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Résumé

A partir d’hypotheéses assez générales sur la paramétrisation du processus de service, on
obtient des estimations d’analyse de perturbation sur des files d’attente ergodiques et sta-
tionnaires a un seul serveur. Notre approche, tout en relachant les hypotheses stochastiques,
résout de plus certains problemes venant de 'approche régénérative traditionnellement uti-
lisée dans la plupart des travaux effectués dans ce domaine jusqu’a présent. Tout d’abord,
nous réglons les probléemes de fusion de périodes d’activités dus aux petites perturbations.
Ensuite, puisque 'intérét majeur est de mesurer les performances a ’état stationnaire, nous
examinons directement le comportement stationnaire du systeme, plutét que de considérer
les mesures de performance comme des limites de Césaro. Enfin, nous donnons de nou-
velles estimations pour des fonctions générales (éventuellement discontinues) de la charge et
d’autres grandeurs a ’état stationnaire.
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Sensitivity Analysis for Stationary and Ergodic

Queues
P. Konstantopoulos M. Zazanis
INRIA, Sophia Antipolis Dept. of Industrial Engineering
2004 Route des Lucioles and Management Sciences
06565 Valbonne Cedex Northwestern University
FRANCE Evanston, IL 60208
Abstract

Starting with some mild assumptions on the parametrization of the service process, pertur-
bation analysis estimates are obtained for stationary and ergodic single server queues. Besides
relaxing the stochastic assumptions, our approach solves some problems associated with the tra-
ditional regenerative approach taken in most of the previous work in this area. First, it avoids
problems caused by the merging of busy periods due to small perturbations. Second, given that
the major interest is in steady-state perforiance measures, it examines directly the stationary
version of the system, instead of considering performance measures expressed as Cesaro limits.
Finally, it provides new estimators for general (possibly discontinuous) functions of the workload
and other steady-state quantitics.

1 Introduction

The increasing importance of sensitivity analysis in communications networks and manufacturing
systems makes it desirable to construct reasonable estimators whose asymptotic behavior does not
depend on the renewal character of the arrival or service processes. More specifically, consider a
node in a queueing network that is assumed to be stable. Cousider also a parameter, say 8, of
the distribution of the service process at this node. The sensitivity of the mean delay is defined
as the derivative of the mean delay with respect to 6. The question is whether, by operating (or
simulating) the system at the nominal value 8 and by real time measurements, one can obtain an
estimate for the sensitivity at . The purpose of this paper is two-fold: First, to obtain strongly
consistent perturbation analysis estimnators for general (average) performance criteria for a queue
with stationary and ergodic input. Second, to give some new proofs, distinct from the existing
ones, that not only simplify the underlying ideas, but also generalize them to the stationary and
ergodic context. For an overview of the area and further references see (6] and [7].

Counsider a queue with stationary and ergodic arrival {¢,} and service {o,} processes. Let 6 be
a parameter (in a sense to be made precise later) of the service process such that the queue under
counsideration is stable for all allowable values of 6. Let J(4) be an average performance measure
of the system. For instance, J(6) can be the variance of the workload in steady-state, with respect
to the parameter 6.

A perturbation analysis estimator of %J(()) is a direct derivative estimator of the form

1 t
-/ Y,(0)dt. (1.1)
tJo
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or 1 n
= STY,(9), (1.2)
n k=1

where Y,(#) is a process constructed on the same probability space on which our original data {¢,}
and {0, } are defined. Thus a classical finite difference Monte-Carlo estimator of (J(6 + Af) —
J(#))/ A6 is not a perturbation analysis estimator.

Strong cousistency of an estimator of the above form means convergence, as t — oo or n — 00,
to Z%J(O). The method for construction of the estimators is the following: We will assume that
the system is in steady state (meaning that a suitable process like the queue length is stationary)
and construct a stationary aund ergodic process Y; such that 5%.](0) = EYy(8), where E denotes
expectation under the stationary measure P or a Palm transformation of it (e.g., conditioning).
Indeed, we shall be freely using the ideas and formulas for Palm measures. The fact that we
assunie that the system is in steady state is only for reasons of constructing the estimators. Strong
consistency is then guaranteed by the ergodic theorem.

