {w(9,z) <-a} >0, (A.2)
¢eG

where P, denotes the conditional probability given ¢ and w(d,z) = < U(9, z), v >A has been
defined in (5.40).

Proof of Lemma A.2. We will first prove that the conditional probability distribution B —
P; {U(¢, z) € B}, for B in the Borel o-field of E, is weakly continuous in the argument ¢ €
G. The components of U(¢, z) are given by

N
pj(9,2) = N-1 21 {zij -tj(xj)} forj=1,.,K (A3)
i=

and

N N N N '
aj(¢,z) = {_)ZIZij}" {‘):lzn' b(xi)} - {thj (x)}-1 {_thj (xi) b(xj)} forj =1, ..., K, (A.4)

respectively. Denote by f a real-valued continuous bounded function defined on E. By the
formula of transfert we have

-[E f{U(0, 2)} P, {U(9,2) e dh} = 3 f{p; (9, 2),3j(9,2), 1 <j<K} k(zlx;9), (A.5)
y 1=/ /

N
where kK (z1x; ¢) = I1 k(zi!x;; ¢) has been defined in (2.3) and has been shown to be

i=

continuous in ¢ € G. As the tj (x;)'s are continuous functions of the argument ¢ € G, (A.3)-
(A.5) together imply the required weak continuity result. This result entails in turn the weak

continuity of w(¢ ; z) with respect to ¢ € G. We will now prove (A.1) and (A.2) by

contradiction. Denote by F(t, ¢) the distribution function of the real-valued r.v. z — w(¢, z),

i.e. F(t, 9) = P, {w(9,z) <t} fort € R. Suppose that inf 1 - F(t, ¢) = 0 for all t > 0. Since
e G

G is a compact subset of E, there exists for all t > 0 a sequence {dn(t)} in G converging to
some ¢(t) in G as m — oo, such that
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lim 1-F(t, om (1) = 0. (A.6)
m—yoo

If t + u with u > 0 is any continuity point of F(., ¢(t)) larger than t, we have from (A.6) that

0<1-F(t+u, ¢()

lim 1-F(t+u, ¢m (1)
m-—oo

IA

lim sup 1 - F(t, ¢m ()
m—co
=0. (A.7)

Pick tx = 1/k, k 2 1, and select uk so that 0 < ux < 1/k, k 2 1. By the compacity of G, there
exists a subsequence of {¢(tk) ; k = 1} which converges to some ¢ in G. For the sake of

simplicity, we still denote this subsequence {¢(tx) ; k= 1}. Let a > 0 be any positive continuity
point of F(., ¢). We have from (A.7) that

0<1-F(a,¢)= lim1-F(, ¢ (t))
k—yo0

< lim sup 1 - F(tg + uk, ¢ (tx))
k—yo0

= 0. (A.8)

As a >0 can be chosen arbitrarily close to 0, (A.8) implies that P; { <U(¢9, z), v>a >0} =
1 - F(0+, ¢) = 0, which contradicts Assumption (HS). The proof is similar if it is assumed that
ing F(t, ¢) = 0 for all t < 0. Thus, the proof of Lemma A.2 is complete.

e

We can now return to the proof of Proposition A.1. This proof relies on the following
conditional version of the Borel-Cantelli Lemma, as given in the Corollary 2.3, p. 32, of Hall

and Heyde [6]. Let {Fy ; n 2 0} denote a nondecreasing sequence of o-fields and {Ap; n >0}
denote a sequence of events such that A, is Fp-measurable for all n. If Y P(Ap4 | Fp) = o
a.s., then Ay occurs infinitely often a.s. Here, ¥ = O(n+1)(j+1), where oy = o(Z0, ..., zM) is
the o-field generated by the random drawings 20, .., zM and A, = Enj,j» where j 2 1 is
assumed fixed. We will prove that there exists a positive & such that P(Epjj | ¥n-1) > 6 as. for

all n 2 1. We first give lower bounds for P(E; ;1 Fn-1) and P(E

nild | Fn-1), respectively. Recall

that qp = < ¢ - ¢*, v >A and wy = <U(¢", z1), v> have been defined in (5.40). As qpj is Fn-
1-measurable, we have

P(E;j,j | Fn.1) = J 1{qnj = 0} I{wnj 2 a} ... [{wpjsj 2 a}dz" ... dz™™
= I{qnj 2 0} I I{wnj = a} ... [{wpjs+j 2 a}dz" ... dz""
= I{qqj 2 0} J. I{wnj 2 a} dz" ... J. I{wnj+j > a) dz"Y (A.9)

where I{A} is the indicator function of the event A. Now, (A.1) in Lemma A.2 implies that
a > 0 can be chosen so small that

f H{wnj+j 2 a} dz" = P, (w(¢ni*, z) 2 a} 2 min + > 0. (A.10)
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Substituting (A.10) into (A.9) we obtain

P(E}; ;1 Frn-1) 2 (min+) 1{qn; > 0) J I{wp; > a) dz" N I{wnjsj1 2 a) d2V1 (AL 11)

Now, (A.10) is still true with j-1 replacing j. Proceeding recursively, we finally obtain

P(E}, 1 Fa-1) 2 1{qnj 2 0) (min+)}*! as. (A.12)
Similarly,
P(E,; ;1 Fn-1) 2 1{qnj < 0} (min-)+1 as. (A.13)

Adding (A.12) and (A.13) we obtain

P(Epjj | Fn-1) 2 [I{qnj 2 0} + I{gn;j < 0}] inf(min+, min-y+1 as.
> inf(min+, min-)J+! a.s.,

which provides the required result. Since if Ep;j occurs i.0. then the same is true for Ep j, this
completes the proof of Proposition A.1.
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