-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Efficient routing protocols in nameless networks

Ivan Lavallee, C. Lavault

» To cite this version:

Ivan Lavallee, C. Lavault. Efficient routing protocols in nameless networks. RR-1254, INRIA. 1990.
inria-00075304

HAL Id: inria-00075304
https://hal.inria.fr /inria-00075304
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50449533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00075304
https://hal.archives-ouvertes.fr

(R,

UNITE DE RECHERCHE
INRIA-ROCQUENCOURT

Institut National
de Recherche
en Informatique
et en Automatique

Domaine de Voluceau
Rocquencourt
BP105 -
« 78153 Le Chesnay Cedex
France
Tel:(1) 39635511

Rapports de Recherche

N° 1254

Programme 2
Structures Nouvelles d’'Ordinateurs

EFFICIENT ROUTING PROTOCOLS
IN NAMELESS NETWORKS

Ivan LAVALLEE
Christian LAVAULT

Juin 1990

I

"EFFICIENT ROUTING PROTOCOLS
IN NAMELESS NETWORKS*

DEUX PROTOCOLES DE ROUTAGE EFFICACES
POUR DES RESEAUX ANONYMES QUELCONQUES

Ivan LAVALLEE Christian LAVAULT

E_mail : lavallée/lavault@seti.inria.fr

This work was supported in part by C, COPARADIS Group.

1

Abstract

Two types of distributed fully asynchronous probabilistic algorithms are given in
the present paper which elect a leader and find a spanning tree in arbitrary anonymous
networks of processes. Our algorithms are simpler than in [11] and slightly improve
on those in [9,11] with respect to communication complexity. So far, the present
algorithms are very likely to be the first fully and precisely specified distributed com-
munication protocols for nameless networks. They are basically patterned upon the
spanning tree algorithm designed in [7,8], and motivated by the previous works pro-
posed in [9,11].

For the case where no bound is known on the network size, we give a message ter-
minating algorithm with error probability € which requires O(m loglog(nr) + nlogn)
messages on the average, each of size O(logr + loglogn), where n and m are the
number of nodes and links in the network, and r = 1/e. In the case where some
bounds are known on n (N < n < KN, with K > 1), we give a process terminating
algorithm, with error probability ¢, with O(m + nlogn) messages of size O(logn) in
the worst case. In either case, the (virtual) time complexity is O(D x loglog(nr)). In
the particular case where the exact value of n is known, a variant of the preceding
algorithm process terminates and always succeeds in O(m + nlogn) messages of size

O(logn).

Keywords : Probabilistic algorithm, Anonymous network, Election, Spanning tree,
Analysis of probabilistic algorithms.

Résumé

Nous proposons dans ce rapport deux algorithmes probabilistes entiérement asyn-
chrones qui permettent de réaliser une election et de construire un arbre couvrant
dans des réseaux anonymes quelconques. Nos algorithmes sont plus simples que ceux
présentés en [11] et améliorent légérement la complexité en communication par rap-
port & [9,11]. Par ailleurs, ces algorithmes sont, & notre connaissance, les premiers du
genre dont la specification est totalement et précisement réalisée. Fondamentalement,
ils sont congus a partir de D’algorithme de construction d’arbre couvrant proposé en
[7] et la motivation de ce travail provient des problémes soulevés dans [9] et [11].
Dans le cas ou le réseau est non borné (la taille du réseau est totalement inconnue
des processus), nous présentons un algorithme & terminaison par message de proba-
bilité d’erreur € qui nécessite en moyenne O(m loglog(nr) + nlogn) messages de taille
O(logr + loglogn), ou n et m sont, respectivement, le nombres de sites et le nom-
bres de liens de communication du réseau, avec r = 1/e. Lorsque le réseau est borné
(i-e. n est connu et tel que : pour K > 1, N < n < KN), nous proposons un algo-
rithme & terminaison par processus de probabilité d’erreur ¢, dont la complexité en
message dans le pire des cas est O(m + nlogn) avec des messages de taille O(logn).
Dans ces deux cas, la complexité en temps (virtuel) est O(D x loglog(nr)). Dans
le cas particulier ou la valeur exacte de n est connue d’ au moins un processus, une
variante de 1’algorithme précedent a terminaison par processus résout sans erreur les
deux problemes en O(m + nlogn) messages de taille O(logn). Les algorithmes ont
de bonnes mesures complexité en communication sur des toplogies particuliéres telles
que ’anneau ou le réseau complet.

Mots Clés: Algorithme probabiliste, Réseaux anonymes, Election, Arbres couvrants,
Analyses d’algorithmes probabilistes.