In a renewal context, i.e. when interarrival times are i.i.d. and independent of the service times,
also i.i.d. with common distribution Gy. one starts by constructing the service time processes on the
satne probability space by doing the obvious thing; namely, by choosing i.i.d. numbers &,, uniformly
distributed on [0, 1] and by letting ¢..(8) = Go_l(én), where G';l i1s a version of the inverse of the
function Gp. This way, one has constructed all processes associated with the evolution of the queue
on the same probability space. Consider, for instance, the resulting workload process, denoted
by W,(8). It has been shown (see [10] and [12]) that a perturbation analysis estimator for the
derivative of the expected waiting time in steady-state is given by (1.2) where Y3(8) is the pathwise
right derivative of Wy(8) with respect to #. The main difficulty in the proofs here is to show that a
stall change ¢ in the service time results in an overlap of the busy periods of the workload process
of order 0(9).

In this paper we device an argument that, on one hand, overcomes this difficulty and on the
other allows us to extend the results to stationary and ergodic queues and to consider general
(possibly discontinuous) functions of the workload. For this, considering the system in continuous
time is crucial. Some assumptions on the paramctrization of the service times arc given in the
sequel.

Consider two jointly stationary and ergodic sequences {r,} and {£,} under a probability mea-
sure that will be denoted by PY in order to conform with the notation used in the rest of the
paper. The first one is the sequence of interarrival times while the latter is the sequence of random
variables from which the service times are generated in the following way: There is a deterministic
function (£.6) — (&, 0) such that o,(8) = h(,,8). The parameter 8 ranges over a finite interval
[a,b]) and LY, (8) < LY7, := A~! for all . Morcover:

(i) 8 — n(&,8) is differentiable and Lipschitz, ie., [h(£.61) — h(£,8,)] < K(£)]6, — 8,]. (Of course,
differentiability automatically implies that the functiou is Lipschitz on [a,b)].

(ii) (&, 6) < h(E,0).
(i11) &€ — h(£,8) is one-to-one.

We note at this point that the problem of putting the data on a common probability space, so
thiat € is a parameter of the random variables and not of the probability measure, is an important
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one that can be crucial in the behavior of the estimators. Our approach here simply mimics the
nsual one. One can also see that the above conditions are not too restrictive. This is best seen
by an example: Let o, be ii.d. with common exponential distribution with rate §. Consider the
function h(€,8) = =8~ log €. Let &, bei.i.d. and uniform in the interval (0,1). Then 0, = h(&,,6)
has the required exponential distribution. Since we are interested in the derivative of a performance
measure at a specific value, say g, of the parameter, it suffices to consider the function § — h(§,8)
defined on an interval [, b] that contains g in its interior. In this case clearly h(&,8) = —0~!logé
satisfies the above conditions.

In Section 2 we present an outline of the method and the main ideas behind it. Under conditions
(i), (i1) and (iii) (which are not necessarily the minimal ones) plus some extra moment conditions
we construct estimators for the derivatives of functions of the workload and prove their strong
consistency in Sections 3 and 4. A sketch of these proofs can also be found in [8]. In Section 5 we
consider other performance measures. Finally in Section 6 we discuss what happens in the classical
cases and also some simulation applications.

2 Sketch of the method

In this section we will give an outline of the basic ideas. Let W (#) be a random variable distributed
like the steady-state workload when the parameter of the service process has the value 8. Let f
be a function of bounded variation such that F f(W(#)) < o0o. The questions that we want to deal
with are:

e Does the derivative of £ f(W(#)) exist?
o If ves, is there a perturbation analysis estimator for this derivative?

l'o construct a perturbation analysis estiinator one should start by constructing stationary versions
of the processes W (6),6 € [a¢,b] on a common probability space. Recall that we work in a non-
renewal /regenerative framework and so the initial condition may play a role. Let us first introduce
some terminology. We denote by P the distribution of the stationary version of the marked point
process {¢,,€,] (the n-th point t,, is the n-th arrival time and has €, as a mark, with the convention
ty €0 < ¢y~ this convention will be used throughout the paper). A superscript or a subscript to P
will denote a Palm transformation of P with respect to some stationary point process (i.e., loosely
speaking, conditioning on the event that there is a point on the origin of time). For instance,
PY is in fact the Palm transformation of P with respect to the stationary arrival process. Since
Fla,(b) < EY7,, there is a stationary workload process W,(b) under the probability measure P.
For more details see (3] and [11], Chapter 7. Because of assumption (iil) of Section 1, knowledge
of the sequence o,(b) implies knowledge of ,(6) for all # € [a.b]. Now assumption (ii) allows
us to construct each realization of Wy (#) from the realization of W;(b) by keeping the so-called
coustruction points (times of arrival of customers that find the b-system empty) and then by re-
placing the 0,,(b)’s by the 0,(#)’s in each busy cycle of the b-system. This may introduce additional
coustruction points for the @-system resulting from the possible breaking of the busy cycles of the
b-system. Denote by T7,(6) the arrival times of customers that find the #-system empty. We just
said that {7,(8)} C {1.(0)}.

