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Models for Communications in the Hypercube

Philippe Jacquet and Paul Miihlethaler
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Abstract : In this paper we study a very simple model of communication in the
hypercube, With the assumptions of a symmetrical Poisson traffic, we develop two
analytical models to compute the maximum achievable load and mean
transmission delay of a packet. The model is also simulated and the matching
between analytical models and results of simulation is good.

Modéles pour les communications dans I'hypercube

Résumé : Dans ce papier nous étudions un modéle trés simple de communication
dans I'hypercube. Avec des hypothéses d'un trafic symétrique et de Poisson, nous
developpons deux modéles analytiques pour calculer le débit maximum
atteignable et le temps moyen de transmission d'un paquet. Le modele est

également simulé et la correspondance entre les modéles analytiques et les
résultats de simulation est bonne



LLINTRODUCTION

Interconnexion networks are extensivety used in supercomputers to ensure efficient
communication between processors which are working to the achievement of a same program.Such
networks like bayan,omega have been extensivly studied. One can find interesting results in [1]
[2]. The hypercube is also a solution to create network of processors working together. Our aim
here, is to give simple models to evaluate the performance of such a system.

Starting from very simple and natural hypothesis, we adress the problem of available bandwidth
and average transmission delay of packets.

Results of mathematical models are compared with those obtained out of simulations. The
following is divided into three parts. In the first one, we describe the structure of the hypercube
and the model for the trafic between processors. In the second one, we develop mathematical
models. In the third one we compare results obtained out of simulations with results of
mathematical models. In the appendix, one can find intermediate computations not immediatly
necessary to understand the paper.

IH.HYPERCUBE

Most of the interconnection networks in supercomputers are existing independently from
processors they are connecting. Such networks have therefore their own hardware, processors
connected by such networks are not involved in the communication process [3],{4].

In the hypercube, every processor is a node of the network and must participate to the
communication process even for packets it has not issued. Packets are forwarded on each node
until they reach their own destination. The hypercube consist of N =27 processors, each of them
has n neighbours. We can give each processor a binary address composed of n bits 0 or 1. Each
processor is physically connected with processors which have the same adress except for one bit.

A packet is sent by a station with a destination address. The packet is forwarded from
neighbouring station to neighbouring station until it has reached its destination. A given packet
has in general more than one possible path to reach its destination. A processor will therefore
choose the next processor at random among all the processors on a possible path.

It is the same if this processor had already received a packet. We can easily notice that more than
one packet can be waiting to be forwarded in a processor. The first packet arrived will be the first
forwarded.

111. ASSUMPTIONS AND MATHEMATICAL MODELS

First of all, we will use a slotted model. At each slot, each processor can send or (exclusive) receive
a packet. If, for example, a given processor has already sent a packet, other processsors won't be
allowed to send it a packet. Symmetrically a processor which has already received a packet can not
send a packet.

We easily notice that more than one packet can be waiting to be forwarded in a processor. Packets
in a processor will be forwarded FIFO, the first arrived will be the first forwarded ; new packets
generated in a processor follow this same rule than forwarded packets. We suppose that the
storage capacity of a processor is infinite .

The traffic generated by processors is Poisson of rate A packets per slot and per node, this traffic is
symmetrical. For a packet generated at a given node its destination is fairly distributed among
one of the other processors.

The model described here is based on the derivation of the probability that a node is busy ie sends
or receives a packet.



H1.1. Basic equations

Since the destination of the generated packets in a station is chosen at random among the other
processors, the probability that a packet has to do k hops exactly before being delivered is:

2" (n
1-27"\*

The probability p that a node is blocked is given by the following formula :

1
p=A (mean number of emissions per packet + (1 — — ) mean numberofreceptionsperpacket>
n

The correcting term (1-1/n) comes from the fact that a node which receives a packet is blocked for
every neighbour node except for the node which has sent the packet. The mean number of
emissions is equal to the mean number of receptions and is also equal to the mean distance
between two different nodes.
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Therefore we have :
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Let us introduce X :
X = 1 + 1 + 1
k l—plz l—p"‘l 1-p

X is the mean service time used by a packet generated at distance & from its destination (with &
hops to perform). Therefore

n 2—’l n
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is the mean service time used by a random packet. The stability of the system requires :



AX<s1.

