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STABILIZED FINITE ELEMENT METHODS :
I. APPLICATION TO THE ADVECTIVE-DIFFUSIVE MODEL

Leopoldo P. FRANCA!
Sérgio L. FREY?2
Thomas J.R. HUGHES3

Abstract

Some stabilized finite element methods for the Stokes problem are reviewed. The
Douglas-Wang approach confirms better stability features for high order interpolations.
Next, the advective-diffusive model is approximated in the light of various stabilized
methods, a global convergence analysis is presented and numerical experiments are
performed. Biquadratic elements produce better numerical results under all stabilized
methods examined. The design of the stability parameter is confirmed to be a crucial
ingredient for simulating the advective-diffusive model, and some improved possibilities
are suggested. Combinations of these methodologies are given in the conclusions and
will be examined in detail in the sequel to this paper applied to the incompressible
Navier-Stokes equations.

METHODES DES ELEMENTS FINIS STABILISEES :
I. APPLICATION AU MODELE ADVECTION-DIFFUSION.

Résumé

Quelques méthodes d'éléments finis stabilisées sont présentées. La méthode de
Douglas-Wang a les meilleures caractéristiques de stabilité pour des interpolations d'ordre
élevé. Ensuite, le modele advection-diffusion est approximé par plusieurs méthodes
stabilis€es, une analyse de convergence globale est présentée et des essais numériques
sont faits. Les éléments biquadratiques donnent de meilleurs résultats numériques pour
toutes les méthodes stabilisées considérées. Le design d'un parameétre de stabilité est
crucial pour la simulation du modéle d'advection-diffusion et quelques possibilités sont
suggérées pour I'améliorer. Les combinaisons de ces méthodologies sont données en
conclusion. Elles seront examinées et appliquées aux équations incompressibles de
Navier-Stokes en détail dans la suite de cet article.
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1. Introduction

Simple strategies have been proposed that may overcome most of the limita-
tions found in the Galerkin method when applied to fluid flows, deformations in
incompressible media, etc. The methodology we are concerned with, consists of
adding mesh-dependent terms to the usual Galerkin method, which are functions
of the residuals of the Euler-Lagrange equations evaluated elementwise. Since
the residuals of the Euler-Lagrange equations are satisfied by the exact solutions,
consistency is preserved in these methods. The perturbation terms are designed
to enhance stability of the original Galerkin formulation without upsetting con-
sistency. Convergence results may be derived for a wide family of simple finite

element interpolations.

Stabilized methods for the advective model were introduced by Hughes and
Brooks in [2.3,13.14] and referred to as SUPG, that stands for Streamline-Upwind-
Petrov-Galerkin methods. Johnson and Navert [23,28] made a convergence anal-
vsis of this method, a very important first step to establish various extensions to
other fluid applications, (cf. [18-26,29] and references therein). These methods
are referred by Johnson and co-workers as Streamline Diffusion Methods and cur-
rently by Hughes et al. [17] as Galerkin-least-squares methods. There is already a
substantial literature on these methods and we refer to [7,8,20,22] and references

therein for background.

In this paper we extend to the advective-diffusive model context, the idea
contained in the method proposed by Douglas-Wang [5] for Stokes flow. In Sec-
tion 2, the Douglas-Wang method for Stokes problem is reviewed and compared

to the Galerkin-least-squares method [13] with respect to their different stability
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features [5,9] and with respect to numerical performance. By the virtue that the
Douglas-Wang method has improved stability characteristics employing high or-
der interpolations, it seems natural to examine the consequences of its application
to the incompressible Navier-Stokes equations. As a first step, we analyze herein
the effect of this approach on the simple advective-diffusive model. In Section 3
the method is presented and compared to other stabilized methods, a global er-
ror estimate is included and numerical tests are performed. Herein we do not
deal with shock capturing or nonlinear models for the advective-diffusive problem

(cf. [6,10,19,26] and references therein).

In addition, we readdress the quest for a careful design of the stability param-
eter, crucial for the good performance of these methods in the entire spectrum
varying from advective to diffusive dominated flows (cf. {13.17,19]). The design
of the stability parameter is slightly improved upon by taking into account recent
computations of inverse estimate constants [12]. We modify the usual definition
of the element Peclet number to include the effect of the specific finite element

polvnomial employed.

The problems considered herein are defined on a bounded domain
Q c RY.N = 2,3, with a polygonal or polyhedral boundary I". A partition Cy
of  into elements consisting of triangles (tetrahedrons in R*®) or convex quadri-
laterals (hexahedrons) is performed in the usual way (i.e., no overlapping is al-
lowed between any two elements of the partition; the union of all element domains
K reproduces Q) and a combination of triangles and quadrilaterals for the two-

dimensional case can be accommodated. Quasiuniformity is not assumed.

In what follows C, C};,&k,cl,02,. .. denote various positive constants inde-
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pendent of physical properties (diffusivity, viscosity, etc ...) and independent of any
element diameter hy, K € Ch. As usual, L*(2) is the space of square-integrable
functions in Q; L3(f2), the space of L*-functions with zero mean value in Q; (-.-)
denotes the L*-inner product in Q and || - ||o, the L*(Q)-norm. We also employ
(-.-)x and ||-]|o.x to denote the L*-inner product and norm in the element domain
K, respectively. Also, C%(Q2) is the space of continuous functions in Q, H}(Q) is
the Sobolev space of functions with square-integrable value and derivatives in Q

with zero value on the boundary I'. and, the H!-norm is denoted by || - |];.

