-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Concurrency in priority queues for branch and bound
algorithms

Bernard Mans, C. Roucairol

» To cite this version:

Bernard Mans, C. Roucairol. Concurrency in priority queues for branch and bound algorithms. RR-
1311, INRIA. 1990. inria-00075248

HAL 1d: inria-00075248
https://hal.inria.fr /inria-00075248
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50449589?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00075248
https://hal.archives-ouvertes.fr

INIA Rapports de Recherche

UNITE DE RECHERCHE N° 1311
INRIA-ROCQUENCOURT

Programme 2
Structures Nouvelles d'Ordinateurs

CONCURRENCY IN PRIORITY
QUEUES FOR BRANCH AND

BOUND ALGORITHMS

Institut National
de Recherche
en Informatique
et en Automatique

Bernard MANS
Catherine ROUCAIROL

Domaine de Voluceau
Rocquencourt
BP10b
. 78153 Le Chesnay Cedex

France | Octobre 1990
Tel:(1) 39635511
&) |l]jﬂll!mﬂ||||_||||1|||L|ﬂ||l|||u\|![[N

Concurrency in priority queues
for Branch and Bound algorithms

Acceés concurrents dans les files de priorités
pour les algorithmes de Branch-and-Bound

Bernard MANS and Catherine ROUCAIROL

October 3, 1990

University PARIS VI and INRIA
Domaine de Voluceau, Rocquencourt BP 105
78153 LE CHESNAY Cedex, FRANCE
e-mail: Bernard.Mans@inria.fr and Catherine.Roucairol@inria.fr

Abstract

In this paper, we study some priority queues well-suited to basic operations
performed during Branch and Bound algorithms. We show the interest for many
combinatorial optimization problems of a special priority queue, we call it the funnel
tree, and a self-adjusting form of heap, the skew heap.

Moreover, we describe a methodology which allows concurrency for most of tree
data structures, and then we consider how implementation of priority queues might
be efficient on multiprocessors with global shared memory. In this case, the two
concurrent versions of a top-down implementation of the aboved data structures
are argumented. Experimental results on several multiprocessors (CRAY-2 and
SEQUENT Balance) are given and discussed.

Résumé

Dans ce rapport, nous étudions des structures de données de file de priorité bien
adaptés aux opérations de base des algorithmes Branch and Bound. Nous montrons
lintérét, pour de nombreux problémes d’optimisation combinatoire, d’une file de
priorité spéciale, que nous appelerons funnel tree (arbre en entonnoir), ainsi que
d’une structure auto-ajustable de tas, le skew heap.

Apres avoir décrit une méthodologie permettant des acces concurrents & des
structures de données arborescentes, nous étudions l'efficacité de I’ implémentation
des files de priorité sur des multiprocesseurs & mémoire partagée. Dans ce cas, une
version & accés concurrent descendant de chacune des structures de données pro-
posées est donnée. Les résultats obtenus sur différentes machines multiprocesseurs
(CRAY-2 et SEQUENT Balance) sont exposés et discutés.

Key words.

Concurrent access, data structure, heap, priority queue, parallel processing,
Branch and Bound algorithm, combinatorial optimization.

1 Introduction

Branch and Bound algorithms (denoted by BB algorithms), which are the most popu-
lar techniques used to solve NP-hard combinatorial optimization problems®*, use in their
implementation a queue of subproblems obtained by decomposition of the original pro-
blem. Following the search strategy defined, a partial subproblem (i.e. an item of this
queue) is selected, and this subproblem is again partitionned, except if it can be proved
that the resulting subproblems cannot yield an optimal solution or if it can no longer be
decomposed.

Thus, the data structure used is generally a priority queue. The basic operations are
deletemin, when the subproblem with highest priority is chosen for further decomposi-
tion, and insert, when new subproblems have been generated and must be included in
the queue for later consideration. Since a lower bound on the value of solutions within
each subset created by partitionning is computed, subproblems with bounds exceeding
the value of some known solution (upper bound) can be discarded. A delete greater than
z will be an additional operation that is useful, each time the upper bound is updated. To
speed up the search in BB algorithms, improvement must be done on the implementation
of the priority queue, when partionning process and computation of bounds are fixed.
Furthermore, an other way to increase the speed is to introduce parallelism, especially by
using multiprocessors with global shared memory.

In parallel BB algorithms designed for this case (see a survey in [18, 19]), the priority
queue is shared by several processes. Since several processes may ask an access to the prio-
rity queue at the same time, the simplest and more frequently way to provide consistency
on this data structure is to give each process an exclusive use of the entire priority queue
to perform the three possible basic operations. As it serializes the access to the priority
queue, it will limit also the speed-up obtained with the parallel algorithm.

Thus, as a lot of priority queues have been proposed during this last decade from im-
plicit heap to self-adjusting ones, it seems to us interesting to characterize which priority
queues are well-suited to sequential and parallel BB algorithms (on multiprocessors with
shared memory).

In this paper, we present two priority queues in which concurrency of basic BB opera-
tions will be increased. The first one, the skew heap developed by Sleator and Tarjan [22],
is one of the fastest heap implementation. The second one, the funnel tree, is well-suited
to optimization problems where the initial gap between lower and upper bound is small.

These two data structures are presented in section 2. The sequential implementation
of the three BB basic operations are given and their potential properties are discussed.

Section 3 deals with concurrent operations for these two structures. In section 3.1,
we show that the basic operations must manipulate the structure in the same top-down
direction, then concurrent algorithms for the skew heap and funnel tree are described
(sections 3.2 and 3.3). Informal correctness arguments are given for these solutions.

Simulation results of these concurrent algorithms are summarized in section 3.4. In
section 3.5, we review related works and give concluding remarks in section 4.

*Throughout this paper we consider minimization problems.
8 pap p

3

2 Priority queues for BB algorithms

2.1 Basic operations involved in BB

i

Let us recall that the goal of the BB algorithm is to solve a constrained optimization
problem:

min f(z), r€ X

where X represents the domain of optimization,
‘ z is a solution, « is feasible iff ¢ € X,
f(z) is the value of a solution.

