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GLOBAL CONVERGENCE PROPERTIES OF
CONJUGATE GRADIENT METHODS FOR OPTIMIZATION

PROPRIETES DE CONVERGENCE GLOBALE DES
METHODES DE GRADIENT CONJUGUE EN OPTIMISATION

by

Jean Charles Gilbert and Jorge Nocedal

ADSTRACT

We study the convergence of nonlinear conjugate gradient methods without restarts,
and with practical line searches. The analysis covers two classes of methods that are
globally convergent on smiooth, non-convex functions. Some properties of the Fletcher-
Reeves method play an important role in the first family, whereas the second family
shares an important property with the Polak-Ribiére method. Numerical experiments
are presented.

RESUME

Nous étudions la convergence des méthodes de gradient conjugué pour la minimisation
des fonctions sans contrainte. Les méthodes sont supposées étre implémentées sans
redémarrage et avec une recherche linéaire réaliste (non exacte). L’analyse couvre deux
classes de méthodes qui sont globalement convergentes pour les fonctions réguliéres non
nécessairement. convexes. Dans la premiere famille, ce sont certaines propriétés de la
méthode de Fletcher-Reeves qui jouent un role crucial, tandis que la seconde famille
partage avec la mdéthode de Polak-Ribi¢re une propriété importante. Des résultats
numériques sont présentés. '

Key words: conjugate gradient method. global convergence, unconstrained optimization,
large-scale optimization.

Abbreviated title: Conjugate gradient methods.



1. Introduction.

The object of this paper is to study the convergence properties of several conjugate gradi-
ent methods for nonlincar optimization. We consider only the case where the methods are
implemented without regular restarts, and ask under what conditions are they globally
convergent for general smooth nonlinear functions. The analysis will allow us to highlight
differences among various conjugate gradient methods, and will suggest new implementa-
tions.

Our problem is to minimize a function of n variables,

min f(x), (1.1)

where [ is smooth, and its gradient ¢ is available. We consider iterations of the form
& g

) ok fork =1
i = —gr + Sdi_y for k > 2, (1.2)
g1 = X + aydy. (1.3)

where Fg is a scalar. and ay s a steplength obtained by means of a one-dimensional search.
We call this iteration a conjugate gradient method if 3. is such that (1.2)-(1.3) reduces to
the linear conjugate gradient method in the case when f is a strictly convex quadratic and
ay is the exact one-dimensional minimizer. Some of the results of this paper, however,
also apply to methods of the forin {1.2)-(1.3) that do not reduce to the linear conjugate
gradient method.

The best known formulas for 3 are called the Fletcher-Reeves (FR), Polak-Ribiere
(PR) and Hestenes-Stiefel (1S) formulas, and are given by

S = lgal P/ llax-a12,s (1.4)
B = A - gk=1)/lgx-all?, (1.5)
A= (gngx = gra1 )/ (o iy gr = grr)- (1.6)

Here, (-, -) is the scalar product nsed to compute the gradient and ||-]] denotes its associated
norm. The numerical performance of the Fletcher-Reeves (1964) method is somewhat
erratic: it is sometimes as cfflicient as the Polak-Ribiere and Iestenes-Stiefel methods,
but it is often much slower. Powell (1977) gives an argument showing that, under some
circumstances, the Fleteher-Reeves method with exact lines searches will produce very
simall displacements. and will normially not recover unless a restart along the gradient
direction is performed. T spite of these drawbacks, Zoutendijk (1970) has shown that the
method cannot [ail. Ite proved that the Fletcher-Reeves method with exact line searches
is elobally convergent on general functions. Al-Baali (1985) extended this result to inexact
line secarches.

The Hestenes-Stielel and Polak-Ribiere methods appear to perform very similarly in
practice, and are 1o be preferred over the Fleteher-Reeves method. Nevertheless, in a re-
markably laborions paper. Powell (1981) was able to show that the Polak-Ribiére method




with exact line scarches can cycle infinitely without approaching a solution point. The
same result applies to the Hestenes-Stiefel method since the two methods are identical
wlhen (gi,di-1) = 0, which holds when line searches are exact. Since the steplength of
Powell’s example would probably be accepted by any practical line search, it appears un-
likely that a satisfactory global convergence result can be found for the Polak-Ribiére and
Hestenes-Stiefel methods. In contrast, Al-Baali’s convergence result for the less efficient
Fletcher-Reeves method, is very satisfactory. This disconcerting state of affairs motivated
the present study.

In this paper we will consider various choices of 8; and various line search strategies
that result in globallv convergent methods. In §2 we describe the approach used in our
analysis, and summarize some of the previous work in the area. §3 establishes global
convergence for the class of methods with |G;] < BF®, and describes a modification of
the Polak-Ribiére formula. In §4 we consider methods that use only non-negative values
for B, and which are. in sonie sense, related to the Polak-Ribiere method. In particular,
we show that a suggestion of Powell (1985), to set By = max{B;*,0}, results in global
convergence, even for inexact line scarches. Further remarks on the convergence results
arc made in §5, and the results of some numerical experiments are presented in §6.

We note that this paper does not study the rate of convergence of conjugate gradient
methods. For some results on this subject see Crowder and Wolfe (1972), Cohen (1972),
Powell (1976). Baptist and Stoer (1977) and Stoer (1977).

2. Preliminaries.

Some important global convergence results for conjugate gradient methods have been given
by Polak and Ribitre (1969). Zoutendijk (1970), Powell (1984) and Al-Baali (1985). In
this section we will sce that the underlying approach used for these analyses is essentially
thie same, and we will describe it in detail, since it is also the basis for the results presented
in this paper. Before doing so. we describe our notation, state the assumptions we make
about the objective [unction, and consider the line search strategy.

Notation and definitions. We denote the starting point by 23, and define s := 2441 —
2k, and Y 1= grpr — gr. We say that dy is a descent direction if (gi,d;) < 0. We will also
make use of the angle 8 between —gi and dg:

cos b 1= ~(gi. di) /|| gl lldi]l- (2.1)

The Fletcher-Reeves. Polak-Ribitre and Hestenes-Stiefel methods will be abbreviated as
FR, PR and HS. respectively. For a derivation of these methods and a discussion of some
of their propertics see Gill. Murray and Wright (1981), and Fletcher (1987).