For convenience we adopt the following notation

P,(LK) if K is a triangle or tetrahedron.

Rm(I) = { Qm(E) if A is a quadrilateral or hexahedron.

where for each integer m > 0. P, and @,, have the usual meaning,.
2. A motivation: Stokes problem studies

2.1 The Douglas-Wang method for Stokes

Let us without loss of generality consider the viscosity equal to 1/2. such rhat

the equations of Stokes flow are given by:

~V.-egu)+Vp=f in Q. (1)
V-u=0 in Q, (2)
u=0 on I (3)

where u is the velocity, p is the pressure, e(u) is the symmetric part of the veloc-

1ty gradient and f is the body force. For the discussion below, the homogeneous




L.P. Franca, S.L. Frey and T.J.R. Hughes Preprint, September 1990 4

Dirichlet boundary condition (3) sufffices (see [9] for more general boundary con-
ditions).
In principle, the finite element spaces we wish to work with are the usual

conforming spaces, given by:

Vi = {veH Qv € Ri(K)N, R €Ch}, (4)
Py ={peC®Q)NLiQ)|pn € R(K), K €Ch}, (3a)

or
P, ={pe€ L} |px € R(K), K € Cp}, (5b)

where the integers £ > 1in (4), ! > 1in (52) and | > 0 in (3b).

The (simplified) Douglas-Wang method presented in {3] can be written as:

Find uy € V, and pr € P, such that

Bpw(us,pr;v,q) = Fpw(v,q)  (v,q) € Vi x P, (6)
with
BD;V(U.p;V,Q) = (E(U),E(V)) - (v ) V,p) - (v - u, (1)
—a 5 RA(=V-e(u) + Vp.V - €(v) + V) (7)
KeC,
and
Fow(v,g) = (f,v) —a ) _ hi(f.V €(v) + Vg)n, (8)

KEC,

where a > 0 is a stability parameter, discussed below.

This method can be considered as an alternative to the method introduced in

[15], referred to as GLS here, and written as: Find us € V, and py € P, such

that

Bgrs(un,priv,q) = Fors(v,q) (v.q) € Vi x Py (9)
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with

Bors(u,piv,q) = (e(w),(¥)) = (V- v,p) — (V- u,q)
10
—a 3 M~V e(w)+ Vp -V e(v) + Vo) )
Kec,

and

Fors(v,q) = (f,v) —a > hk(f, -V -e(v) + V)i (11)
Kel,
Remarks

1. By comparing the equations (7)-(8) with (10)-(11), we note that their only

[SV]

difference is in the sign in front of V - &(v). This apparent slight change pro-
duces nicer stability characteristics for the Douglas-Wang alternative when
we employ high order interpolations (see discussion below). For linear veloci-
ties, V - g(v) = 0, and the methods coincide with each other, reducing to the
method considered in {16] for this case. If. in addition. f = 0, then they are

all equal to the method proposed by Brezzi and Pitkaranta [1].

The original methods, as proposed in [5.15], have an additional “jump” term
on pressures. which is not important to our discussion (See Kechkar and Sil-

vester [27] for further developments using “jump” terms).

2.2 Discussion of stability characteristics

In {9] improved error analysis are obtained for the methods given by equations

(6) and (9). Let us recall in this section the main results derived therein and focus

our attention to how differently stability is achieved in each method.

Let us first recall an inverse estimate [4], given by

Ce > RRIV-eWMak <lleWIIE v e Va (12)
KecC,
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where C} is a positive constant independent of Cj,.

Consider the following notation (we recall that N is the space dimension)

Py(K) if K is a triangle or tetrahedron,

Q»(R) if K is a quadrilateral or hexahedron. (13)

S(K) = {

and

Sh={veHQN vk € S(K)Y, K €Ch} (14)
We may rewrite the Theorem 3.2 of [9] for the Douglas-Wang method as follows:

THEOREM 2.1. Suppose that the solution to (1)-(3) satisfies u € H***(Q)V and

p € HTH(Q)N LE(N), and that one of the following conditions is satisfied
I. Sh C Vh\
II. P, CCR),

Then for a > 0, (6)-(8) has a unique solution satisfying
hu = unll + llp = palle < C(R*[ulkar + A [pligs). (15)
In addition, by the regularity of the Stokes problem on a convex polygon 2
fuflz + llpll: < Cliflo, (16)
the following estimate is also established
lu = unllo < C(R** ulisr + A 2|plis). ® (17)

The proof of Theorem 2.1 for the original method (including the jump terms on

pressure) can be found in [9].
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In other words, Theorem 2.1 states that the method given by equations (6)-(8)

converges for velocity and pressure at the rates given by (15) and (17) if either

1) the velocity interpolation is sufficiently high order (regardless of the degree
of the pressure interpolation | > 0 and whether the pressure is continuous or

not),

i1) the pressure is interpolated continuously (regardless of the degree of the ve-

locity interpolation k > 1).

Thus, almost any combination of velocity and pressure interpolations is con-
vergent for this method, which is a result that does not hold for the Galerkin

method (a = 0) for such a wide choice of combinations.