The underlying idea of the BB algorithm is to decompose a given problem into two or
more subproblems of smaller size. Then, this partitionning process is repeatedly applied
to the generated subproblems until each unexamined one is either partitioned, solved or
shown not to yield an optimal solution of the original problem.

The process of excluding subproblem from further consideration is based upon the
computation of a lower bound on the values of solutions within each subset: subproblems
whose bounds exceed the value of some known solution of the original problem are dis-

carded.

The state of the partitionning process at any time can be represented as a partial tree
in which subproblems are represented by nodes and the decomposition of a problem into
subproblems by edges from nodes to their successors.

More precisely, a BB algorithm has three major components:

¢ a branching scheme I': successors I'(Sy) of every node S, are defined by the bran-
ching scheme, which partitions subproblem associated to a node in several subpro-
blems;

¢ a bounding function v: a lower bound function v assigns to each subset of solutions
a real number representing a lower bound cost for all complete solutions in the set;

e a search strategy: it is a rule for choosing which of the currently active nodes the
branching principle should be applied to; we assume that the selected node is the
one with highest priority.

Thus, the implementation of BB algorithm consists in performing several basic opera-
tions on a queue of subproblems which have different or equal priorities. Then, the data
structure is a priority queue in which subproblems (items) are inserted, or deleted. More
precisely, as shown below, three basic operations are performed on this data structure:
deletemin, insert and deletegreater.

The following code is an implementation of the main work in a Branch and Bound
algorithm for a single least cost solution.

procedure BB

begin
/* compute upper bound */
if a good feasible solution z° is known then ub:=f(z9)
else ub:=co
h:=makeheap(root)
do (h # 0)
begin
x:=deletemin(h) /* select a node to expand */
for each successor y of x do /* expand x */
begin
/* updating of upper bound */
if (y is a feasible solution and (f(y)<ub)) then
ub:=f(y)
deletegreater(ub,h)
endif
if (y is not a leaf and (v(y)<ub)) insert(y,h)
endfor
endo
end BB

This code shows the correlation between the three basic operations on the queue. Let
us make few comments characterizing the BB queue.

o First, the initial and final state of queue is empty.

e Second, assume that the BB program produced, at a given time, 7 insert, d deletemin
and k deletegreater operations, an invariant on these operations may be stated as

follows:
1t > d+k

More precisely, assuming that the k deletegreater produced k' deletions in the queue
of n remaining items, the global invariant of the BB program is given by

i =d+k+n

¢ Thirdly, the maximum number of consecutive insertions is equal to the maximal
number of successors expanded at any node, which is a bounded number. Moreover,
the main property of BB expansion is that the bounding function is non-decreasing,
i.e. the evaluation at any node is always smaller or equal to the value at its children.
Hence, we can expect a steady behaviour dismissing special worst-case of common
data structures: for example, it is not possible to get an unbounded sequence of the
same operation (deletemin or insert).

These remarks will be helpful for designing a model.

2.2 An efficient self-adjusting heap: the skew heap.

A heap, called a priority queue by Knuth (see [13]), or mergeable heap by Aho,
Hopcroft and Ullman (see [1]), is an abstract data structure consisting of a set of n
items, each with a priority (a numerical value), on which the basic operations are:

insert(i,h) : insert a new item i with predefined priority
into heap h,

deletemin(h) : delete an item of minimum value (highest priority)
from h and return it.

The priority structure in a heap is represented by a binary tree whose nodes are the
items, and where each node has a higher priority (smaller value) than its children (this
heap ordering is the invariant).

Many different priority queue implementations have been investigated: from implicit
heap, leftist heap, pagoda, binomial queue, to splay tree, pairing heap and skew heap.
For more details, see Jones survey [10] or Mans and Roucairol report [16].

We examine them under the requirement that they must provide us an efficient struc-
ture for the basic sequence of operations performed in serial BB algorithms and that they
must have a good potential for significant concurrency when the priority queue is shared
by several processes.

Among the others, we select the skew heap implementation developed by Sleator and
Tarjan in 1982 [22].

Its first advantage is to guarantee that the cost per operation will never exceed
O(log n)t, where n is the size of the heap, if the cost is amortized over a sufficiently
long sequence of operations (amortized computational complexity has been developed by
Tarjan [24]). In BB algorithm, we performed a sequence of operations (d deletemin, i
insert and (few) k deletegreater) having correlated behavior as shown above. So, it is
more interesting to use a data structure with minimum possible amortized running time,
to within a constant factor, on any sequence of certain heap operations than an other one
with an excellent worst-case time complexity per operation.

Skew-heaps are related to leftist heaps, but have advantages over other explicitly ba-
lanced structures. They are competitive in running time, both in theory and in practice,
with “well-suited for worst-case” structures. They also use less space and are easier to
implement. These balanced structures are self-adjusting: they are adjusted in a simple
uniform way during each access operations.

tThroughout this paper we use base-two logarithms.

6

et

L)

The basic operations on this particular heap, the skew heap, are performed as follows:

insert(i,h) : makes i into a one node heap,
melds it with h,

deletemin(h) : returns the root of the heap ordered binary tree h,
replaces h by the meld of its left and right subtrees.

The fundamental operation, meld(h1,h2), combines two disjoint heaps into one. The
right paths of the two heaps, from the root down, merge as in merge-sort and then the left
and right children of every node are exchanged on the merge path but the lowest. This
exchange of nodes is done to ensure that the amortized cost of melding will be bounded
by O(log n), for an n items tree.

The deletegreater(i,h) is not considered as a basic operation in the initial design of
skew heap. But it can be produced by the combination of a function findall(i,h) and a
purging operation, with an amortized time complexity of O(nlog(n/k')) for k' items with
a value greater than i, in an n items heap. The design of this operation, which is rather
long and difficult to sketch, is not developed in this paper (see Sleator and Tarjan [22] for
more details).

Figure 1: Example of Melding Operation

The implementation of these basic top-down operations are reported below?; In place
of the recursive version, we give the iterative one, (see Tarjan [22]), which is more ap-
propriate for concurrent operations and for implementation in Fortran. Two pointers are
associated to each node of the heap, on its left and right children respectively.