Assumptions 2.1 (i) The leecl set £:= {a @ f(x) < f(2y)} is bounded. (ii) In some

neighborhood N of L. the objective function f is continuously differentiable, and its gra-
dient s Lipschitz continuous, i.c., theve exists a constant L > 0 such that

llg(x) = g(2)]| < Lilx - 2], (2.2)



forallz,z € N.

Note that these assumptions imply that there is a constant ¥ such that
llg(2)]| £ 5. forall z € L. (2.3)

Let us now turn our attention to the line search. An efficient strategy, studied by Wolfe
(1969), consists in accepting a positive steplength «, if it satisfies the two conditions:

Sz +apde) < f(xr) + orak(gk, di) (2.4)
(9lae + ardi ), d) > oa(gr, di), (2.5)

where 0 < 07 < 03 < 1. We will sometimes refer also to more ideal line search conditions.
To this end let us define the following strategy: a positive steplength oy is accepted if

Slar + ardy) < flag + dudy), (2.6)

where @y is the smallest positive stationary point of the function & (a) := f(zr + ady).
Assumptions 2.1 ensure that &, exists. Note that both the first local minimizer as well as
the global minimizer of f along the search direction satisfy (2.6).

Any of these line search strategies is sufficient to establish the following very useful
result.

Theorem 2.1 Supposc that Assumptions 2.1 hold, and consider any iteration of the form
(1.3), where dy. is a descent direction and ay. satisfies one of the following line search
conditions: (i) the Wolfe conditions (2.4)-(2.5), or (ii) the ideal line search condition
(2.6). Then

Z cos? B ||gll® < . (2.7)
k>1

This result was essentially proved by Zoutendijk (1970) and Wolfe (1969 and 1971). We
shall call equation (2.7). the Zoutendijh condition.

We can now describe the basic ideas used for the convergence analysis. The first
results, by Polak and Ribicre (1969) and Zoutendijk (1970), assume exact line searches.
The term exact line scarch can be ambiguous. Sometimes, it implies that a one-dimensional
ninimizer is found. but often it simply means that the orthogonality condition

(gkﬂdk—l) =0, (28)

is satisfied. Throughout the paper we will indicate in detail the conditions required of
the line search. Let us suppose that dj_; is a descent direction and that the line search
satisfies Zoutendijk's condition and condition (2.8). From (1.2) and (2.8) we have that

cos 0 = |lgll/Ildll, (2.9)



which shows that dj is a descent direction. Substituting this relation in Zoutendijk’s
condition (2.7) we obtain
4
[T .
> Nowl” o, (2.10)
k21
If one can show that {||d¢||/|lgx|l} is bounded, which means that {cos 6} } is bounded away
from zero, then (2.10) immediately gives
lim g = 0. (2.11)
k—co
This is done by Polak and Ribiére (1969) for their method, assuming that f is strongly
convez, i.e., {g(x) — g(%),x — &) > ||z — &||, for some positive constant ¢ and for all z
and ¥ in L.
For general functions, however, it is usually iinpossible to bound {||dt||/[|gx]|} a priori,
and only a weaker result than (2.11) can be obtained, namely

limiaf |lgx|l = 0. (2.12)
k—co

To obtain this result one proceeds by contradiction. Suppose that (2.12) does not hold,
which means that the gradients remain bounded away from zero: there exists v > 0 such
that

Howll > 7, (2.13)

for all & > 1. Then (2.10) implies that

1
— < 0. (2.14)
L T

We conclude that the iteration can fail only if ||di]| — oo sufficiently rapidly. The method
of proof used by Zoutendijk consists in showing that, if (2.13) holds, then ||dk||? can grow
at most lincarly, i.c.,

ldil* < ¢k,

for some constant c¢. T'his contradicts (2.14), proving (2.12).
The analysis for inexact line searches that satisfy Zoutendijk’s condition can proceed
along the same lines if one can show that the iteration satisfies

cos by > ¢ |lgll/ldell, (2.15)

for some positive constant ¢. Then, this relation can be used instead of (2.9) to give (2.10),
and the rest of the analysis is as in the case of exact line searches.

Al-Baali (1983) shows that the FR method gives (2.15) if the steplength satisfies the
strong Wolfe conditions:

Flas + agdy)
[{g(xr + ("A-‘{k)edk)!

flar) + orva(gi, di) (2.16)
—a2{gk, di), (2.17)

IN A

o]



where 0 < 0} < 07 < 1. In fact, it is necessary to require that o, < % for the result to
hold. He thus shows that (2.12) holds for the FR method.
Al-Baali’s result is remarkable in another respect too. By establishing (2.15), which
by (2.1) is equivalent to
(grrdi) < —c llgxll?, (2.18)

he proved that the FR method using the strong Wolfe conditions (with o2 < %) always
generates descent directions. Prior to this result it was believed that it was necessary to
enforce the descent condition while doing the line search.

In this paper we use the approach described above to establish the global convergence
of various algorithms with inexact line searches. As we do so, we will repeatedly encounter
(2.18), which appears to be a natural way of guaranteeing descent for conjugate gradient
methods. We call (2.18) the sufficient descent condition. The first class of methods we
consider, in §3, are related to the FR method. We show that any method of the form (1.2)-
(1.3) is globally convergent if 3y satisfies |8x] < BER. The result readily suggests a new
implementation of the PR method that preserves its efficiency and assures its convergence.

In §4, we study methods with /3; > 0 that are, in some sense, related to the PR
method. A particular case is the following adaptation of the PR method, which consists
in restricting G to positive values: we let

B = max{;", 0}. (2.19)

The motivation for this strategy arises from Powell’s analysis of the PR method. Powell
(1984) assumes that the line search always finds the first stationary point, and shows that
there is a twice continuously diffcrentiable function and a starting point such that the
sequence of gradients generated by the PR method stays bounded away form zero. Since
Powell’s example requires that some consecutive search directions become almost contrary,
and since this can only be achieved (in the case of exact line searches) when 3, < 0, Powell
(1985) suggests modifving the PR method as in (2.19). In §4 we show that this choice
of f) does indeed result in global convergence, both for exact and inexact line searches.
Moreover we show that the analysis also applies to a family of methods with 8, > 0 that
share a common property with the PR method - we call this Property (+).