Suppose for the moment that the function fis smooth and nice. One would then like to prove
that a PA estimator of 9 K Wy(8)/06 is given by (1.1) where Yy = /(W (0))W’'(8), with W/(8) being
the right derivative of W (#) with respect to € (see below for the definition). This is tantamount to
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showing that , _
9 B[ (Wol8)) = - f(Wo()). (2.1)
a0 a6
The standard approach that would mimick the one of [12] would consist in looking at busy cycles
of the #-system and essentially trying to establish that

0 ! g [ powaeyat ! E; /W) O waea (22)
90 E;(T1(8) — To(0)) ° /w) ' T E;(Ti(6) - To(8)) * Jro(e) 967 '
(Here P; denotes the Palm transformation of P with respect to the point process {T,(6)}.) Indeed,
the left hand sides and the right hand sides of (2.1) and (2.2) are the same. Observe now that we

might as well write

1 (o) _
ESWol0)) = Fermy ey Loy T (23)
since by construction Wy(8) and T,,(b) are jointly stationary. This way we drop the dependencies on
6 of the integration limits. In other words, we avoid the problem of having to prove that the effect
of the coalescing of the cycles due to perturbations is negligible. The remaining of the argument,
i.e. the justification of differentiating inside the expectation is purely analytical and depends on
the way the service processes have been defined on the common probability space.

Our goal is to consider more general functions f, for instance f(w) = 1(w > z). In that case
tliere is no obvious guess for the process Yy that would lead to the construction of the PA estimator.
The following section deals with this problem in the spirit of the above discussion.

3 Derivatives for indicator functions

Consider f(w) = 1(w > ) and the problem of finding a PA estimator for Ef(Ws(8)) = P(Wo(8) >
2). Before proceeding further let us define the process W/(8), the derivative of the workload at
nominal value 8. It is not difficult to see that this is a right continuous, piecewise constant process
given by
W/ (8) = (W] _(8) + a'(8))L(W,,_(8) > 0). (3.1)
Thus it jumps by an amount equal to o/,(#) at each arrival ¢, and is set to zero as soon as the
system empties. In the analysis that follows it is important to bear in mind that W,(8) has right
continuous paths.
We need some extra notation: We will denote by P, the Palm transformation of P with respect
to the point process of the downcrossings of Wiy(#) at level . Informally speaking, this is P
conditional on having an a-downcrossing at the origin of time. Note that P, depends on 6. Let

also A, be the rate of the a-downcrossings by Wy(#). Finally let A(]) denote the number of arrivals
in a set /.

Theorem 1 If EYA[Ty(b). T(b))? < oc and E°K (& )2 < oc then
5]
0—01’( Wod) > 2) = A\ E,W((6). (3.2)

Proof Using the Palin inversion formula we get

TIy(h)

P(W(8) > 2) = /\5135/ L(W,(8) > 2 )dt, (3.3)
1o(b)
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where A; is the rate of the point process {1,(b)}. As mentioned carlier, this particular point process
plays a key role in our proof. The basic observation here is that W,(8) < W,(b) for all 8 € [a,b]
(due to the assumption that o, (b) dominates a,(f) for all #) and hence the customers that find the
b-system empty also find the #-system empty, for all 8 € [«,b]. Thus the dependence on 8 on the
right hand side of (3.3) is only inside the integrand and not on the integration limits. We now have

RN ‘ ,
%{P(WU(HJM) > w)— P{Wy(8) > .’L')} = /\EEJ/I([) ;{l("m(ﬂﬁ-b) > x)—l(Wt(ﬁ) > Il,)}dt (3.4)
To(b}

Observe that the quantity inside the the expectation of (3.4) converges, pathwise as § — 0, to

Yoo W),

To(b)<dn <T1(b)

where d, is the sequence ol downcrossings of the level « by the process W;(8) (and hence depends
on 8). This is a direct consequence of the definition of W/(f) (see formula (3.1)). It can also be
easily seen that the magnitude of the quantity iuside the expectation of (3.4) is bounded by

% > Y o6+ 8) ~ ai(8)] =: Z(8).