1The double arrow “«—” denotes swapping.

function makeheap
begin

return null
end makeheap

procedure insert(x,h)
begin
left(x):=null
right(x):=null
h:=meld(x,h)
end insert

function deletemin (h)

begin
x:=h
h:=meld(left(h),right(h))
return(x)

end deletemin

function meld(h1,h2)
begin
if (h1=null) then
return(h2)
else
if (h2=null) then return(hl) endif
endif
if (h1>h2) then hl—h2 endif
q:=h1l
p:=hl
hl:=right(p)
right(p):=left(p)
do (h1#null)
if (h1>h2) then hl—h2 endif
left(p):=h1
p:=hl
h1:=right(p)
right(p):=left(p)
endo
left(p):=h2
return(q)
end meld

An other variant of skew heap implementation has been proposed by Sleator and
Tarjan [22]. This kind of skew heap needs a rather different representation with a few
more pointers (several representations are possible). The melding operation is completed
in the bottom-up way (instead of top-down). In such a case, insert and meld have O(1)
amortized time complexity, whereas deletemin and deletegreater still run in the same
amortized time.

However, the specificity of bottom-up skew heap does not allow us to design easily
a concurrent version. Another disadvantage of that variant is that the top-down imple-
mentation handles nodes of equal value correctly, whereas the bottom-up implementation
needs few modifications to perform the operation, (see Jones short communication [12]).
Yet, both are not stable in the sense that one cannot predict and cannot prescribe in
which order items with same value will be treated. We emphasize this point since it
is well known that performances of sequential and parallel BB algorithms (see [7], [14])
depend on the bounding function. In particular, nodes with equal values induce ties and
thus the size of the BB tree to expand can increase significantly. Furthermore, it is a
sufficient condition under which anomalous behavior (superlinear or sublinear speed-up)
can occur with parallel processing.

P

optimization problem data
name | type | bench Mot | Mmaz | ilb| iub| S] 8 =2%
Q.A.P. | min | Nugent12¢ 5054 2766 | 493 | 578 | 85 128
- - | Nugentl5 || 112282 | 20000 | 963 | 1150 | 187 256
T.S.P. | min | P0201¢ 1558 . | 7125 | 7615 | 490 512

JS.P. | min | CP8¢ 17982 .| 808| 969161 256
- - | CcP9 5012 . | 5223 | 5484 | 261 512

Table 1: Variation of the Gap for some Implemented Optimization Problems.

%Nugent Quadratic Assignment Problems that appear in Roucairol, 1987 ,[20].

bAt least. Maximum of memory size allocated to the priority queue implementation.
“Traveling Salesman Problem that appear in Padberg, 1989,[9].

4Job-Shop Problems that appear in Carlier-Pinson, 1989,[4].

2.3 An efficient representation: the funnel tree

If the size of the research’s interval, i.e. the gap between the initial lower bound ilb
and the initial upper bound iub at the root of the BB tree, is small, there is a very simple
way to achieve an efficient representation for the priority queue.

Let us call S, S = iub — ilb, this gap which describes the interval in which priorities
are selected. In fact, we consider that S is small when S is much smaller than n,,, the
number of nodes of the BB tree to construct, and even smaller than n.,,,, the maximum
number of nodes maintained in the priority queue: § & N, < ny. Note that this
special case occurs frequently; some examples are given in the table 1.

We also assume that the values involved in the priority queue (node’s evaluations) are
integers. On these assumptions, the idea is to use an array of size S: each cell j of the
array being associated an integer, the lower bound of a node of the BB tree v(j).

v(j) = v(root) +j =ilb+j

Since the possible lower bound of a node of a BB tree always belongs to the interval
[ib, iub], S cells are sufficient. Insert and deletegreater take O(1) step. As several nodes
may have the same lower bound’s value, two pointers are associated to each array’s cell:
one for the first node, the other for the last one.

Deletemin is done by searching, from a pointer to the last best lower bound, the first
filled cell of the array (the pointer is increased by one if this cell is empty). In a BB
algorithm the value of the best lower bound, blb, is non-decreasing, so the deletemin o-
- perations take altogether at most O(S) steps (the total number of failures on empty cells
during the access to the pointer of the last best lower bound).

The implementation of the basic operations are reported below:

procedure insert(x,h)

begin

leaf:=[z] — ilb

enqueue(x,leaf) /* simple fifo fetch*/
end insert

function deletemin(h)

begin
do (blb = 0) blb:=blb+1
x:=degqueue(blb) /* simple fifo dispose */
return(x)

end deletemin

procedure delegreater(x,h)
begin
oldub:=ub
ub:=[z] - ilb
do {oldub#ub)
do (—~(emptyQueue(oldub))) dequeue(oldub)
oldub:=oldub-1
endo
end deletegreater

best lower bound current upper bound
\ iub
null null
null null
L4 LA A Lo

Figure 2: Simple Table priority queue

10

e .

Of course, this kind of priority queue seems trivial, but following our experience in
combinatorial optimization, researchers often use simple data structure or implicit heap,
with complexity of operations correlated with n,4., even when the search gap (5) is much
smaller than n,,,.. Furthermore, this structure obviously supports concurrent operations
like insert and deletegreater, whereas several concurrent deletemin cannot be domne in
parallel.

Thus, reconsidering this implementation, we associate this structure a complementary
binary tree with S external nodes, where, in this case, § = [2*], the smallest power of
two greater than the gap.

The external nodes are implicitly associated with the potential lower bound value of
nodes, in increasing order, from left to right. For each of these pending nodes, a queue
(pointed by leaf) of nodes with equal evaluation is maintained. Each node has a mark, in
fact a counter, denoted tree, and indicating the number of associated array’s cells filled
below . A node is marked if its counter is strictly positive (not zero).

level 1

4

5 fulllevel

32 33~ 34 35 60~ 61 62 63 current upper
best lower bound boung pe

ilb—‘—'—vm 2 3 B2 30 31(

null

iub

null

Figure 3: Funnel Tree Priority Queue

11

The basic operations are implemented as follows:

insert(x,h) : /* bottom-up operation */

Enqueue z in the leaf associated.
Increment by one each mark of the nodes
on the path from the tree’s node (target)
associated to the leaf, to the root.