3. Iterations constrained by the FR method.

In this section we will see that it is possible to obtain global convergence if the parameter
Bk is appropriately bounded in magnitude. We consider a method of the form (1.2)-(1.3),
where §; is any scalar snch.that

Bkl < BE™ (3.1)
for all £ > 2, and where the steplength satisfics the strong Wolfe conditions (2.16)-(2.17)
with o9 < % Note that Zoutendijk's result, Theorem 2.1, holds in this case, since the
strong Wolfe conditions imply the Wolfe conditions {2.4)-(2.5). The next two results are
very based upon the work of Al-Baali (1985) for the FR method, and are slightly stronger
than those given by Touati-Ahmed and Storey (1990).



had}

Lemma 3.1 Suppose that Assumptions 2.1 hold. Consider any method of the form (1.2)-
(1.3), where By salisfies (3.1), and where the steplength satisfies the Wolfe condition (2.17)
with o < % Then, the method generates descent directions dj. satisfying

k-1 (gk dk k=1 .
-y a2 o g-2+z o), k=1,.. (3.2)
<o llgxl o

Proof. The proof is by induction. The result clearly holds for k£ = 1 since all three terms
equal —1. Assume that (3.2) holds for some k£ > 1. This implies that (gx,dr) < 0, since

k-1
; 1 202—1
-2 J -2 = 0, 3.3
+j§002< +1—‘72 1‘-02< (3:3)

by the condition o; < -;— Irom (1.2) and (1.4) we have

(gk+1. A1) (gr+1,dx) Bi+1 (Grs1, di)
A Y R - Lic JAR R A R S LA (3.4)
ok |? ’ llgk+11]? Bikr gkl

-

Using the line scarch condition (2.17) we have

Bk+1{gk+1, i)l € —02|Bri1l(gs, di),
which together with (3.4) gives

4 +02‘§ﬁ’;‘| {96 i) o {grt1, ditr)

|ﬂk+l| (gk’dk)‘
AT 11778 | | 179 Y

<-1-
BT, gl

From the left hand side of the induction hypothesis (3.2) we obtain

_ |/3L+11 Z 0L+1,dk+1) 1+ 2|5k+1| Z

Ard i=0 ~ lgkal? L+1 =0
Using the bound (3.1), and since ;‘7;(’, aé“ i‘ o 02 1, we conclude that (3.2) holds
for k +1. g

Lemma 3.1 achieves three objectives: (i) it shows that all search directions are descent
directions, and the upper bound in (3.2) shows that the sufficient descent condition (2.18)
liolds; (ii) the bounds on (gi,dr) impose a limit on how fast |[di]| can grow when the
gradients are not small, as we will see this in the next theorem; (iii) from (2.1) and (3.2)
we see that there are positive constants ¢; and ¢z such that

”.’Ik”
”dk“

Therefore, for the 'R method or any method with |Bc| < B[®, we have that cosfy is
propotional to ||gk|l/lldk]]. We will make good use of this fact later on.

”(lk“ -
cos by < ||d I (3.5)




Theorem 3.2 Suppose that Assumptions 2.1 hold. Consider any method of the form
(1.2)-(1.3), where B; satisfies (3.1), and where the steplength satisfies the strong Wolfe
conditions (2.16)-(2.17), with 0 < 0y < 03 < % Then

liminf ||gx|| = 0.
k—oo0
Proof. From (2.17) and Lemma 3.1 we have
Horsdir)l < —o2{gk-1,dk-1)

k-2
< a2y o3 llge-all®
7=0

< =11
| < 1o Mol
Thus, from (1.2) and (3.1)
Heell® < Ngwll® + 2186l Kgkr die—a)l + BElldie—1 ]I

202

< Honll? + T2 e o + Bl

1+ 09
< () loul? + B2lds-.

Applying this relation repcatedly, defining 6 := (1 + 02)/(1 — 02) > 1, and using the
condition |Bx| < AFR. we have

1] allgkll® + BE(allgr-1ll* + BE_1lidk-2ll*)

k
< allaall* D tasll ™2

=1

IA

Let us now assume that |lgi]| > v > 0 for all £. This implies, by (2.3), that
- ,_11
, 0% .
lldull? < T k. (3.6)

We now follow the reasoning described in §2. From the left inequality in (3.5) and Zou-
tendijk’s result (2.7) we obtain (2.10). If the gradients are bounded away from zero, (2.10)
implies (2.14). We conclude the proof by noting that (3.6) and (2.14) are incompatible. O

This theorem suggests the following globally convergent modification of the PR method.
It differs from that considered by Touati-Ahmed and Storey (1990) in that it allows for
negative values of 8. For all & > 2 let

_ﬁgn if ﬂER < —ﬁER
Be=<q Bg* i |BFR] < BE" (3.7)
BIR i BPR > BER.



This strategy avoids one of the main disadvantages of the FR method, as we will now
discuss.

We have observed in numerical tests that the FR method with inexact line searches
sometimes slows down away from the solution: the steps become very small and this
behavior can continue for a very large number of iterations, unless the method is restarted.
This behavior was observed earlier by Powell (1977), who provides an explanation, under
the assumption of exact line searches. It turns out that his argument can be extended to
the the case of inexact line searches, due to (3.5). The argument is as follows. Suppose
that at the iteration Ak an unfortunate scarch direction is generated, such that cos 8, = 0,
and that 441 = 2. Thus ||ges1]] = ||9k||, and

BER 1. (3.8)

Moreover, by (3.5),
Nlgi+1ll = llgel] < |ldi]]-

From this relation, (3.8) and (1.2) we see that ||dgy1l] = ||dell > ||gk+1]], which by (3.5)
implies that cos 8,41 & 0. The argument can therefore start all over again. In §6 we give
a numerical example demonstrating this behavior.

The PR method would hehave quite differently from the FR method in this situation.
If gryr = gr, then 373, = 0, so that by (1.2) and (3.5) cosfiyy > cosb. Thus the
PR method would recover from that situation. Let us now consider the behavior of
method (3.7) in these circumstances. We have seen that §f%; = 1, and B}, = 0, in
this case. The method (3.7) will thus set 8xy, = B[}, as desired. It is reassuring that
the modification (3.7), which falls back on the FR method to ensure global convergence,
avoids the inefficiencies of this method.