The maximum available bandwidth is therefore Am :

A _X=1 with p=

maz 1-27" -3

Our aim now is to derive the mean time delay between the arrival of a packet in a processor and its
arrival in its destination processor. We have two models the first and the more simple is based on a
Poisson approximation ; the second one considers a Bernoulli arrival at each slot.

11L.2 Average delay with Poisson approximation

We will assume that at every given node the mixture of the traffic locally generated and the traffic
of packets transiting through the node is a Poisson traffic.

The input rate of packets passing through a random node is.

An
2(1-2"")

This rate includes packetls generated at the node and packets passing through the node.
Among these packets, there are :

n 2—!1
5 )
k’gk 1-27"

packets which are passing by the distance k. Therefore the probability v, to find a packet passing
by the distance k is :

n
N -ni{n
> 2 (z)
K=k
k n/2 '

The second moment of the service time needed for a packet at distance & to reach distance k-1 is :

1+p’t

a-phH?

Therefore the second moment of the service time is ;




Let us define :

Each node is supposed to be a M/G/1 queue. The input on each node is nA/2(1-2"), this includes
packets hopping from node to node. The mean service time for a packet to reach the next node is:

2X1-27")

n

The second moment of this service time is according to previous computations

2Q(1-2"")

n

We can now apply the well known formulas concerning the M/Gl/1 queue.The mean delay in queue
is:
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The mean delay between the generation of a random packet and its arrival at the destination
processor is :
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It comes :

ni Q
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I11.2 Average delay with Bernoulli model

At each node we decompose the traffic in packets in transit ( this traffic can be modeled as a
Bernoulli traffic ) and the packets generated locally, this traffic is Poisson. Let us introduce the
following notations :

v the probability for a random packet to hop from distance % to distance &-1.

u the rate of the Bernoulli traffic.



It is easy to see that the generating function of the time spent by a random packet before hopping
to the next node is :

The generating function of arrivals during two hops of a random packet (outside arrival plus
packets hopping from node to node) is :

& (1—p*ertz=1) |
A(z)= Z v, . IYPIRTR
k=1 1—p"(1 —p(l—=2))e

Let g(z) be the generating function of the length of the queue at each node. q(z) satisfies the
following equation :

q(2)—gq
Q(2)=A(z)—0 +q0(l —-p(1 _z))eh(z—l)‘
z .

Renewal points are the times when the queue is empty or after a service.

It comes :

A(2)=2(1 =p(1 =z))erz~ 1D

q(z)=gq, A7) —2

In the appendix, we give all the needed computations to get ¢, and ¢'(1). In particular, it will be
necessary to compute the expansion at the second order of A(z). The results of these computations
give:

2X(1-27"%
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The condition g, = 0 is equivalent to:
1+ n
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The Bernoulli rate pisequal to:

n
A=(1-2"")~A
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1-A—(1-27"
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Transiting packets arrive at slots where no packets are allowed to exit (every (1-An(1-2")/2) slots )
The condition becomes :

AX =1,
which is the same condition of saturation as in the Poisson model.

It is then possible to compute q'(1) ; we have :

2k
A2 @ vkp AZ
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According to the theory of renewal processes, the mean number of packets in a queue is :

A
g'(1) X + = ((I—q )Q+q >+§(1—q0)(Q—X)

M =

According to the Little formula,we have the average delay for a random packet:

2M

D= —m— .
An(i-27"")

III MATCHING BETWEEN RESULTS OF SIMULATION AND ANALYTICAL MODELS.

The simulation software is written in C* * and uses Sphinx an event driven simulator developped
at INRIA. To prevent fairness in bandwidth allocation the software is in charge of doing a random
permutation which selects at each slot the processor which first tries to forward its packets.

We have investigated three hypercubes corresponding to N=16, N=32 and N=64. The matching
between simulation results and results of the analytical model is very good.

IV CONCLUSION

We have presented a very simple model for communication in the hypercube based on reasonable
assumptions. Two analytical models are developped to compute the maximum achievable load
with the hypothesis of a symmetric Poisson traffic. Our model is simulated with Sphinx an event
driven simulator and the matching between simulation results and results obtained out of the
analytical models is good. Closed formulas given by the analytical models could be good tools for
people designing architectures based on the hypercube.
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APPENDIX
Derivation of g and ¢'(1).

First, we give the expansion at the second order of A(z) in the neighbourhood of 2=1:
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