For GLS (equations (9)-(11)), an identical convergence result holds (see [9]),
provided the assumption of & > 0 is restricted to 0 < a« < Cy, where Cy is
the constant in equation (12). This restriction in the GLS method compared
to the Douglas-Wang alternative can be understood, if we examine the stability

characteristics of each method as follows (see [9] for further details):

For GLS:

Bors(u,piu,—p) = lle(wllf + & Y~ Wi Vollg x —a Y ARV -e(w)lf &

KeCx Kecly
> (1—aC)e(u)llf +a > ARNVPIG &
Kel,
> Cille(u)l} +a Y RNV 4
Kel

(18)

since we select 0 < a < C;..
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For Douglas-Wang: Let ¥ > 1 be a parameter to be set below:

BD‘V(uap; u, _p) = ”E(U)”g + Z h%\”-v : e(u) + vp”g.l\'

KEeC,
= el +a Y A%V ()| «
KE€C,
+2 S B (=V-e(u), o)k +a 3 RLlVaIL
KEeCy, Kec,
> e +a(l~7) Y AV - e(u)ld
Kec,
1
#(1-2)a ¥ mlThlL
7/ Keen

_ 1 o
> (1+a(l - )C7) el + (1 - —) o 3 KVRIE
Y Kec
h
> Cafle()iz + Caa > R%NVpI3 4
KeC,
(19)

if weset 1 < v < (1+Cra™?!), for every a > 0.

Therefore, the Douglas-Wang alternative is stable for any positive value of the

parameter a, whereas this parameter in GLS is bounded by Cj.

This brings us to the practical question of what the value of a should be.
From a strict theoretical point-of-view, this is an irrelevant question, since once «
1s fixed according to the rules (namely, any positive value for Douglas-Wang and
0 < a < C for GLS), then by Theorem 2.1, when the mesh is refined, we will
have to observe convergence, regardless of our guesswork. Clearly, this is not a
satisfactory answer, given that certain choices of a look unreasonable from start:
for example, take @ << 1, then both methods will behave, in practice, as if they
were the Galerkin method, and, for certain combinations of velocity and pressure

interpolations, the pathological behavior of the Galerkin method will contaminate

R
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and render useless most of the computations.

To partially address these remarks, let us test various values of a for a fixed
mesh and observe the different numerical solutions obtained. The numerical exper-
iments are performed for the “leaky” cavity problem: a unit square with velocity
boundary condition u; = l,u; =0aty=1(0<z <1)and u = 0 on the other
boundaries. Biquadratic velocity combined with continuous biquadratic pressure
(Q2/Q2C) is used on a uniform mesh with 17x17 nodes (For the detail on how
we treat the upper corner boundary condition to benefit from the Q2 approxi-
mation see, e.g., Figure 3 of [16]). In Figure 1 we show the pressure results for
GLS with a fixed (“nice”) value of o = 0.01. In Figure 2 we compare the pres-
sure elevation for two values of a using GLS and Douglas-Wang. Note that for
a = 0.0001, our concerns are numerically confirmed, and both methods perform
poorly in this “Galerkin limit™. The surprise is left for a rather “reasonable™ value
of a, @ = 1, when GLS fails and Douglas-Wang still produces a nice solution.
This can be explained by examining the value of Cy in (12). According to recent
results derived by Harari [12], for Q2. Ci¢=2 = 11/270 for square elements. There-
fore in our experiments we took GLS beyond its limit of applicability, namely,

a=1>ap,m = Ck=2 = 0.0407.

Summing up, the Douglas-Wang alternative seems more attractive for high
order methods, because it produces reasonable numerical solutions for a wide
range of the a-parameter. This prompted us to examine extensions of this idea
to the incompressible Navier-Stokes equations. To do this, in the next section, we

examine the application of this idea on a simpler model: the advection-diffusion

equation. Navier-Stokes will be treated in the sequel to this paper.




N
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3. Stabilized methods for the advection-diffusion equation
3.1 A stabilized method

Consider the (homogeneous-Dirichlet) advective-diffusive problem of finding a

scalar field u = u(x), such that
a-Vu-xAu=f in , (20)

u=20 on I’ (21)

where a(x) is the given flow velocity with V-a = 0 in 2, £k = x(x) > 0 is the
diffusivity and f(x) is a prescribed source function. The results presented herein
can be extended without any conceptual difficulty to accommodate more general

boundary conditions, following e.g. [17].

The scalar field u is approximated with the following standard conforming

approximation,
Wi = {ve Hy(Q)] vk € Re(K), K € Ch} (22)
The finite element we wish to consider is: Find up € Wy such that
Bun,v)=F(v) veW, (23)
with

B(u,v) = (a-Vu,v)+ (xVu,Vv) + Z (a-Vu—rAu,r(a-Vv+xdv))y (24)
Kel,

and

F(o)=(f,0)+ Y (fir(a-Vo+rAv))x (25)

Ke&Cy
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where the stability parameter 7 is defined from error analysis considerations as

follows:
7(x,Peg(x)) = o ( )lpf(Pel\(x))
Per(x) = mkl;;(:(())cl)th
£(Pes(x)) = {fe“'(x) j gifff' Shh

) » 1/p
|a<x>|p={(2ivzlla‘(")') . 1Sp<oo

max lai(x)] , p=00

mig = min {%, 25‘}

Ci > BhlAvB « <IVulR  vew,
ReCy

(26)

(30)

(31)

For comparison purposes, let us also review the SUPG and GLS methods for

this model [3,17):
SUPG:

Bsypg(un,v) = Fsypg(v) v € Wy

with

Bsyps(u,v) = (a- Vu,v) + (kVu, Vo) + Z (a-Vu — rAu,7a-Vv)g

Kech
and
Fsupc(v) = (f,v) + Z (f,ra- Vv)x,
Kec,
GLS:

Bgrs(un,v) = Fgrs(v) v e W,

(32)

(33)

(34)

(35)
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with

Bgrs(u,v) = (a-Vu,v)+(kVu,Vv)+ Z (a-Vu—rAu,7(a-Vv—£Av)) ) (36)

KECx
and
Fors(v) = (fiv)+ Y (f,7(a- Vv — rdv))x, (37)
KRec,
Remarks

1. Glancing through the methods. we note that their difference appears in the
T-terms through xAv which is: added in (24)-(25); absent in SUPG; and with
a minus sign for GLS. Obviously. when we employ linear elements Av =0 on
element interiors, and therefore, the three methods coincide. By introducing
the method (23)-(25) we wish to evaluate the consequences of the sign change
of xAv. which plays an important role in improving the stability characteristics

of high order elements in the Stokes problem (cf. Section 2).