The previous discussion highlights a property of the PR method that is not shared by
the FR method: when the step is small, 3f® will be small. This property is essential for
the analysis given in the next section, where a method that possesses it, will be said to
have Property (*).

It is natural to ask if the bound | 3¢ < 8I* can be replaced by

1Bl < e BER, (3.9)

where ¢ > 1 is some suitable constant. We have not been able to establish global con-
vergence in this case (although. by modifying Lemma 3.1, one can show that the descent
property of the search directions can still be obtained provided o, < 1/(2¢)). In fact, one
can prove the following negative result.

Proposition 3.3 Consider the method (1.2)-(1.3), with a line search that always chooses
the first positive stationary point of Ex(e) := f(zr+ady). There exists a twice continuously
differentiable objective function of three variables, a starting point and a choice of B
satisfying (3.9) for some constant ¢ > 1, such that the sequence of gradients {||g||} is
bounded away from zero.



Proof. The objective function is taken from the fourth example of Powell (1984). It is
twice continuously differentiable. For this function, there is a starting point from which
the PR method with a line search providing the first stationary point fails to converge, in
the sense that ||gr|| > v > 0 for all k. Therefore using (2.3) we have for all k£ > 2

2
v
F
Bt 2 3
Combining the two inequalities we obtain
254

1B < S 67"

Therefore, if the constant ¢ in (3.9) is chosen larger than 23*/9%, the PR parameter SL*
in Powell’s example would always satisfy (3.9). a

We end this section by making an observation about the restart criterion of Powell
(1977). Even though this criterion was designed to ensure the convergence of Beale’s
method, we will apply it to the PR method, and see that it has some of the flavor of the
modifications described in this section. Powell (1977) suggests to restart if the following
inequality is violated,

gk, gr-1)| < v ”9k-1“2,

where v is a small positive constant. (Powell actually uses g; instead of gr_; in the right
hand side, but one can argue for either choice.) From (1.4) and (1.5),

PR _ FR (gkagk—1>
Bt =B -
Hgi1ll
Applying the restart criterion to the PR method we see that a restart is not necessary as
long as
BN v < BER < BER 4 v
Once more, ;® appears as a measure of the adequacy of A%, but this measure is quite

different from (3.1). In the next section we will view Powell’s restart criterion from a
somewhat different angle.

4. Methods related to the PR method with non-negative f;.

We now turn our attention to methods with 8 > 0 for all k. In §2 we mentioned that a
motivation for placing this restriction comes from the example of Powell, in which the PR
method cycles without obtaining the solution. Another reason for keeping 8; > 0 is that
it allows us to easily cnforce the descent property of the algorithm, as we will now discuss.

10



Let us consider the iteration (1.2)-(1.3) with any 8; > 0. We will require the sufficient
descent condition

{9k, dx) < —a3]|gkll?, (4.1)

for some 0 < o3 < 1 and for all &4 > 1. In contrast to the FR method, the strong Wolfe
conditions (2.16)-(2.17) no longer ensure (4.1). Note, from (1.2), that

(g5, di) = =Ngull® + Bi{gx, dk—1)- (4.2)

Therefore, to obtain descent for an inexact line search algorithm, one needs to ensure that
the last term is not too large. Suppose that we perform a line search along di._, enforcing
the Wolfe (or strong Wolfe) conditions, to obtain zg. If (gk,dk—1) < 0, the non-negativity
of B implies that the sufficient descent condition (4.1) holds. Moreover if (4.1) is not
satisfied then (gi,dr_1) > 0, which means that a one-dimensional minimizer has been
bracketed. In this case it is easy to apply a line search algorithm, such as that given by
Lemaréchal (1981), Fletcher (1987) or Moré and Thuente (1990), to reduce |{(gk, dk—1)|
sufficiently and obtain (4.1). This will be discussed in detail in §6.

We now prove a global convergence result for methods which are related to the PR
method, but that allow only non-negative values of 8. The idea of our analysis is sim-
ple, but is somewhat concealed in the proofs. We establish the results by contradiction,
assuming that the gradients are bounded away from zero:

for some v > 0, ||lgx|]| > v, for all &£ > 1. (4.3)

Lemma 4.1 shows that in this case the direction of search changes slowly, asymptotically,
and Lemma 4.2 proves that a certain fraction of the steps are not too small. In Theorem 4.3
we show that these two results contradict the assumption that the iterates stay in the
bounded level sct £. We conclude that a subsequence of the iterates converges to a
stationary point.

For the results that follow, we do not specify a particular line search strategy. We only
assume that the line scarch satisfies the following three properties: (i) all iterates remain
in the level set £ defined in Assumptions 2.1:

{zx} C G (4.4)

(ii) the Zoutendijk condition (2.7) holds; and (iii) the sufficient descent condition (4.1)
holds. We mentioned in §2 that the Wolfe line search, as well as the ideal line search (2.6),
ensure Zoutendijk’s condition and reduce f at each step, which implies (4.4). An exact line
search satisfies the sufficient descent condition (4.1), because in this case (g;, dp) = ~|lgx||?,
and in §6 we describe an inexact line search procedure that satisfies the Wolfe conditions
and (4.1) when 3, > 0. Thercfore the results of this section apply to both ideal and
practical line searches.

For the rest of the section, we assume that convergence does not occur in a finite
number of steps, i.c., g, # 0 for all k.

11



Lemma 4.1 Suppose that Assumptions 2.1 hold. Consider the method (1.2)-(1.3), with
Br 2 0, and with any line search satisfying both the Zoutendijk condition (2.7) and the
sufficient descent condition (4.1). If (4.3) holds, then di # 0 and

Y lluk - uens P < oo, (4.5)
k>2

where wg 1= di/||di]|.

Proof. First, note that d;. # 0, for otherwise (4.1) would imply gi = 0. Therefore, u; is

well defined. Now, let us define vy := —gi /l|di|| and & := Bi||dk-1]|/||dk]|. From (1.2), we
have for & > 2:

up = 1 + Spuk_1, (4.6)

which gives both
(riyaur) = rll® + x(res uk—1), (4.7)
L=kl + 6° + 26, ueo1). (4.8)

Using (4.6) and (4.8), we obtain

I7ell® + (6 — 1) + 2(6k — 1)k, ue—-1)
2(1 — 6k — (i, up—1))

2 (1 -6 -1+ 51:)(7‘k,1tk—1)> J(1 + b)),

]

[l — wr—ai?