/* top-down operation */

To find the associated leaf, proceed from the

root to the leaves, selecting always the leftmost
marked son of a node, and decrementing its mark
on the fly. Then dequeue the first element.

delegreater(x,h) : /* bottom-up operation */

"
N
N,
S

NBELIM=2

—_—

NBEI.IM=2

‘ Set the leaf and the tree’s node (target)
NBELIM=2 associated to the leaf, proceed from target to
NBELIM=1 root by decrementing on the fly the mark
- “BouNg . of father's node by the number of filled

cells from target to father’s righmost son.

12

Since this tree is a complete binary tree with predetermined size, an appropriate repre-
sentation seems to be a complete array of size (25 — 1) where the sons of a node (target)
will be denoted by 2 xtarget (left one) and 2 * target + 1 (right one). The root of the tree
corresponds to the first cell of the array. The variable fulllevel denotes the index of the
first node at deepest level.

The implementation of the basic operations are reported below:

procedure insert(x,h)
begin
leaf:=[z] — ilb
engueue(x,Jeaf) /* simple fifo fetch*/
target:=leaf+fulllevel
tree(target):=tree(target)+1
do (target#root)
target:=|target/2|
tree(target):=tree(target)+1
endo
end insert

function deletemin(h)
begin
if (tree(root)=0) then return(null)
target:=root
tree{target):=tree(target)-1
do (target<fulllevel)
target:=target*2 /*go left*/
if (tree(target)=0) then
target:=target+1 /*go right*/
endif
tree(target):=tree(target)-1
endo
leaf:=target-fulllevel
x:=degueue(leaf) /* simple fifo dispose */
return(x)
end deletemin

procedure delegreater(x,h)
begin
leaf:=[z] — ilb
target:=leaf+fulllevel
nbelim:=tree(target)
do (target>root)
tree(target):=tree(target)-nbelim
if (—(odd(target))) then
nbelim:=nbelim+tree(target+1)
tree(target+1):=0 /*update rightmost brother*/
endif
target:=|target/2|
endo
end deletegreater

The above description obviously shows that the funnel tree structure supports each
basic operation with O(log §) processing time and (nmq. + 45 — 1) storage requirement.
The latter consists of (25 pointers, .., BB nodes, (25 — 1) funnel tree nodes).

13

3 Concurrent operations on the priority queues

In this section, we explain how to make concurrent manipulations on some data struc-
tures using a simple methodology which keeps correctness. Then, we apply this technique
to the both presented priority queues and we report implementation with necessary up-
dates. Finally, results and related works are discussed.

3.1 Top-down operations on priority queues

Since multiprocessors machines have been used, new implementation problems have
appeared and have been investigated. The simultaneous manipulation of data structure
shared by several asynchronous processes is one of them. Any sequence of operations
must be executed in parallel without any interference. For the kind of priority queue that
we are dealing with, occuring contention problems are very similar to those resulting from
concurrent utilization of search trees. As we said before, if the exclusive use of the whole
structure by a process during each operation is a classical solution to preserve consis-
tency, this technique, which serializes the access, limits the number of processes working
concurrently, and so may therefore provide limited speed-up. However recent works on
contention problems (in the context of database systems, see for example [15], [3]) show
that severity of contention can be reduced if each process holds exclusive use of a small
subset of needed items. Hence, the time delay, during which the access to the structure
is blocked, is decreased. Obviously, this may be done under special conditions: a naive
approach to the concurrency problem can lead to erroneous results.

In order to preserve the correctness of any operation, it will be necessary

e to maintain consistency of the data structure,

e to avoid deadlock.

An usual method to avoid deadlocks is to forbid the creation of a cycle of processes
waiting for resources. Hence, we have to order the requests on shared data to force each
process to complete correctly the locking scheme. Assuming that each lock has an asso-
ciated rank, a process can set on a lock iff its associated rank is greater than the highest
rank of locks it has already set. In the same way, a process can set off a lock iff the
associated rank is the lowest. Such a locking scheme is obviously adjustable to the tree
data structure in which rank could be associated to node relative indice, and in which
children and sibling relationship should help to rank the nodes. Thus it means that any
accessing process may operate only on locks that the processes currently on the structure
never need again. A strict arrival order on common tree path will be maintained all along
the access run. One may see actually in path traversal method an analogy with pipeline
techniques.

Moreover, interactions of several processes could also lead to non coherent data struc-
tures. When exclusive use of the global structure for an operation is implemented, every
process surely finds and leaves the data structure in a consistency state, thus preserving
the complexity properties and the correctness of results. So, if we can prove that every

14

process in concurrent implementation secs and modities the structure as if it could hold
the entire excluding access, the correctness of each operation is guaranteed. We define
what is called the user view serialization of the structure (see Lehman and Yao, 1981 [15],
Calhoun and Ford, 1984 [3]): processes, accessing the data structure with a well-ordering
scheme, inspect part of structure that previous processes will never change further, and
leave all parts of data structure (modified or not) in a consistent state in relation to the
next accessing processes.

The lock strategy and user view serialization bring together necessary and sufficient
conditions to give each process a correct sight of the data structure.

This association of tools can easily be adjusted to most of binary tree structures (heap,
binary search tree, ...). In fact, operations on these structures usually cousist in following
a binary path in a straight direction (top-down or bottom-up: from root to leaves, or the
opposite). The remaining difficulty is to force every requirement type to operate the same
way, in order to ensure that the necessary “well-ordering” of processes should be possible.

In our case, we present a top-down access methodology in order to make concurrent
manipulations possible. Every operation will be “turned” if necessary, to ensure an access
from the root and provide user view serialization.