™

The formulae defining 7, (26)-(31), are different than the versions of SUPG
proposed in {17,19]. We wish to combine the advantages of both approaches.
First the p-norm of a is included in the r-definition without changing the
standard definition of hy. Herein we consider the constant ék to be the
largest possible value satisfying equation (31). Existence of such constants
follows from standard inverse estimates (cf. [4]) with hx being the usual
element diameter. As defined the method needs the specific value of such
constants. Recently, Harari [12] suggested to modify the usual definition of
hi to hx = V2 Area( A')/Diagonal(K), for rectangular elements, so that for
biquadratic elements, Crma = 1/24 is obtained independent of the relative

size and shape of all rectangles in the partition (within the scope of the usual
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regularity assumption, [4]). In the numerical computations presented herein
we adopt Harari’s suggestions for Ax and the computed value Crez = 1/24.
Further improved explicit computations of Cr are desirable, since this is an

ingredient built-in in these finite element formulations.

3. We are modifying the usual definition of the element Peclet number Peg,
by including m;, which takes into account the effect of the degree of the in-
terpolation used in each method (For example, in 2-D, for bilinear elements
Ci=1 = co and for biquadratic elements Ci=y = 1/24 (see [12]) and, there-
fore, by eq. (30), my=1 = 1/3 and my=2 = 1/12). This definition may be
viewed as a rescaling of the usual element Peclet number, such that, for all
interpolations employed, the locally advection dominated flows are given by
Pen(x) > 1 and the locally diffusion dominated flows are given by Pey(x) < 1.
(See also discussion in Remark 4 in Section 3.2). This behavior follows imme-
diately from (26)-(28) since r = O(hg) for Per(x) > 1 and 7 = O(h."}\-_) for
Pej(x) < 1 simulates the correct order of 7 in those limits (see [19]). Further-
more, the formulae (26)-(30) preclude the need of further requirements on the

T parameter for deriving the error estimates presented in the next section.

3.2 Error analysis

In this section we study the convergence features of the method given by

equations (23)-(25) with stability parameter defined by (26)-(31).

The definition of r was originally designed inspecting a one-dimensional prob-
lem, with constant flow and diffusivity, absence of source. uniform mesh, linear

elements, so that SUPG produce nodal exact solutions ([13]). It has been verified
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that an asymptotic behavior simulating advection dominated flows and diffusion

dominated flows (herein given by eq. (28)) produces a stable convergent class of

methods for the advection-diffusion model (see [3,25,28] for SUPG, [17] for GLS,

and references therein). We show in this section that similar convergence results

hold for the method proposed in this work (cf. (23)-(25)) and readdress the stabil-

ity analysis for SUPG and GLS, under the new definition of 7 given by (26)-(31).

Let us initially collect immediate consequences of (26) to (30). By (30) either

or

Thus, in both cases,

Next, by (28) either

or

Thus

IA
o~

§(Per(x)) 1
Pel\'(x) -

EPen(x)) _ 1
Pep(x) =~ Pegx(x) ~

§(Pex(x))

<1
Pe;\-(x) -

Let us now present some preliminary results:

LEMMA 3.1 (Stability) : Assuming the given data a(x) and x(X) to satisfy

1L V.a(x)=0

(38)

(39)
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II. k(x) = k = constant > 0,
B(o,v) > S(xlVol} + 722 Volf) w
Proof: First note that by integration by parts, by assumption I and by (22)
(a-Vv,v)=0 ve W,

since v =0o0on I for v € Wy.

Next, by (24)

B(v,v) = 0+ s Vo3 + [7/2a- Vol = 3 72kl (40)
KEC,

Note that by (26)-(27) and (39)

h o
r(x.Pep(x)) = 9|a(l)\()| £(Pen(x))
< P
_ mkh%\' G(PCI\‘(X)) (41)
I Pep(x)
< mih%
- 4k

Thus, for each element domain A, 7 is bounded by a constant. Substituting in

the last term of (40) gives

ST kav)? g < mdf’“ S h3llav]d x  (by assumption IT and (41))

Kec, KecC,
mi 2
PP
< Z|Vol} (by (38))

(42)

Combining this estimate with (40) yields the desired result. n
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Before starting the next Lemma let us recall that by standard approximation

theory [4], for a regular family of elements, there exists an interpolant ujx €

Ry (K) such that
lu = Tnillmn € CREF ™ ulisr e Yu€ H¥Y(R),0<m<k+1 (43)

(The expression regular family of elements has the usual meaning [4]).

The following interpolation estimate can now be estabilished:

LEMMA 3.2: Assume that the solution to (20)-(21) satisfiesu € H* 1 (Q)NH}(Q).