Il

0

where the last step was obtained by multiplying and dividing by (1+ é;), which is nonzero
since By > 0. Next, by using (1.8), (4.7) and the Cauchy-Schwarz inequality, we obtain

2 (Imll? = (1 = &) (e, w1} /(1 + )
= 2(7'}:, U — uk_l)/(l + 6;;)
2llrell e = wpa /(1 + 61).

Therefore, since 1 + 8, > 1. we have for all & > 2,

ek = we—a fi?

IA

o — wr—all < 2f7ell- (4.9)
Now, by (2.1) and (4.1), we have
costy > o ”.(Jk”‘
el

This relation and Zoutendijk's condition (2.7) imply

4
m
Z ”/1\” - Z ||7‘k||2|lgk||2 < 0.

2 Mel? 55

2 lIrl? < o0,

k>2

Using (4.3), we obtain

12



which together with (4.9) completes the proof. 0O

Of course, condition (4.5) does not imply the convergence of the sequence {uy}, but
shows that the search directions uy change slowly, asymptotically.

Lemma 4.1 applies to any choice of 3; > 0. To proceed we need to require, in addition,
that 3 be small when the step is small. We saw in §3 that the PR method possesses this
property and that it prevents the inefficient behavior of the FR method from occurring.
We now state this property formally.

Property (*). Consider a method of the form (1.2)-(1.3), and suppose that
0 <y <|lgell <7, (4.10)

Jor all k > 1. Under this assumption we say that the method has Property (x) if there exist
constants b > 1 and A > 0 such that for all k:

|1Bk| < b, (4.11)

and

1
lse-1ll €A = |Bi] < 5 (4.12)

It is easy to see that under Assumptions 2.1 the PR and HS methods have Property (x).
For the PR method, using the constants v and ¥ in (4.10), we can choose b := 252/42 and
A= ~2/(2L7b). Then, we have from (1.5) and (4.10)

Ulgall + llge-aDllgrll _ 29 _

gL < <y
15 e ’

- 2

and when {|sk_1]] £ A we have from (2.2)

l,}pu! < ”.I/k—]“”gk” < L’\'_Y - i
T gl T T 2

For the HS method, we assume that the descent condition (4.1) and the second Wolfe
condition (2.5) are satisfied. Then

(di=1,9k) — (dk=1, Gk-1)

(=1 yx-1)

> _(l - U2)<gk—l,dk—l>
> (1 - 03)a)|gk-1ll®
> (1= 0,)037°
Using this in (1.6) we obtain
. 242
85 < L =,
(1- 02)03y

13



Now define A := (1 — 03)a37y?/(2L7b). Using (2.2) we see that if [[si_;]] < A, then

R a———

(1=02)037 2b
It is clear that many other choices of §; give rise to algorithms with Property (*). For
example, if B has Property (*), so do |8;| and BF := max{8y,0}.

The next Lemma shows that if the gradients are bounded away from zero, and if the
method has Property (%), then a fraction of the steps cannot be too small. We let N*
denote the set of positive integers, and for A > 0 we define K* := {i € N*: i > 2, [[si_1]| >
A}, i.e., the set of integers corresponding to steps that are larger than A. We will need to
consider groups of A consecutive iterates, and for this purpose we define

Kiyn={ieN"tk<i<k+A-1,]|siq > A}

Let IICQ'A| denote the number of elements of /C;},A and let | - | and [ -] denote respectively
the floor and ceiling operators,

Lemma 4.2 Suppose that Assumptions 2.1 hold. Consider the method (1.2)-(1.3), with
any line search satisfying (4.4), the Zoutendijk condition (2.7) and the sufficient descent
condition (4.1), and assume that the method has Property (x). Suppose also that (4.3)
holds. Then there exists A > 0 such that, for any A € N* and any indez ko, there is a
greater indez k > kg such that

A
K} Al > =.
1Kz al 3

Proof. We proceed by contradiction. Suppose that

{ for any A > 0, there exists A € N* and kg such that (4.13)

for anyv k > kg, we have IIC,i\_\| < %

Assumptions 2.1, (4.4) and (4.3) imply that (4.10) holds. Since the method has Prop-
erty (), there exists A > 0 and 0 > 1 such that (4.11) and (4.12) hold for all k. For this
A, let A and kp be given by (4.13).

For any given index I > ko + 1, we have

fled||? lgell + 18 i l])?
2Algl* + 267 ||di-1]|?
272 + 267 ||di-1 )%,

IN AN A

where the second inequality follows from the fact that, for any scalars ¢ and b, we have
2ab < a? + b2, and hence (a + b)? < 242 + 2b%. By induction, we obtain

Iill? < e (1 + 287 + 267280y + -~ + 267287, - - 2B, ), (4.14)

where ¢ depends on ||di,—1]|, but not on the index /. Let us consider a typical term in
(4.14): '
287280y - 2B, (4.15)

14



where
ko <k<l (4.16)

We now divide the 2(I — k + 1) factors of (4.15) into groups of 2A elements, i.e., if
N := (Il -k +1)/A], then (4.15) can be divided into N or N + 1 groups, as follows:

(2/;[2] ° '.2ﬂ13,.){- v ’A(2ﬁl2N'.'_' '.2ﬂZN)7 - : (4‘17)
and possibly - V

(267, - 268), (4.18)
where l; = [ (i- 1)\, fori=1,...,N+1,and'k;j = l;;; +1, for 1 = 1,..., N. Note from
(4.16) that k; > ko, for i = 1,..., N, so that we can apply (4.13) for k = k;. We thus have

A
2 3

pi = IICI}“AI < i=1,...,N. (4.19)

This means that in the range [k;,k; + A — 1] there are exactly p; indices j such that
lsj—1]] > A, and thus there are (A — p;) indices with ||s;—1]| < A. Using this fact, (4.11)
and (4.12), we examine a typical factor in (4.17),

2(A-pi)
2[)‘[2' . ..2/3}3' < 98 p2p: (%)

2A—2A+‘2p. b2p;’—2A+2pl
2pi—A

()"

< 1,

since by (4.19) 2p; — A < 0 and 2b%® > 1. Therefore cach of the factors in (4.17) is less
than or equal to 1, and so is their product. For the last group of factors, given in (4.18),
we simply use (4.11)

267, - 2B% < (2b%)2.