A simple sketch of this top-down method can be described as follows. Each operating
process exclusively holds a small locked part of the data structure (for example, a father
1iode and its children) which will be moved down the binary path, from the root to a leaf.
The two following rules are always respected:

e when a node is locked by a process, this process will never set a lock on any node
at a level above on the path,

o every node unlocked by a process will never be further accessed by this process
(during the operation involved).

15

3.2 Concurrent access algorithm for skew heap

The given concurrent version of skew heap is an iterative implementation (as the se-
quential one).

The skew heap which supports top-down operations allows serializability. Every basic
operations depends on the melding fundamental scheme. If we allow concurrency for the
melding operation, we allow concurrency for the other ones.

The two basic operations for mutual exclusion are “lock” and “unlock” which guaran-
tee mutual exclusion on each node of the heap. We introduce a lock at each node in the
skew heap and a special one at root access (lroot). Initially, all locks are unlocked. The
variables h1 and h2 denote the two remainder heaps to meld. The implementation of
melding has to be performed with a called by address variable “root” to allow the access
of an other process as soon as possible.

The implementation of modified operations are reported below:

procedure meld(var root ; val h1,h2)
begin
lock(lroot)
lock(h1) ; lock(h2)
if (h1=null) then
root:=h2
unlock(lroot) ; unlock(h2)
return
else
if (h2=null) then
root:=hl
unlock(lroot) ; unlock(hl)
return
endif
endif
if (h1>h2) then hl—h2 endif
/* start melding */
root:=hl
unlock(lroot)
p:=hl
lock(right(p)) ; lock(left(p))
hl:=right(p)
right(p):=left(p)
unlock(right(p)) 1t
do (hl#null
if (h1>h2) then h1—h2 endif
left(p):=h1
unlock(p) 11
p:=hl
lock(right(p)) ; lock(left(p))
hl:=right(p)
right(p):=left(p)
unlock(right(p))
endo
left(p):=h2
unlock(h2) ; unlock(p)
return
end meld

The above code shows that P processes can perform concurrent operations in at most
O(P +log n) processing time, instead of O(P*log n) time required for the whole exclusive

16

access method. We emphasize the fact that only a very small portion of the heap is locked
at the same time: three nodes at most, the father node and its two sons. Furthermore,
any type and schedule of operations can be provided.

Let us make few comments about correctness. First, owing to the top-down locking
scheme, dealock freedom can obviously be proved. Second, melding script have not been
modified with regards to the sequential implementation. Each item is locked before use.
To guarantee consistency, we have to prove that items are never locked off until all changes
have been made, (let us recall that, these modifications of the tree structure performed
by a single process actually involve only three nodes: a father node and its two children).
If the above condition clearly holds for the father node (variable p), it is not true for its
new right son, which is unlocked before its father (see mark tt in procedure meld). Yet,
we can guarantee that no process could access it before, since the lock on its father is still
set on and will be set off only when all changes on the items corresponding to father and
children have been made (see mark }}). Previous unlocking of the right son makes it
possible to minimize critical section and to avoid the management of later conflicts with
processes already blocked on the father lock. Thus, each process will be saving the user
view serialization conditions, and, recurrently, correctness will be safe.

17

3.3 Concurrent access algorithms for the funnel tree

As described above, the three basic operations on the funnel tree structure do not
travel along the binary path in the same direction (two of them are bottom-up and the
third one is top-down). The funnel tree does not allow implicitly serializability. Thus,
we have to make very few modifications with regard to the sequential implementation to
ensure a generic top-down access for each basic operation.

The deletemin operation is already a top-down operation. Its main script is not mo-
dified, a well-ordered locking scheme is only needed.

Reconsidering the bottom-up insert operation, we can observe that the operating path,
called the “side path” between a leaf’s target and the root is unique and already fixed at
the beginning. The structure of the binary tree is well known from scratch and no bran-
ching choice is necessary. The visit of nodes along the side path is only done to update
marks (incremented by one). Thus, an easy “turn”of the operating way will be possible
without changing the main properties. An usual technique of binary computation is help-
ful in this case. If we consider the binary representation (at the tree maximum level) of
the leaf’s value , successive bits can tell us wether we have to go right or left when visiting
nodes from root to leaves (0 for left, 1 for right).

Similarly, the bottom-up deletegreater has an already known side path. In such a case,
however, the value to which a node’s mark is updated is not known in advance. It is not
possible to discover but only at each level how many rightmost cells are concerned. So,
the deletegreater operation has to be decomposed in two phases. The first phase consists
of locking downward the whole side path so that the process will be able to catch incre-
mental information on the number of items to drop during the lockon visit. The second
phase updates downwards every concerned mark of the side path so that every node of the
side path can be locked off successively during this new top-down phase. One could argue
that locking the whole side path increases contention too much. But we put emphasis on
the fact that earlier arrived processes may concurrently terminate their operation, and
that later arrived processes may access the priority queue as soon as the second phase
begins. Concurrency is still reliable, whatever the type and schedule of operations.

As in the previous section, the two basic operations “lock” and “unlock” will be used
to guarantee mutual exclusion. Once again, we introduce a lock on each node of the tree,
as well as a special one for the root access (Iroot). Each pending queue associated to a
lower bound has an associated target in the tree, so that it does not need any lock. The
variable fulllevel, denoting the index of the first node at the tree’s deepest level, will be
also useful for an elegant computation of the side path on the fly.