To(b)<tn <Ty(b) 1=0

T'o show existence of the derivative of P(Wy(#) > 2) it now suffices to show that Z(é) is bounded
above by an Ej-integrable random variable (dominated convergence theorem). To this end, use the

Lipschitz property to get
n
280 3 YN
To(bY<tn <Ty(b) i=0

T'his is furthier bounded above by
-t

N YK
1=()
where N = A[Ty(0). T,(b)). It remains to show that Ly N ZI\ZT,’ K(&) < . The cycle formula
(see [9]—for a short proof sce [4]) between P and PY gives

N =1
E;N Z A r“ AW

A straightforward application of the Cauchy-Schwarz inequality shows that

EYN K (&) < —'V VO (Ey)? (3.5)

which is finite by the asswmptions. Thus the conditions for the dominated convergence theorem
liold aud so we can interchange limit and expectation in (3.4). We conclude that 2 P(Wy(8) > )
exists and 9
55 P(Wol#) > w) = AL ES Y. W) (8) = A\ E.Wi(6).
To(b)<du<T1(h)

The latter equality above is obtained by another application of the cyvcle formula. This concludes
the proof of the theorem. O






Corollary Under the conditions of Theorem 1 we also have
0 A
%P(Wo(e) >u) = /\EOWS(Q)[I(WO(H) > )~ YW, _(8) > z)]. (3.6)

Proof This follows by yet another application of the cycle formula, this time between measures P,
and PY. Indeed, observe that the difference of the two indicator functions of (3.6) is one if and only
if there is a downcrossing of the level @ by the process W;(#) on the interarrival interval [to,2,). O
Note The Cauchy-Schwarz inequality and the conditions of Theorem 1 in (3.5) were used to show
that EYN (&) is finite. Using Hoélder’s inequality we could trade off the existence of lower moments
of N for higher moments of Ix"(&,). In particular, if K(&) is constant (e.g., o,(8) = &, + 6), only
E°N needs to be finite.

4 Derivatives for general functions
We now extend the result of Theorem | to more general functions f. That is, we want to obtain

all estimator for %Ef(l"VU(())). Recall that for f = indicator function we have two formulas (3.2)
and (3.6).

The most general class of functions that we consider is the class of functions that are of bounded
variation on bounded intervals (locally bounded variation). In this general case we will need the
following set of assumptions:

Al EUK (&) < oo,
A2 EYA[To(0), T\ (b)) < o0,
A3 EYsupg f(Wy(6))? < x,
A4 ECsup; f(Wo_(0))? < .

Note that these ave stronger than the assumptions of Theorem 1, but this is not surprising in
view of the generality of the function f. We should also note that these assumptions can be relaxed
depending on the specific nature of f. When f is increasing, both A3 and A4 can be replaced by:

A3 EC[f(Wo(0))?) < x.

See also the remarks on special cases at the end of the section and Section 6 for the renewal
case. We are now ready to state and prove the following theorem:

Theorem 2 Consider a function f that is locally of bounded variation. Then under the assump-
tions A1-A4 we have

o o
’(EL_[(HU(Q)):/(; )\LLIHO(\Q)[’(III) (41)

= ANECW((0)[ F(Wo(8)) — f(Wi -(8)]. (4.2)
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Proof Suppose first that f is an elementary function, that is, a finite linear combination of indicator
functions: f(w) = S5, a;1(w > ;). Then (4.1) follows directly from (3.2) of Theorem 1 and (4.2)
from (3.6) of the Corollary.

For a general f of locally bounded variation, there is no loss of generality if we assume that it is
uonnegative and increasing. We can then approximate f from below by an increasing sequence of
elementary functions f, that converge to f uniformly over compact sets. We shall establish (4.2)
first and then (4.1) will follow form an application of the cycle formula. Let

gn(8) = Efo(Wo(0)), g(6) = E f(Wy(8)).
The derivative of g, exists and
9n(8) = AEPW(8)[fa(Wo(#)) ~ fa(Wy,_(6))].