Denoting by n = iy — u the interpolation error, for each k' € Cy

a) if Pep(x)>1. Vx € L then

17722 0liE g + IRl k722 2 Vil g + 1712 kAn][§

W1, 12 (44)
< Csuplalp b3 ™ uligy i
x€ N

b) if 0 < Pep(x) <1, VxE€EN then

- 2 2 ' 2 y 2k 2
| r=1/2 o, x + '\‘valg,lc + “7'1/2 a- v’l“%,}( + H"l/o ""’—\’7”5.1\' S Crhylulipin

(45)
Therefore,
=202 + & Vnl2 + 1712 Vg + > 72 <Al
KecC, (46)
<C Y hitlulier x(H(Pex = 1)hy supla, + H(1 ~ Pey)x)
KEC, x€EN

where H(-) is the Heaviside function given by
0, z<y .
H(I_y)—{l, T >y. (47)
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Proof: Let us first note that

hi
ﬁab

1/2
nrl“a-vmlé,K:u( :) a- Vnl2 «

b 1/2
< —;\‘H (r:r) |al2 lVTI|2]|(2),K (by Cauchy-Schwarz)
2 p

< & hi ”(f[a|p)l/2 IV77|2”(2J.1\' (by equivalence of norms on RN)
(48)

Now, we divide the proof in two parts:
(a) Let Pep(x) > 1,Vx € k. Then

e 2008 e + £IVIG e + 72 2 Vg g + 172 mA0IIG

myla(x)|phk

2 2 1z 2 b
< lal nl x+ 1 )" Ol + G2 suplal, Il
h;\ < x€R

PAYIN
2.7 1/2
mihic [ Jal 2
A .
s T (B sl
< 2 2 Tl = hi T2
™ sup |al, nllo, & + kr suplalp i Vallg x +C IS sup_ialpll o,
K x€A x€K < x€KN

+ i suplal | An|3 x
x€ K

k
< Csuplalphd  Hulig w

xXEN

(49)
(b) Let 0 < Peg(x) < 1,¥x € K. Then

=2 0l e + Rl i + 1177 @ 0l e + 72 xSl

4K Pe2.x 12 mih3.K
—_— A~ K 2 IS 2
< el + ST+ (TS ) 190l e+ TGRSl
< =2 llnlE ¢ + #ITI3 ¢+ E==0llE ke + Bl dml g
- mkhi‘. 0,K ’ mk . ) \ N

<Cxk hz.;(k luli+l,l\'
(50)
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Therefore, (44)-(46) follows from (49)-(50). ]

We may now establish the following convergence estimate:

THEOREM 3.1. Under the same hypotheses as in Lemma 3.1 and Lemma 3.2,
the solution uy of the method given by eqs. (23)-(30) converges to u, solution of
eqs. (20)-(21) as follows:

wV(un = )li§ + 177 a- V(un = w)li§ &

<C Z hi’-‘ltt,i+l‘x (H(Pek' — Dhg sup_lalp + H(l - Pel\')rc)
KECy

x€ER
where H( -) is defined in eq. (47). =

Proof: Let ey = uj — Uy and e = e, + n. The convergence proof goes as follows:

1
! (nnwhnz £ a Vehné)

-~

< B(es,en) (by Lemma 3.1)
= B(e —n,en)

= —B(n,ex) (consistency)
< |B(n, en)l

=l(a- Vn,en) +5(Vn, Ver) + > (a- V= rwdn,r(a- Ve, + rlden))n|
RECy

3k K
<|(ma- Vel + ZNValls + gliVenlls + 3 (Ir'/*a- Tnllo,n
= K€ECh
+ ]|7-’/2 r;Ar]Ho_;\—)(’Hrl/z a-Vepllo.n + ”7'1/2 cAep|lo.n)
3K
EX

1 _ K 5
Sgllfl/2a~veh!l§+21lf 1/2'7113nglthfhllav“ INAES

1
#5077 a Vel + e P a- Vallg +4 3 (i kAl i
Kec,

ST sdenl e + 3172 a VnlE +3 > Ir2 sanllg
KEcC, Kec,

1

MG



L.P. Franca, S.L. Frey and T.J.R. Hughes Preprint, September 1990 19

K K -~
< ||r’/2a~Ve,,||§+g||ve,,||§+1—,) > hkCulldenllf

- Kec,

N

_ 3k
#2123 + [T + 7Y 2 - I

+7 3 Ir 2 kA3 (by (38) and (41))
Kec,

Therefore, by the inverse estimate (31) and by combining with Lemma (3.2) yields

1
2 (<17est3 + 1722 Teal

(31)
<C Z h%\‘{:luli+l.1&' (H(Pek' - 1hk sup|al, + H(1 — Pe;\-)fc)
e xXEK
Since by Lemma 3.2
sVl + 772 a - Vnifg
(32)

<C Z RIE )iy i (H(PCK — Dhy su?']alp +H(1 - pek.),x.>
1\'6(,',, x€E K

the result follows by redefining constants in (51) and (32) and using the triangle
inequality. |

The convergence of SUPG and GLS with 7 defined by the formulae (26)-(31)
can be established similarly to the analysis above. Under the same hypotheses as
in the Lemma 3.1, let us sketch the stability arguments (error estimates can be

done as above):

SUPG
Bsupc(v,v) =0+ &|| Vol + |1/%a- Vo2 - Z (kAv,Ta-Vo)y
KE€Ch

1 1
> /|| Vol + SliT2a Vollf — 5 D It ko] i
- “ Kec, (53)

v

3k 1
IVl + 51l 2 Vol

IV

1
SRVl + 1712 a- Vul)g)
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The second to the third line follows from eq. (42), which yields stability in the

norm used in Theorem 3.1. =

GLS: Let v > 1 to be set below:

Bors(v,v) =0+ xl|Vuli + |7/ %a-Vol[f =2 Y (vAv,Ta- V)i

Kec,
+ Y NI kD0|E k
KECy
> x| Vol|2 + (1 - —) 17 /2a- Vol + (1 =) D I7/2 sddull} &

Kec,

(2-2) wrwuts + (1-2) Ir2a- vl

1
> S(xl[ V3 + 722 Tu[3)

v
(R

(54)
and a result similar to the other methods follows by choosing v = 2. ]
Remarks

1. Using the techniques presented in [17,22.25], it is not difficult to extend the

to

present method and convergence results to the time-dependent advective-

diffusive model and to advective-diffusive systems.

Note that according to the definitions (26)-(27), when |a|, — 0 = Pey — 0,

even though r remains positive. Indeed by (26)-(28) for 0 < Pex < 1 we have
r(x,Pex(x)) = —L& >0

For the degenerate situation when a = 0, the SUPG method reduces to the

Galerkin method for the Poisson equation, and GLS and the method (23)-(25)
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will be given by, respectively,

; mkhi( mkh%\-
(kVup, Vo) + Y T (kBun, Av)i =(f,v) ~ > (A
KeC, Kecly
v € W,
(55)
(«Vuy, Vo) — Z mkh%"(chuh‘Av)K =(f,v)+ Z m—khi(f Av)
b ¢ < Y 3 y 4 h N
KeCy Kech
veWw,
(56)

Replacing v by uy in (53)-(56), note that the second term is less or equal to
half of the first term (cf. eq. (42)), and therefore stability follows for both
methods, as before. The error analysis is considerably simplified and both
methods will converge with O(h*) in the H'-norm, as the standard Galerkin
method. Whether these methods will produce improved results, or not, only
a L>-estimate and numerical results could tell, which are questions left for

future works.

Nevertheless, such degenerate case becomes a very important issue when we
extend this stability parameter approach to the linearized Navier-Stokes equa-
tions. Therein when the convective term goes to zero, the methods will auto-

matically reduce to GLS and Douglas-Wang for Stokes (cf. Section 4).

3. Johnson has proposed the following design for the stability parameter r

(cf. Remark 9.5, pp. 186, [22]):

(57)
=0 ,h_l\;l%(ﬁl[SL

where C is a constant that should be small enough to attain stability, following

the analysis in Remark 9.4, pp. 186, {22] (see also [25]). With these definitions
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the stabilized methods discussed reduce to the Galerkin method for locally

diffusive dominated flows.

Let us slightly change Johnson'’s design of 7 as follows:

—— hy ! .
{T = 2'_8(?(7'; ,Pek(x) > 1; (58)

=0 , Peg(x) < 1.

Rl

which can be written in the form of (26)-(31) by replacing equation (28) with
&(Pen(x)) = H(Peg(x) — 1), where H(-) is given in (47).

Let us examine the consequences of this choice. First note that the estimate
(38) is still valid. Next, for Pej(x) > 1

_ hy 1 melax)|phy < mih3
2la(x)|p Per(x)  2x(x) ~ 4k(x)

which reproduces the estimate (41). Therefore, for Pej-(x) > 1 and under the
assumptions of Lemma 3.1, eq. (42) follows immediately. which implies the
stability estimates (Lemma 3.1, eqs. (33) and (54)) for all stabilized methods
examined. Furthermore, the error analysis considered in Theorem 3.1 is still

valid for Pex(x) > 1.

Note that the difference of alternative (57) with respect to (58) is that when
the element Peclet number is large, 7 > 75 if C < 0.3 (From Johnson's
analysis (cf. Remark 9.4, pp. 186, [22]) C < 5,;, where E’k 1s the inverse
estimate constant in (31). Employing biquadratic elements, Cres = 1/24

according to [12], and therefore, C < 0.05).

4. The expressions for 7 may be considered too restrictive. It is also possible to
define (or “tune”) r replacing expressions (26) and (27) by

ahg

TQ(X,PEC;\'(X)) - .-)| ( )I

————§(Pef(x))




L.P. Franca, S.L. Frey and T.J.R. Hughes Preprint, September 1990 23

mila(x)|ph K
2ak(x)

Pek(x) =
where « is a constant to be chosen, in principle, & > 1. In other words, this al-
ternative gives the possibility of increasing 7, for locally advective dominated
flows (Pef > 1), without compromising the delicate balance of stability for
locally diffusive dominated flows (0 < Pef < 1) due to the additional pertur-

bation term. This can be immediately seen by combining these formulas with

the remaining definition in (28)-(31), which yields:

o ahy o
TG(X,PGK(X)) = 2la():)|p Pel\'(x) Z 1
2
To(x, Pe(x)) = Z’:(};’S 0 < Pe(x)<1

Note that estimate (41) holds for this choice as well, since for Pef-(x) > 1

ah;\- 1 mk|a(x)lph1\' m/\h%
o — < A
Ta(X, Pef(x)) 2la(x)|, Pef(x)  2ax(x) ~ 4k(x)

Thus the bound (42) holds for all values of Pe}-(x) € [0,00), and stability
(in the sense of Lemma 3.1) follows for all stabilized methods examined. In
checking Lemma 3.2 for this alternative, it follows that the bound on the
interpolation error is premultiplied by «. Therefore if « is not arbitrarily
large (bounded by a “rcasonable” constant), Theorem 3.1 may be established

as before for this alternative.