The implementation of the three basic operations are given as follows:

procedure insert(x,h)

begin
lock(lroot)
leaf:=[z] — ilb
goalTarget:=leaf+fulllevel
target:=root
lock(target)

18

tree(target):=tree(target)+1
ir=leaf
ji=fulllevel/2
unlock(lroot)
do (target<goalTarget)
target:=target*2 /*go left*/
if (i>j) then
target:=target+1 /*go right*/
ir=i-j
endif
i=if2
lock(target)
tree(target):=tree(target}+1
unlock(|target/2])
endo
engueue(x,leaf) /* simple fifo fetch*/
unlock(target)

end insert

function deletemin(h)

begin

lock(lroot)
if (tree(root)=0) then
unlock(lroot;
return(null
endif
target:=root
lock(target;
tree(target):=tree(target)-1
unlock(lroot)
do (target<fulllevel)
target:=target»2 /*go left*/
lock(target)
if (tree(target)=0) then
unlock(target)
target:=target+1 /*go right*/
lock(target)
endif
unlock(|target/2})
tree(target):=tree(target)-1
endo
leaf:=target-fulllevel
x:=dequeue(leaf) /* simple fifo dispose */
unlock(target)
return(x)

end deletemin

procedure delegreater(x,h)

begin

lock(lroot)
leaf:={z] —ilb
goalTarget:=leaf+fulllevel
target:=root
/** Top-down lock of the whole side path **/
nbelim:=0
i:=leaf
j:=fulllevel /2
lock(target)
do (target#goalTarget)
target:=target*2
if (i>j) then
target:=target+1 /*go right*/
ir=i-j
else /*go left*/
lock({target+1)

19

nbelim:=nbelim+tree(target+1)
endif
j=i/2
lock(target)
endo
nbelim:=nbelim+tree(target)
/** Top-down unlock with elimination’s updating **/
target:=root
i:=leaf
j:=fulllevel /2
tree(target):=tree(target)-nbelim
unlock(lroot)
do (target#goalTarget)
target:=target*2
if (i>j) then
target:=target+1 /*go right*/
ir=1-j
else /*go left*/
nbelim:=nbelim-trec(target+1)
tree(target+1):=0 /*update sibling*/
unlock(target+1) 1t
endif
unlock(|target/2]) 1%
ji=i2
tree(target):=tree(target)-nbelim
endo
unlock(target)
end deletegreater

This concurrent description shows that the time complexity of the three basic opera-
tions will be of the same order as in the sequential one: O(log S). The storage requirement
is only increased by the number of lock components (the root and the whole tree), i.e.
2+ S. Each of the main priority queue operations (insert and deletemin) locks at most
two nodes at the same time. Any schedule of the three basic operations can be provided.

As previously explained, a top-down well-ordered lock scheme avoids deadlocks. Cor-
rectness only depends on the consistency of our concurrent operations. Obviously, the
insert downwards reverses has not changed the script of sequential implementation. The
deletegreater one consists only in reversing the summation of rightmost sibling nodes of
the side path (in order to set-up elimination information). Each required operation has
been correctly performed when it terminates.

Once again, we have to prove that lock of nodes are set off only when nodes are in a
consistency state. Clearly, insert and deletemin are prescrving this rule. The deletegreater
is concerned only during the unlock phasis. In the second downward travel, two lock-off
types may appear. The right sibling one (see mark 1t in procedure deletegreater) points
now to an empty cell, in which any process will never operate again (neither insert nor
deletemin) since the upper bound has been updated. The father’s target one (see }i) has
been updated in the previous iteration (decremented either by the number of subtree's
cells eliminated, or by this number minus its rightmost sibling one). This recurrent con-
sistency view applied, correctness of the three concurrent operations is shown.

20

3.4 Experimental results

Most of the measurement’s models to test the performance of priority queues derive
from their use to represent a particular simulation sequence. For example, a measurement
methodology widely used is the hold model, to represent the pending event set in discrete
event (priority of each item in the set is the time at which some event has to happen).
Under the hold model, each hold operation consists in a deletemin immediatly followed
by an insert, both applied on a previously fill-in priority queue. The enqueue value corre-
sponds to the dequeue value incremented by a random number. Some of the hold model
main properties, such as constant size during the all run, avoid to use it straightly for
simulating the behavior of BB operations on a priority queue. Few modifications have to
be made on this model to respect BB invariants.

Our typical BB model consists in a sequence of a deletemin, followed by two insert of
upper value’s item (generated by a random incrementation of deletemin result). Initially,
the queue is filled with one item of value equal to :lb. When the queue is empty, the
simulation ends (the non decreasing property and the knowledge of an upperbound iub
guarantee the termination).

The uniform distribution has been chosen for its simplicity and the fact that, in such
application (see in Jones [10]), its behavior is quite equivalent, than other distributions
(exponential, biased or bimodal). The seed number of the generator is set-up with the
deletemin result in order to compare experimentations, with a same number of explored
items and a same behaviour of BB running. Each execution has been repeated at least
three times in order to avoid random derivation and to discard perturbed data.

First, we have experimented the concurrent access algorithms for these two priority
queues on a CRAY-2 supercomputer’ . The CRAY-2 is an asynchronous multiprocessors
machine. Its four vector processors communicate by simultaneous reading or exclusive
writing on a shared memory (32 Mwords, CPU cycle time of 4 ns for vector operations).
The code have been developed in Fortran and generated with compiler cft77.3.1 and
Macrotasking library.

Since the number of processors is quiet small, we proceed as follows in order to have

processes with a sufficient grain size. Each insert operation is preceded by a computational
loop in order to simulate the bounding function computation. As the implementation of
the lockon strategy on CRAY-2 is rather expansive (200 cpu cycles if free, 2000+waiting
if already locked), it will increase the load of a process and it will clearly show the interest
of concurrency.
We present plots of speed-up and cpu times evolution related to the two priority queues
(see figures 4 to 7), either with global exclusive access, or with concurrent access imple-
mentation. We choose the first results obtained with a gap S = 2% = 64. The number i
of insert, which equals the number d of deletemin, is about 12000. The maximal number
of nodes n,,,, maintained in the priority queues is about 3400.

SCRAY-2 at C.C.V.R., Ecole Polytechnique, Palaiseau, France.

21

25

20

15

10

CRAY2 execution

T

T

T I 1 T

* CPUaeq/P
o exclusive funnel
+ concurrent funnel

I | 1 1

1 2 3 4 5

Number of processes

Figure 4: Times with Funnel Tree (sec.)

CRAY?2 execution

T T T T

X
o exclusive funnel
<+ concurrent funnel

Number of processes

Figure 5: Speed-up with Funnel Tree

25

20

15

10

Figure 6: Times with Skew Heap (sec.)