To show that the derivative of ¢ exists and is equal to (4.2) it suffices to show that g, converges to
g for some 6y in [a,b], and that g!, converges uniformly in 6 (e.g.. see [2]). In other words, it suffices
to show that

sup LESWG(O)[(Wo(8) = fu(Wo())] —a—x O (4.3)

and that
Sl;P |ECW(O) (W, ~(8)) — ful Wy, —(6))]] — o O. (4.4)

We show (4.3) and then (4.4) will follow by the same token. The quantity of (4.3) is bounded
above by

EY m;p [Wy(0)| 51(1)1) f(Wo(6)) = [u(Wo(6))]. (4.5)

Since 0 < ... < fy < fugr <. < fothe quantity inside the expectation of (4.5) is bounded above
by the first term sup, [W((6)] supy | f(Wo(8)) — fi(Wo(6))| It must be shown that this has finite
expectation. Clearly,

E®sup [Wi(0)]sup | f(Wo(8)) — [1(Wo(6))] < W sup ‘f"a(ﬁ)z\/E“ sup f(Wo(0))?.
[ [ (4 [’}

The latter term is finite by A3. Ior the proof of the finiteness of the first term we refer to the
Appendix.

Let now X, = supg |f(Wu(8)) — f.(Wu(8))]. If we show that X, converges to zero P%-almost
surely then we are done (dominated convergence thecorem). Equivalently, it suffices to show that
VX, — 0.

To this end, given an ¢ > 0, choose a constant K such that
EPf(Wo(0)) L (Wo(b) > K') < e

As mentioned above. the approximating sequence f, cau be chosen so that it converges uniformly
over the interval [0, i'). Write

E'X, = E°XN, 1(Wy(b) < K)+ E°X, [(Wy(b) > K). (4.68)
For the first term of (4.6) we have the bound

sup |flw)— ,Z('ur)lf’o(ﬂf’u(()) < N,
U<w< K
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which goes to zero by the uniform convergence of f,,. Using the inequalities f,, < f and Wo(0) <
Woy(b) we see that the sccond term of (4.6) is bounded above by

2E° f(Wo(b))1(Wo(b) > 1) < 2e.

This readily shows that £°X, — 0 and hence (4.3). The proof of (4.4) is similar. O

Let us now examine some special cases and sce how assumptions A1-A4 can be relaxed.

The case of a bounded f.

We can see, from the proof of Theorem 2, that, in such a case, we only need to have assumptions
that ensure E%sup, |W)(8)] < oc. Repeating the proof of the Appendix, we can readily see that
assumptions A1-A4 caun be replaced by the assumptions of Theorem 1.

The case of a smooth f.

Here one is typically able to differentiate not only inside the expectation of the right hand side of
(2.3), but also inside the integral, to obtain doL[f(WO(() )] = E[f'(Wy(8))W((8)] or equivalently
(2.2). ‘The moment conditions necessary for this depend of course on f. When f is a polynomial
of degree r, an analysis similar to that in the Appendix shows that A1,A2, and A3’ (that is, the
satne conditions for an increasing function) are sufficient to guarantee (2.2).

5 Other performance measures

5.1 Queue length

We now consider briefly the queue length process Q,(#). In contrast to the workload process, the
pointwise derivative of Q,(#) with respect to # is equal to 0 for almost all ¢t. Let D(6) be the
departure process, 5,(#) the n’th departure epoch, and Y,(#) the derivative of the last departure
time before t with respect to 8. Dropping the dependence on 8 for simplicity, Y; is constant in
[Si, Sit1), and given by the following recursion on departure epochs:

YS,,.H - U:L+] + 1(Q5" > ())Y,b',,~

As usual, these processes are defined to be right continuous. Finally Mg is the point process of the
k-downcrossings of Q((#) (downcrossings from & to k& —1,i.e. departures that leave the system with
k — 1 customers), A, is the intensity of Vg, and [y is the expectation with respect to the Palm
probability of k-downcrossings. Then an analysis similar in every respect to the one in the proof
of Theorem 1 gives

J

— POy < k) = M LY. 5.