We conclude that cach term on the right hand side of (4.14) is bounded by (26%)?, and as
a result we have

Ndil? < el = ko +2), (4.20)

for a certain positive constant ¢ independent of /. In other words, we have shown that ||d;||?
grows at most linearly, and we now obtain a contradiction as described in §2. Recalling
that (4.1) implies condition (2.15) and using the Zoutendijk condition (2.7), we obtain

that
v <
PN EPI r B
This contradicts (4.20), concludmg> the proof. o

Theorem 4.3 Suppose that Assumptions 2.1 hold. Consider the method (1.2)-(1.3) with
the following three properties: (i) Br > 0 for all k; (ii) the line search satisfies (4.4), the
Zoutendijk condition (2.7) and the sufficient descent condition ({.1); (i1} Property (x)
holds. Then liminf ||g;|| = 0.
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Proof. We proceed by contradiction, assuming (4.3). Therefore, the conditions of Lem-
ma 4.1 and Lemma 4.2 hold. Defining u; := d;/||di||, as before, we have for any two indices

Lk, withl > k:

T — Tk

{
Y Nsicaluica
i=k

{

i
lsicalluey + O llsimall(icy — wk—1)-
i=k i=k

Taking norms,

{ 1
Yo lsicall S llzr = zecall + Y Mlsizalilluicy — urall-
=k i=k

By (4.4) and Assumptions 2.1 we have that the sequence {z\} is bounded, and thus there
exists a positive constant B such that |Jax|| < B, for all £ > 1. Thus

{ i
S lisicall S 2B+ 3 lsizallffwics — wial]- (4.21)

Let A > 0 be given by Lemma 4.2. Following the notation of this lemma, we define
A := [8B/)]. By Lemma 4.1, we can find an index ko such that

1
Z i = wia|]? € —- (4.22)
12ko 44
With this A and ko, Lemma 4.2 gives an index k > kg such that

A
K2 al > 5 (4.23)

Next, for any index ¢ € [k, k + A — 1], we ha.ve'by the Cauchy-Schwarz inequality and
(4.22)

IN

iz ~ il

i-1
> Ny = ||
=k

IA

g

S~

w3
TN
SIS
N—
-
S~
[ ]

Il
|

Using this relation and (4.23) in (4.21), with ! =k 4+ A — 1, we have

k4+A-1
1 AL AA
2B 2 3 > lsicall > 5 K Al > -
=k
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Thus A < 8B/A, which contradicts thie definition of A. o

Since the PR and HS mecthods have Property (), the previous theorem applies to them
provided we restrict ;. to be non-negative. This sugpests, among other, the following
formulae:

By = max{g;", 0}, (4.24)
B = 18c", (4.25)

and the corresponding formulae for the IS method. Of particular intcrest arc inexact line
searches, such as the Wolfe search. We formally state the convergence result for (1.2:1)
a choice of Bi suggested by Powell (1985).

Corollary 4.4 Suppose that Assumptions 2.1 hold. Consider the method (1.2)-(1.3) w:1h
8 = max{". 0}, and with a line scarch satisfying the Wolfe conditions (2.4)-(2.5) and
the sufficient descent condition (4.1). Then liminf ||g,|| = 0.

We conclude this section by noting the relationship between (4.24). which can be
viewed as an automatic restarting procedure, and Powell’s restarting criterion. The latter
states that a restart is not nceded as jong as

(k- gk-1)] < vllgrll?, (4.26)

where we now used g; and not ¢4_ in the right hand side, and where v is a small positive
constant. By (1.5) the condition 37" > 0 is equivalent to

(91 9k=1) < Nlowl*

Thus (4.24) can be viewed as a less restrictive vestarting test than (4.26). It follows that
the global convergence result of Corollary 4.4 also applics to the PR method with Powell’s
restart (4.26), provided » < 1.

5. Discussion.

Iu §3 we saw that global convergence is obsained for any fy in the interval Ty = [—gi ", 30%],
and in §1 we proved global convergence for any By with Property (*) contained in the
interval T = [0.ac). We now ask whetl:or these results can be combined to obtain larger
lntervals of admissible 3¢, In particulaz, since the PR method has Property (). we ask
whether global corversunce is obtained Ly restricting G* to the larger interval I U Iy,
re., by letting

— A% otherwise.

e
K

we{ e

frvewcstingly enough, global convergence cannot be guaranteed, and this is shown i
fourth example of Powell (1934). In this example, the sequence {f;"/0;"} has exactly
three accumulation points:

—1/3.1 and 10.
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Therefore, there exists an index kg such that 8 = g > —8(®, for all k > ko. Now, the
function can be modified and the starting point can be changed so that the PR method
generates, from the new initial point #,, a sequence {&;} with ) = 2p4x,—2, for k > 2. In
this modified example, we have ,3{,’“ > —B}:“, for all £ > 2, but the sequence of gradients
is bounded away from zero.

There is another example in which intervals of admissible 8; cannot be combined. Any
method of the form (1.2)-(1.3) with a line search giving (g, di—1) = 0 for all k£, and with
By € I3 = [~1,1], is globally convergent. This is easy to see, since in this case

Bill® < Mgwll® + el < --- < 77k,

where ¥ is an upper bound on ||g(2)||. Therefore ||d,||? grows at most linearly, and global
convergence follows by the arguments given in §2. On the other hand, Corollary 4.4 shows
that the PR method is convergent if restricted to 7, = [0,00). However the PR method
may not converge if A% is restricted to ZT3UZ, = [-1,00). The argument is again based
on the counter-example of Powell and on the fact that §{* > —1/4 for all k (this is proved
by means of the Cauchy-Schwarz inequality; see Powell (1984)). Therefore in this example
Br* € [-1,00), but convergence is not obtained.