22

CRAY?2 execution

U T T i

¥

T
{

* CPUseq /P
O exclusive skew
X concurrent skew

T

T
X0
1

i 1 1

—

0 1 2 3 4 5

Number of processes

CRAY2 execution

T I T U

- c X
O exclusive skew
X concurrent skew

Number of processes

Figure 7: Speed-up with Skew Heap

(o

Since more significant results should be obtained on a parallel machine with more pro-
cessors for which contention will be increased, we have experimented the concurrent access
algorithms for these two priority queues on a SEQUENT Balance 8000. This machine is
also an asynchronous multiprocessors machine with a shared memory. The SEQUENT
CPUs are general purpose, 32-bit microprocessors, and are all identical. In our experi-
mental configuration, nine processors are available. The code have been developed in C
and generated with parallel library of DYNIX operating system (a multiprocessor version
of UNIX 4.2bsd).

We present plots of speed-up and cpu times evolution related to the two priority
queues (see figures 8 to 11), either with global exclusive access, or with concurrent access
implementation. We show the results obtained with a quiet big gap: S = 21 = 1024,
in order to make comparison with skew heap implementations. The number 7 of insert,
which equals the number d of deletemin, is about 38100. The maximal number of nodes
Nmes Maintained in the priority queues is about 13640.

Computational results outline several points. First, the theoretical limited speed-up
with the exclusive access on priority queue appears as a real “bottleneck” even for a
quiet small number of operating processes. Second, if the concurrent implementation
for both data structures introduces Cpu time’s overhead which is rather expansive for
an execution with few processors, its running behaviour becomes soon better than the
exclusive implementation, as predicted by computational complexity. Since initialization
and management of locks is the most part of overhead, this adding cost will decrease
with regard to bigger execution. Third, whatever the type of implementation (concurrent
or exclusive), experimental results pointed out that the funnel tree structure behaviour
seems to be quicker than the skew heap one, even for non-advantageous gap and rather
long sequence of operations.

With respect to these three points, the experimental results (associated with compu-

tational complexity ones) show that it is a crucial issue to study problems of contention
for data structures on multiprocessors with shared memory.

23

SEQUENT execution

140 ,
120 i * CPUseq/P 7]
+ ° exclu:ive funnel
100 + -+ concurrent funnel _|
+
80 -]
60 - + i
: N
40 ~ '-... o o o é‘ q_ o . . -
T+
20 \ +
0 1 1 L 1

Number of processes

Figure 8: Times with Funnel Tree (sec.)

SEQUENT execution

3 T T T T
2.5 1
o exclusive funnel
2+ + concurrent funnel + + -
+
+
1.5 0 o ° ° ° ° B
q_ o
+
1F - .
+
S + + -
0 1 1 1 1

10

o
[3V)
>
(=]
oo

Number of processes

Figure 9: Speed-up with Funnel Tree

SEQUENT execution

140 ———
120 X C PUreq/p i
© exclusive skew
100 X concurrent skew _
80 - X -
(K]
. x
60 I- T 0 0 o ® g O O o |
°. X X x X
0 i
20 - _
0 L L L L

Number of processes

Figure 10: Times with Skew Heap (sec.)

SEQUENT execution

3 T T T T
2.5 -
< exclusive skew
2+ X concurrent skew -
1.5 « X X X 7]
C O O Q@ O o o ¢
1t o x .
X
X
5p X -
0 1 L 1 1

0 2 4 6 8 10

Number of processes

Figure 11: Speed-up with Skew Heap

24

3.5 Related research

The study of the first priority queue, the skew heap, was motivated by the work of
Tarjan on self-adjusting structures (tree [21], or heap [22]). Tarjan and al. have presented
a state of art on data structures (red-black tree, leftist heap, Vuillemin’s pagoda and
binomial tree, ...) and from that previous work, have developed an amortized computa-
tional complexity theory {24] (closer to realistic use of data structure). But, as shown in
skew heap section, each self-adjusting structure is specific to a small set of basic opera-
tions, correlated or not, to a given problem. Some of these structures have been specificly
studied for algorithms with especially needs: find(h,x) operations (most of self-adjusting
trees) or decreasevalue(h,x) operations (Fibonacci heaps, ...). In none of them, the delete-
greater(h,x) operation is implemented as a basic one. An interesting work that is an
empirical comparaison of all these data structures for event-set implementations have
been done by Jones [10].

At the beginning of eighties, concurrency for data structures have been mostly stu-
died by researchers in database management. In this topic, the size of data structures
is so huge that contention is the main problem for concurrent manipulation. But most
of data structures improved focus on the find(h,x) operation (2-3 tree, AVL tree, ...), see
Ellis, 1980 [5, 6]. Later, the intuitive idea of user view serialization appears and has been
developed for designing concurrent operations in B-trees (Lehman and Yao [15], Calhoun
and Ford [3]). This ability could be found in other papers of scatter topics, like Rao
and Kumar ones, in 1988 [17], where they present an elegant concurrent implementation
of William’s implicit heap [25]. In 1989, Jones, [11], also gave a concurrent variant of
recursive top-down skew heap using the same main idea, but as his version is recursive,
our iterative proposal is different.

As concerns the second priority queue, the funnel tree, we have found in literature two
similar propositions of priority queue representations by Abel, 1972, in Knuth [13], and
by Van Emde Boas and Zijlstra, 1977 [2]. But, some fundamental differences exist. First,
they assume that the elements consist in a set (Van Emde Boas) or a subset (Abel) of n
different integers. Second, they do not consider the same set of basic operations, as their
purpose was just to present a data structure which enables to execute basic operations
in arbitrary order, they use as a mark a boolean (instead of a counter) which indicates
if the associated array’s component is occupied or not. The idea to introduce a binary
tree in order to allow easy access to a data structure may also be found in some efficient
algorithms for the shortest path problems (see Hansen, 1980, [8], and Tarjan, 1988, [23]).
We have seen that our node’s mark allows us to follow the path implied by each basic
operation from the root of the tree to the leaves (top-down operation) in order to avoid
collisions of concurrent operations. Moreover, this data structure presents obvious advan-
tages for concurrent operations in BB algorithms, which have not been not been exploited
by researchers.