29 (Qu £ k) ik [Yo) (5.1)
To obtain the counterpart of (4.1) consider a function f: N — R. Write f as 372, a;1(k > 1)

and approximate it by below by f, (k) = LA < n)f(k). Then. by (5.1) and the linearity of
expectation,

_E[f“ QU ]— Z(l,/\ L, U

A uniform convergeuce argument allows us to pass in the limit:

00 f(Qu)] = Za,,\ £, [Yy). (5.2)

=1
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Let E! denote the expectation with respect to the Palm probability corresponding to departures.
We now use the eycle formula in order to get another expression for (5.2):

MEiYo) = )\E‘/ Y,Ni(ds) = AE'Ys, 1(Qs, = k — 1),

{S0,51)

where we have used the fact that Y5 is constant on [Sg, ) and that there is a k-downcrossing at
S if and only if Qs, = k — 1. Writing 1(Qs, =k — 1) = 1{Qs, > k - 1) - 1(Qs, > k) we obtain

%Ef(QU) = AE'Y5,[f(Qs50-) = F(Q30))-

hir the above expression Qs,~ = Qs, + 1 is the number of customers in the system just before a
departure.

5.2 Sojourn time

Up to this point we have considered only “time stationary” performance measures (to use standard
queueing theoretic terminology). “Customer stationary”™ performance measures (such as the ex-
pected sojourn time in steady state) can be treated as in Section 4, with the exception of additional
sioothness requirements on f. One starts by using a formula similar to (2.3) in discrete time:

1
EfWol) = o S f(Wy,(6)),
=0 To(b}rﬁtn(l‘l(b)

By using arguments similar to those of Theorems 1 and 2. one can show that, under appropriate
conditions,

O 6 g ] .
ga Wl = =% 3. S AWL(8) .

=N
b7 Ty (b)<tn <TL(b)

= 0T (Wo(8))Wy(8).

.

It is exactly this case that has been studied in {12] under renewal assumptions on the arrival and
o
service processes.

5.3  Joint distributions

‘Fix an s > 0 and consider P(Wy(8) > @, W (8) > y). A procedure similar to that of Theorem (1)

will give us the formula

%P( Wo() > o, Wi(0) > y) = A\ EJWGHOILW(0) > y)] + A, £,[Wo(6)1(W_,(8) > )],

which can also be easily translated into a formula of the form (3.6).

6 The renewal case—final remarks

Explicit conditions involving only the interarrival and service distributions can be given in the
renewal case. In fact it is well known (e.g. see [5]) that the existence of E°[o(b)"] implies that
of EYA[Ty(b), Ti(b))" for r > 1. Lor example. A2 can be replaced with E%(b)? < oo, If fis
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(3]

polynomial of degree r, then it is enough to show that A3’ holds and for this E%o(b)**! < oo is
sufficient (see [1]).

From a simulation point of view, the results in this paper are important since they justify
isolating a single server node not belonging to any feedback loop and using the estimators developed
above. The proposed estimators would be strongly consistent for performance criteria of the type
described here. Theorem 2 is particularly useful in this context. If {t, } is the sequence of customer
arrival times with the convention tg < 0 < ¢; and we simulate (or observe) the system in the interval
(0,1), Theorem 2 suggests

1 . i
= N WLfWL) = (W),
{n:0<ty 41 <t}

as a strongly consistent estimator for .-ddyE[f(l'Vg)]. which can be used whether f is differentiable
or not. Unlike the estimator based on level crossings the above estimator does not require the
introduction of crossing events which presents an advantage in simulation.

7 Appendix

In this appendix we prove that assumptions A1 and A2 imply that

E9 sup Wi(8)* < oc.
0

From the definition of the process W) (8) we have

Wod) = Z ol ().

To(f)<t, <0

Using the Lipschitz condition we get

Wohl < > K&,

To(f)<t, <0

Since 1y(8) > To(0) (by the way the processes have been constructed),

sup [Wy(8)] < Z K(&)
4

TO(I))Stn<0
Let N = A[To(0),T1(b)) and use the inequality (2) 4 ...+ 2,)? < n(z? + ... 4 22) to obtain

EPsup(W5(8)? < E°N 37 K(&)%
g To(b)<tn<U

Now use the cycle tormula between PY and P to obtain the relation

E'N Y K=ty Y EI:A'(&)’.

To(b)<tn <V To(b)<tn <7} (b) i=U

>

This is smaller than

/\T 1k Y - y
< -/\—‘1;,) N? > K(&,)%
’I‘O(b)stn<’1'l (b)

10
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A second application of the cycle formula gives
AL

SENT Y K(E) = ENUK ).

To(b)<tn<T1(b)

Finally, a Cauchy-Schwarz inequality applied to the latter bound gives
E° sup(W§(6)) £ \/ EOK (0)*VEO N,
8

which is finite by assumptions Al and A2. O
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