However, also note that selecting large values of a apparently produces a
(purely) least-squares method, which has the well-known disatvantages of giv-
ing too dissipative numerical results for this advective-diffusive model. For
very large a’s the r-formula switches earlier on from the expression for lo-

cally advective flow (Pe%-(x) > 1) to the expression for locally diffusive flow.
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The latter tends to zero as Pey(x) — 0. Thus, very large values of a should
be avoided in this situation (otherwise we are back to the unstable Galerkin
method). Summing up, it seems that a should be understood as a “tun-
ing” parameter, not too different than one, and numerical experiments should
determine its range or a “best” value according to some criterion yet to be de-
termined. In the next section, we present numerical experiments for formulae
(26)-(31), i.e., for @ = 1. Further experiments with a > 1 shall be reported in

the future.

3.3 Numerical Results

In this section we examine the various finite element methods discussed herein
employing bilinear (Q1) and biquadratic (Q2) interpolations. First considered in
[13], the first two numerical tests are subjected to very high Peclet numbers and
are used to assess solutions which are essentially of pure advection flows. The
last numerical test is designed to assess the performance of these methods when
simultaneously subjected to an advection-dominated subdomain and to a diffusion-
dominated subdomain, which is also a situation of practical interest that occurs,

e.g., in resolving thermal boundary layers.

3.3.1 Advection in a rotating flow field

This problem is defined on a unit square of coordinates —0.5 < z,y < +0.5,

where the flow velocity components are given by

a=-y , =z (59)
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Along the external boundary u = 0 and along the internal boundary (O4),
1 =
u = §(cos(47ry +r)+1) , -05<y<0 (60)

(See Figure 3 for the problem statement). The diffusivity is x = 107%. A uniform
mesh with 31x31 nodes is employed for bilinear interpolation Q1 (30x30 elements)
and for biquadratic interpolations Q2 (15 x 15 elements). For this problem re-
sults are shown using the p-norm with p = 2 (Euclidean norm). The results are
practically identical to the results with p = oo (max norm), and, consequently,
comparisons between them are not shown. Elevation plots of u are shown in Fig-
ure 4 for the Galerkin and the SUPG methods. In this problem, which has a smooth
exact solution, both methods perform well, despite small amplitude oscillations in
the Galerkin method. There is a slight improvement in passing from Q1 to Q2,
keeping the same number of unknowns. Since the element Peclet number is very
high in this problem, the other methods (GLS and the present method (23)-(25))

give virtually indistinguishable solutions compared to the SUPG method.
3.3.2 Advection skew to the mesh

Let us consider x = 1075 and |a], = 1 on a unit square, so that once more we
have a problem with a very large Peclet number. In these problems a discontinuity
in the data at the inflow boundary is propagated into the domain, which creates
an internal layer. In addition, the problem is subjected to homogeneous essential
boundary conditions at the outflow boundary, which gives rise to outflow boundary
layers (see Figure 5 for the problem statement). These are rough numerical tests
in that various layers are present in the exact solution. In these problems, results

for the Galerkin method are highly oscillatory and, consequently, not shown here.
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As in the previous numerical test, by the virtue of the high element Peclet number
emploved, the results are practically identical among all stabilized methods exam-
ined (SUPG, GLS and the present method given by eqs. (23)-(25)). A uniform
mesh with 21x21 nodes is employed for Q1 (20x20 elements) and for Q2 (10x10 el-
ements). Results for § = arctan 0.5, arctan 1.0, arctan 2.0 are shown in Figures 6, 7
and 8, respectively. In each Figure results using the 2-norm and max norm for Q1
and Q2 interpolations are compared. Notice that all solutions present oscillations
on thin layer regions, as expected from local error analysis and numerical results
introduced earlier [13,19,25]. We should point out the considerable improvement
by selecting a Q2 interpolation, for a mesh with the same number of unknowns as
the mesh tested for Q1. Thus, the results of Q2, with a comparahble computational
effort as the results of Q1, produce a more desirable set of numerical solutions for

these test cases, employing the stabilized methods discussed. with p = oc.

3.3.3 Thermal boundary layer problem

Let us consider a rectangular domain of sides L, = 1.0 and L, = 0.3, subjected

to the following boundary conditions (see Figure 9 for problem statement):

=137 iR 1

u=0 , y=0,0<z<1.0 (62)

u=2y |, =1,0<y<05 (63)
The flow components are

ay =2y , a=0 in Q (64)
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and the diffusivity is k = 7 x 10~*. This problem may be viewed as the simulation
at the outset of a thermal boundary layer on a fully developed flow between two
parallel plates, where the top plate is moving with velocity equals to one and the
bottom plate is fixed. Taking the top plate velocity as the characteristic flow

velocity, we have for this flow a Peclet number Pe = VL, /x = 714.

We employ a mesh consisting of 21 equally-spaced nodes in the z-direction,
11 nodes uniformly distributed in the interval 0 < y < 0.1 and the same number
of nodes equally-spaced on 0.1 < y < 0.5. This amounts to subdivide the domain
into two different regions. Employing Q2 interpolations, the lower region, referred
to by the superscript (I), is constituted by rectangles with sides Y = 0.1 and
h.(yl) = 0.02 and in the upper region, (II), KD = AP = 0.1 and h(ym = 0.08.