25

4 Conclusion

We have presented two data structures for the parallel Branch and Bound algorithms.
Concurrent access schemes have been developed for both, with small overhead, hence e-
very schedule and type of operations can be provided concurrently. Each operation takes
the same processing time as in the sequential implementation: i.e. O(log n) for a n items
skew heap, and O(log S) for a funnel tree with gap’s size S. '

Furthermore, assuming that the processes involved run at same speed, and that the
basic operations times are comparable, we can assume that at most O(log n) processors
can manipulate concurrently the skew heap, O(log S) processors for the funnel tree respec-
tively. In a symmetrical manner, assuming that the running speed of processes involved is
non-determinated, and that each process currently using the priority queue holds at least
one node’s lock, we can assume that at most n processors can manipulate concurrently
the skew heap, 25 — 1 processors for the funnel tree respectively.

A number of P processes can concurrently perform operations with the skew heap in
at most O(P + log n) processing time instead of a O(P % log n), O(P + log S) instead of
O(P x log S) for the funnel tree respectively.

We have described a methodology to allow concurrency implementation with a top-
down access rule, which prescribes correctness. We must point out that, this methodology
can be apply to a lot of data structures based on tree construction. It can be often helpful
to create data structures with both, implicitly serializability which allows concurrency,
and good complexity for each basic operation.

Acknowledgement.

This research was supported in computer time by C.C.V.R. (Centre de Calcul Vectoriel
pour la Recherche, Ecole Polytechnique, Palaiseau, France).

26

[}

References

1]

[2]

[3]

[4]

[5]

[6]

[7]

8]

(9]

[10]

[11]

[12]

23]

(14]

[15]

[16]

Aho, A.V., Hopcroft, J., and J. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, 1974.

Van Emde Boas, P., Kaas, R. and E. Zijlstra, Design and Implementation
of an Efficient Priority Queue, Mathemat. syst. Theory, Vol.10, pp 99-127, 1977.

Calhoun, J., and R. Ford, Concurrency control mechanisms and the serializ-
ability of Concurrent Tree Algorithms, Proceedings of the 3rd ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems, Waterloo, Ontario,
Apr. 1984.

Carlier, J., and E. Pinson, An algorithm for solving the Job-Shop problem,
Management Science, Vol. 35, No. 2, pp 164-176, February 1989.

Ellis, C.S., Concurrent search and insertion in 2-3 trees, Acta Informatica, Vol.
14, pp 63-86, 1980.

Ellis, C.S., Concurrent search and insertion in AVL trees, IEEE Transactions
on Computers, Vol. C-29, No. 9, pp 811-817, September 1981.

Fox, B., Lenstra, J., Rinnooy Kan, A., and L. Schrage, Branching from
the largest upper bound: Folklore and fact., EJOR, Vol. 2, pp 191-194, 1978.

Hansen P., An O(m log D) algorithm for shortest paths, Discrete Applied
Mathematics, Vol. 2, pp. 151-153, 1980.

Hoffman, K.L. and M., Padberg, Techniques for improving the
LP-representation of zero-one linear programming problems, Laboratoire
d’Econométrie, Ecole Polytechnique, Paris, techn. rep. No. 320, May 1989.

Jones, D.W., An Empirical Comparison of Priority-Queue and Event-Set Im-
plementations, Commun. ACM, Vol. 29, No 4, pp 300-311, April 1986.

Jones, D.W., Concurrent Operations on Priority Queues, Commun. ACM,
Vol, 32, No 1, pp 132-137, January 1989.

Jones, D.W., A note on Bottom-Up Skew Heaps, SIAM J. Comput., Vol. 16,
No 1., pp. 108-110, February 1987.

Knuth, D.E., The Art of Computer Programming. vol 3, Addison-Wesley,
1973.

Lai, T. and S. Sahni, Anomalies in branch and bound, Commun. ACM, Vol.
27, No. 6, pp. 594-602, June 1984.

Lehman, P. and S. Yao, Efficient locking for concurrent operations on B-trees,
ACM Trans. Database Syst., Vol. 6, No. 4, pp. 650-670, December 1981.

Mans, B. and C. Roucairol, Priority Queues and Branch and Bound algo-
rithms: A Survey, INRIA report No. xx, To appear..

27

[17] Rao, V.N., and V., Kumar, Concurrent Insertions and Deletions in a Priority
Queue, IEEE proceedings of International Conference on Parallel Processing,
pp. 207-211, 1988.

[18] Roucairol C., Parallel Branch and Bound algorithms: an overview, in Pa-
rallel and distributed algorithms, Cosnard, Robert, Quinton, Raynal (editors),
Elsevier Science Publishers, North-Holland, pp. 153-163, 1988.

[19] Roucairol C., Parallel computing in combinatorial optimization, Computer
Physics Reports, North-Holland, Vol. 11, pp. 195-220, 1989,

[20] Roucairol C., A parallel branch and bound algorithm for the quadratic assign-
ment problem, Discrete Applied Mathematics, Vol. 18, pp. 211-225, 1987.

[21] Sleator, D.D. and R.E. Tarjan, Self-Adjusting trees, Proceedings of the 15th
ACM Symposium on theory of computing, pp. 235-246, Boston, April 1983.

[22] Sleator, D.D. and R.E. Tarjan, Self-Adjusting Heaps, SIAM J. Comput.,
Vol. 15, No 1., pp. 52-69, February 1986.

[23] Tarjan, R.E., Ahuja, R.K., Melhorn, K., and J.B. Orlin, Faster Algo-
rithms for the shortest path problem, Technical Report TR-154-88, Princeton
University, Princeton, March 1988.

[24] Tarjan, R.E., Amortized Computational Complexity, SIAM J. Alg. Disc.
Meth., Vol. 6, No 2., pp. 306-318, April 1985.

[25] Williams, J.W.J., Algorithm 232: Heapsort, Comm. ACM, Vol. 7, pp. 347-
348, 1964.

Imprimé en France
ar
I"institut National de Recherche en Informatique et en Automatique

ISSN 0249 - 6399