Therefore we are not able to gencralize the results of §§3 and 4, and instead look more
closely at the conditions used in these sections. We ask under what conditions is Sp* > 0,
or f* > —pBf®. For strictly convex quadratic functions and exact line-searches, the PR
method coincides with the FR method. Since i is always positive, so is G{". Let us now
consider strongly convex functions. It turns out that in this case S * can be negative, and
in fact be less than —3f".

Proposition 5.1 There exists a C° strongly convez function of two variables and a start-
ing point &y for which the PR method with exact line-searches gives f5* < —GE* < 0.

Proof. Let usintroduce the following strictly convex quadratic function f of two variables
=2y 2():

. 1

fla):= .7;(2,) + 5.7:?2),

with gradient and Hessian (the Euclidean scalar product is assumed)

v fla) = ( 2:(;)) ) V2f(z) = ( 3 (1) )

Starting from the point 23 = (—3,3), the PR method with exact line searches gives

. -6 5 1 1
¥V flxq) = ] = — To = = .
f(x1) ( 3 ) & =g and 3(4)
Next, it finds

. 21 a4 5 1001 . 9
vf(l2)_.‘3(2)' ¥ =3 (12_—27<:1) and &9 = T
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The third point is the solution point 2. = (0,0).
We now perturb the function f inside the ball B(0,1):= {z : x?l) + x&) < 1}, defining

flz) = f(z) + ev(z),
where the function v will be such that
¥(z) =0, Yz & B(0,1), (5.1)

and ¢ will be a small positive number. As the line joining z; and #; does not intersect the
closure of B(0,1), we see that the PR method on this new function f, starting from the
same point xy, will give 9 = &3 and dp = dy. We now show how to choose the function
¥ and the number € > 0 so that f is strongly convex and G5® is negative.

We take for ¥ a function of the form

P(a) = n(z)(z),

where £ is the linear function
() := 4y — T(2),

and 7 is a C* function satisfying

L1 if xe B,
’7("‘)‘{ 0 if «¢ B(0,1

Clearly, ¥ satisfies (5.1), and has bounded second order derivatives. Therefore, by choosing
€ sufficiently small, say 0 < ¢ < ¢;, the Hessian of f will be uniformly positive definite and
f will be a C* strongly convex function.

Now, when the function f is determined in this manner, there is a unique minimum
of f from x4 in the direction dp. As

Vf(0) = Vf(0) + €V(0) = e( A )

is orthogonal to d; = d,, the one-dimensional minimum is still obtained at z3 = (0,0)
(but this is no longer the solution point). Therefore,

2V F(O)2 - (V(0),Vf(z2))  34€? — 4e/3

/3PR + ,3th —_ \ —
2o |V f(z2)|? 20/9

We see that 357 < —85% < 0,if 0 < ¢ < €3 := 2/51.
By taking € € (0,min(¢;.¢€;)) . we obtain the desired result. o

This proposition shows that the convergence result given by Polak and Ribiere (1969),
which was obtained for strongly convex functions and exact line-searches, is not a conse-
quence of Theorem 4.3, since the latter requires 8 > 0. Nor is it a consequence of Theo-
rem 3.2, because Proposition 5.1 shows that 8F® can lie outside the interval [-GF%, /7. "].
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Problem [ Name Reference n

2 Calculus of variations 2 Gill and Murray (1973) 100, 200

3 Calculus of variations 3 Gill and Murray (1973) 100, 200

6 Generalized Rosenbrock Moré et al. (1981) 100, 500

8 Penalty 1 Gill and Murray (1979) 100, 1000

9 Penalty 2 Gill and Murray (1979) 100

10 Penalty 3 Gill and Murray (1979) 100, 1000
28 Extended Powell singular Moré et al. (1981) 100, 1000
31 Brown almost linear Moré et al. (1981) 100, 200

38 Tridiagonal 1 Buckley and LeNir (1983) 100, 1000
39 Linear minimal surface Toint (1983) 121, 961

40 Boundary-value problem Toint (1983) 100

41 Broyden tridiagonal nonlinear Toint (1983) 100

42 Extended ENGVLI1 Toint (1983) 1000, 10000
43 Extended Freudenstein and Roth | Toint (1983) 100, 1000
45 Wrong extended Wood Toint (1983) 100

46(1) Matrix square root (ns=1) Liu and Nocedal (1988) 100

46(2) Matrix square root (ns=2) Liu and Nocedal (1988) 100

47 Sparse matrix square root Liu and Nocedal {1988) 100, 1000
48 Extended Rosenbrock Moré et al. (1981) 1000, 10000
49 Extended Powell Moré et al. (1981) 100, 1000
50 Tridiagonal 2 Toint (1983) 100, 1000
51 Trigonometric Moré et al. (1981) 100, 1000
52 Penalty 1 (2nd version) Moré et al. (1981) 1000, 10000
53 INRIA ults0.4 (u0=0.95) Gilbert, and Lemaréchal (1989) | 403

54 INRIA ulcrl.2 Gilbert and Lemaréchal (1989) | 455

55 INRIA ulerl.3 Gilbert and Lemaréchal (1989) | 1559

Table 1: List of test functions.
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6. Numerical Experiments

We have tested several of the algorithms suggested by the convergence analysis of this
paper, on the collection of large test problems given in Table 1.

The starting points used are those given in the references. For the problems of Moré
et al we set the parameter factor=1; for test problems 8, 9 and 10, starting point 3 from
the reference was used. .We verified that, in each run, all the methods converged to the
same solution point; otherwise the problem was not included in the test set. The problems
are not numbered consecutively because they belong to a larger test set. Since conjugate
gradient methods are mainly useful for large problems, our test problems have at least 100
variables.

The following are the methods tested; they differ only in the choice of 5;, and possibly,
in the line search.

1..FR: The Fletcher-Reeves method.

2.'PR-FR: The Polak-Ribiére method constrained by the FR method, as in (3.7).
3. PR: The Polak-Ribiére method.