Computing the element parameters (cf. Remark 2, Section 3.1)

n _ ﬁ.—\rea(I\')

= =0.027735 : AP = 0.088345
K™ Diagonal(IV) 0027735 5 Ay 0 Y

h

and since my=2 = 1/12 (cf. Remark 3, Section 3.1) and |a|, = a; = 2y we have

the following element Peclet numbers (cf. eq. (27)):

=3302y , 0<y<o0.l

Pell” =10.32y , 01<y<0.3

Therefore, from the numerical standpoint the domain is advectively-dominated in

(IT) and diffusively-dominated in (I) since Peg-) < 1 and Pe(,?) > 1.

In Figure 10, u-profiles are shown at z = 0.2,0.5 and 0.8 employing SUPG,
GLS and the present method. The performances of all methods are comparable.
An attentive reader may quickly protest that this is a very simple flow, even from

the numerical standpoint, since the flow is parallel to the mesh, and even the
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poorly stable Galerkin method (or central difference scheme in the finite difference
context} might work. This conjecture is not confirmed, as seen in Figure 11,
where the Galerkin method oscillates from one node to the next in the z-direction
(profiles are shown at consecutive nodes at ¢ = 0.50 and z = 0.55). The poor
performance of the Galerkin method is due to the essential outflow boundary
condition employed that creates an outflow boundary layer which contaminates

the Galerkin solution.

Finally, in Figure 12 the present method employving Q2 with my=; = 1/12
is compared to a selection of my=, = 1/3, which is a value heyond the scope of
our analysis (cf. eq. (30) and Remark 3 of Section 3.1). Oscillations pollute the
numerical solution for my-, = 1/3, confirming the importance of appropriately

designing r.

4. Conclusions

Various stabilized methods are discussed and a new one is proposed for the
advective-diffusive model. Abiding by the design of the stability parameter, similar

convergence properties and comparable numerical performance are obtained.

The importance of the r-design is readdressed and slightly improved upon
by considering a different notion of the element Peclet number. In rescaling the
element Peclet number, a natural and precise division between locally advective
dominated flows and locally diffusive dominated flows are achieved. In particular,
it is now possible to vary the definition of 7 for the advective dominated part of
the flow, without upsetting the definition on the diffusive part (cf. Remark 4,

Section 3.2).
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These findings are important for careful generalizations in other contexts. In
particular, we are interested in combining these methodologies for the incompress-
ible Navier-Stokes equations. Hansbo and Szepessy [11] have recently considered
a velocity-pressure formulation for Navier-Stokes which combines linear velocity
with continuous linear pressure. (A method for these equations in streamfunction-
vorticity is proposed and analyzed by Johnson and Saranen in [24]). In the sequel
to this paper an analysis and numerical results of the linearized Navier-Stokes
equations will be presented in detail that accommodates Hansbo-Szepessy method
and various high order methods. To antecipate some of the contents, let us consider

the following formulations: Find (up,pr) € Vi X P, such that
Bi(un,pn;v,q) = Fe(v,q)  (v,q) € Vi x Py

with
Bi(u.piv,q) = ((Vu)a,v) + (ve(u),&(v)) = (V-v,p) — (V- u,q)

+ 3 ((vu)a +Vp— vV - e(u), (x, Ren ) ((Vv)a — Vg £ v¥ - e(v)))
KeCy
+6(V-u,V-v)

\

and

Fe(v,q) = (f,v)+ 3 (f, T(x,ReK)((Vv)a—Vq:i:VV-s(v)))

£ K
Kel,

and
r(x, Rex(x)) = Q—h’%j(—')l—paReK(x))

mg ]a(x)lph;\-
2v(x)

£(Rer(x)) = { lliei\'(x) : OREKI({;);\-éxi.< 1;

Reg(x) =
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N 1/p
la(x)l, = (ZIG&(@I”) , 1<p<oo
=1

1
mg = min{g, ‘ZCk}

Cik > hilV-eMEk <leWE  veV,
REeCy

The notion of element Peclet number is replaced by element Reynolds number and
the formulae defining 7 is similar to (26)-(31). In passing, this element Reynolds
number definition also includes the information on the finite element polynomial
employed through my. Recently, Tezduyar-Ganjoo-Shih [30] have proposed to
combine the SUPG strategy with the stabilized methodology for Stokes to produce
a method for Navier-Stokes, using a related design of . The differences between
the present approach and their formulation are also discussed in detail in the sequel

to the present work.
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Figure 1. Pressure elevation and contours for the “leaky” cavity flow: 8x8 Q2/Q2C
elements employing GLS with o = 0.01.
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Figure 2. Pressure elevations for the “leaky” cavity flow: 8x8 Q2/Q2C elements.
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Figure 3. Advection in a rotating flow field: Problem statement.
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Figure 4. Advection in a rotating flow field: Results employing p = 2 in the definition
of .
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Figure 5. Advection skew to the mesh: Problem statement.
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p=x

Figure 6. Advection skew to the mesh: Results for any stabilized method with

8 = arctan0.5.
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Figure 7. Advection skew to the mesh: Results for any stabilized method with

arctan 1.0.

6
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p=2 p=o

Figure 8. Advection skew to the mesh: Results for any stabilized method with
6 = arctan 2.0.
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Figure 9. Thermal boundary layer problem: Problem statement.
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Figure 10. Thermal boundary layer problem: Comparisons between all stabilized meth-

ods employing Q2 elements.
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Figure 11. Thermal boundary layer problem: Comparison between the present stabilized
method and the Galerkin method.
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