4. PR*: The Polak-Ribiere method allowing only positive values of SF®, as in (4.24).

For the line search we used the algorithm of Moré and Thuente (1990). This algorithm
finds a point satisfying the strong Wolfe conditions (2.16)-(2.17). We used the values
oy = 107* and o, = 0.1 which, by Theorem 3.2, ensure that methods FR and PR-FR
are globally convergent. The line search for the PR and PR* methods was performed as
follows. We first found a point satisfying the strong Wolfe conditions, using the values of
o1 and o2 mentioned above. If at this point the directional derivative of f is negative, we
know that the sufficient descent condition (4.1) holds, and terminate the line search (this
was discussed at the beginning of §4.). On the other hand, if the directional derivative is
positive, the algorithm of Moré and Thuente has bracketed a one-dimensional minimizer,
and if the line search iteration is continued it will give, in the limit, a point z; with
(9k,dr—1) = 0. By continuity and (4.2) it is clear that the line search will find a point
satisfying the sufficient descent condition (4.1) in a finite number of iterations. In the
numerical tests we set g3 = 1072 in (4.1).

Our numerical experience with conjugate gradient methods indicates that it is advan-
tageous to perform a reasonably accurate line search. Therefore, in addition to setting
0, to the small number 0.1, we ensured that the line search evaluated the function at
least twice. The choice of the initial trial value for the line search is also important. For

. the first iteration we set it to 1/||g1||, and for subsequent iterations we used the formula

recommended by Shanno and Phua (1980), which is based on quadratic interpolation.
The tests were performed on a SPARCstation 1, using FORTRAN in double precision.
All runs were stopped when

Ho(z)lloo < 1073(1 + |f(zi))),

except for the INRIA problems for which the runs were stopped when the value of the
function reached the thresholds given in the reference. The results in Tables 2 and 3 are
given in the form: (number of iterations)/(number of function evaluations). The number
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given under the column “mod” for method PR-FR denotes the number of iterations for
which |BF®| > BER. For method PR*, “mod” denotes the number of iterations for which
BE® < 0. If the limit of 9999 function evaluations was exceeded the run was stopped; this
is indicated by “+”. The sign “x*” means that the run stopped because the line search
procedure described above failed to find a steplength. This generally occurs when the

stopping criterion is very demanding.

FR PR-FR PR PR*
P N it/l-g it/f-g [ mod 1it/f-g it/f-g | mod
2 100 405/827 405/820 351 400/812 400/812 0
3 100 | 1313/2627 [ 1313/2627 | 1313 || 1299/2599 || 1299/2599 0
6 100 * 261/547 95 256/529 254/525 1
8 100 10/36 15/49 12 9/39 12/47 2
9 100 | 7/20 8/22 6 8/25 7/20 2
10 100 116/236 93/191 91 118/244 119/244 1
28 100 | 1426/2855 1291/2584 | 1289 120/280 168/382 3
31 100 2/3 2/3 1 174 1/4 0
38 100 70/142 70/142 47 71/144 71/144 0
39 121 ' 59/122 | 4 59/122 59/122 | 0
40 100 175/351 175/351 175 132/266 132/266 0
41 100 | 29/60 24750 I 24750 24/50 0
42 1000 | 10727 9/25 8 10/34 9/30 2
43 100 | 16/41 14/39 13 16/44 13/37 1
45 100 * 74/166 66 37/90 45/109 3
46(1) 100 617/1238 253/510 248 257/518 257/518 0
36(2) 100 | 886/1776 || 251/506 | 243 || 251/506 || 251/506 | 0O
17 100 | 151/306 59/122 50 60/124 60/124 0
48 1000 79/185 71/17'2 66 26/73 23/70 3
49 100 | 1426/2855 [ 1291/2584 | 1289 117/281 168/382 3
50 100 | 72/146 T2/146 | 52 72/146 72/146 0
51 100 | 2027409 42794 12 457103 45/103 0
52 1000 3/10 3/10 2 1/12 4/12 2

Table 2: Smaller problems.

It is interesting to note that S;* was constrained in most of the iterations of the method
PR-FR, but was only rarely modified in the PRt method. Many of the problems were
run again for a larger number of variables. The results are given in Table 3.

The performance of methods PR-FR, PR and PR* is comparable. Overall, PR*
appears to be better than PR. The FR method is clearly the least efficient, requiring an
exceedingly large number of function evaluations in some problems.

In these runs the methods were implemented without restarting. We also performed
tests in which the methods were restarted along the steepest descent direction every n
iterations. (Since n is large, very few restarts were performed.) The FR method improved
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FR FR-PR PR PR*
P N it /g it/f-g | mod it/t-g it/f-g | mod
2 200 703/T4'24 701/1420 596 701/1420 701m20 0
3 200 | 2808/5617 {| 2808/5617 | 2808 || 2631/5263 2631/5263 0
6 500 * 1107/2231 433 1068/2151 1067/2149 1
8 1000 | 12/39 9/34 7 6/28 10/42 2
10 1000 | 138/281 1457299 | 142 || 165/338 || 165/338 | 0
78 1000 | 533/1102 || 1369/2741 | 1366 || 212/473 || 97/229 3
31 200 2/4 3/4 1 1/5 1/5 0
38 1000 264/531 263/529 217 262/527 262/527 ¢
39 961 * 143/290 5 142/287 142/287 0
42 10000 6/26 6/26 5 7/28 6/26 1
431000 | 10727 15/38 15 10/33 9/29 2
47 1000 422/849 114/233 92 113/231 113/231 0
48 10000 | 61/143 130/283 | 123 24/73 19/62 3
49 . 1000 | 568/1175 1369/2741 | 1366 212/473 97/229 3
50 1000 274/551 ‘273/549 245 274/551 274/551 0
51 1000 231/467 40/91 5 40/92 40/92 0
52 10000 | 4/15 /15 1 3/13 3/13 1
53 403 *% 233/494 130 237/508 237/508 0
54 455 o 44/91 7 44/87 44/87 0
55 1550 | 23/47 23749 15 23/47 23/47 0
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substantially, but this method was still the least efficient of the four. The other 3 methods
performed similarly with and without restarts, and we will not present the results here.

We now give an example that illustrates the ineflicient behavior of the FR method, as
predicted in §3. For problem 45 with n = 100, we observed that for hundreds of iterations
cos 0 stays fairly constant, and is of order 1072, while the steps ||zx — zx_1]| are of order
1072 to 10~3. This causes the algorithm to require a very large number of iterations to
approach the solution. A restart along the steepest descent direction terminates this cycle
of bad search directions and tiny steps. A similar behavior was observed in several other
problems.
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