Contents

1 Introduction 4
2 Preliminaries and results 4
21 DefiNitions v v vt e 4
2.2 Results. v v v i e e e e e e e e e e e e e e 5

8 The Algorithm A; 6
3.1 High Level Description, 6
3.1.1 TheMerging Processttt 7

3.1.2 The Combination Rules 8

3.1.3 TheNotionof Credit. 0.... 9

3.1.4 Messages comb and Termination 10

3.2 Notations o v i v i it e e e e e e e e e e 10
3.2.1 Messages, Variables and Arrays 10

3.2.2 Specificationin CSAP e 11

3.3 Procedures e e e e e e e e e e e e 12

4 Correctness 13
5 Analysis 14
6 The Algorithm A, 18
6.1 The Modified Procedure INIT 18
6.2 Analysis e e e e e e e e e 19

7 Open Problems 22
8 Annex 25

1 Introduction

In a distributed algorithm, a network of processes collaborate to solve a given problem.
In this framework, each site or process acquires, via local interaction with its neighbours,
some global information about the system : e.g. the size of the network, its location in a
(minimum-weight) spanning tree, the distances to all other processes, etc. Typically, one
assumes that the processes have distinct identification labels or identities, which means
that some global coordination between the processes has taken place beforehand. What
happens if this assumption is dropped, so that the processes are indistinguishable ? Con-
sider for example regular nameless networks of some fixed degree. The executions of a
deterministic algorithm may end with all processes in the same state, irrespectively of the
network size or structure ; a deterministic algorithm cannot distinguish between processes
of a regular distributed system, nor can it distinguish between distinct regular networks
of the same degree (see [4,5]).

The situation is different if processes are assumed to make independent probabilistic
choices ; probabilistic choices can be used to break symmetry in anonymous networks of
indistinguishable, nameless processes. When designing election algorithms for the leader
election problem (LEP) and spanning tree construction problem (STP) in anonymous
networks, one has to consider the following issues : relative information on the network
size and termination detection [1,2,3,5,6,8,9,11].

2 Preliminaries and results

2.1 Definitions

We consider here the standard model of static asynchronous network. This is a point-
to-point communication network, described by an undirected communication graph G =
(V, E) where the set of nodes V represents processes of the network and the set of edges E
represents bidirectional non-interfering communication channels (links) operating between
neighbouring nodes ; |V| = n and |E| = m. No common memory is shared by the
processes. We confine ourselves only to message-driven algorithms, which do not have
central controller and do not use time-outs, i. e. processes cannot access a global clock
in order to decide what to do. In a tranmsition, a process receives a message on one of
its links, and changes state ; a transition may be probabilistic. We may also assume
w.l.o.g. that the same algorithm resides at all nodes of the network and that each process
simultaneously start executing its algorithm. Indeed, any process may actually start
executing its algorithm either spontaneously at any arbitrary moment or upon receipt of
a message which triggers the computation (see procedure IINIT). We finally assume
throughout the processes and the communication subsystem to be error-free, and that the
links operate in a FIFO-manner.

The course of any execution of an algorithm is determined by a scheduler, that
chooses at each step the next message to be received, as a function of the current network
state. An algorithm process terminates if in every execution all processes reach a special

halting state ; this corresponds to an algorithm with termination detection. An algorithm
message terminates if in every execution the network reaches a quiescent state where
there are no pending messages on the links [11]. In message termination, the processes
may ignore that the computation is halted ; this corresponds to an algorithm without
termination detection. An algorithm has error probability e if, for any scheduler and any
input, the probability that the algorithm terminates with the right answer is at least 1 ~e.

Our algorithms in the present paper are “Monte Carlo” probabilistic algorithms
which occasionally make a mistake, but find a correct solution with high probability what-
ever the instance considered. These algorithms are (1 —¢€)-correct Monte Carlo algorithms.

2.2 Results

We address the problem of computing a function whose value depends on all the network
processes, such as counting the number of nodes in the graph G associated to the network,
or solving LEP and STP for G. In [6], Itai and Rodeh showed that these problems can be
solved on a ring by an algorithm which processor terminates (or distributively terminates)
and always succeeds if and only if the ring size n is known up to a factor of two (see also
[1,2,5] for improvements). It was also shown in [6] that it is possible to solve LEP in an
anonymous network, with termination detection and with error probability ¢ only if an
upper bound on the network size is known.

In [8,9,11] and in the present paper, all of these results were extended to arbitrary
networks, while improving some of the bounds. In [11], Schieber and Snir presented
efficient schemes of algorithms for LEP and STP ; in [9], Matias and Afek proposed more
detailed schemes of three types of simple algorithms which efficiently solve LEP.

Given some 0 < € < 1, let r = 1/e. On the assumption that the exact value of n is
a priori unknown to any process of the network — and thus without termination detection
—, the probabilistic solutions given in [11] require O(mloglog(nr) + nlogn)' messages of
size O(logn + log), for fixed error probability €. The probabilistic solutions given in [9]
require O(mlogn x rlog r) messages of size O(logr +loglog n) on the same assumptions.
In the case when n is known up to a factor of K > 1, that is N < n < KN, [9] achieves
O(m x rlog(Kr)logr) messages of size O(logn), in the worst case, with N < n < 2N,
The time complexity in [9,11] is O(D) and O(n), respectively, where D is the diameter of
the network.

Our algorithms are simpler than in [11] and slightly improve on those in [9,11] with
respect to communication complexity. Compared to [11], we give overall solutions with
improved bit complexity and less bit information per node ; the message complexity in
[9] is also higher than ours. Moreover, to the best of the authors’ knowledge, the present
algorithms are very likely to be the first fully and precisely specified probabilistic protocols
to solve LEP and STP in nameless networks. On the other hand, our “time complexity”
is slightly higher than in [9,11].

For the first algorithm A;, on the assumption that n is a priori unknown to the processes
— and thus without termination detection —, the expected message complexity is

I Throughout the paper, log denotes the base two logarithm and In the natural logarithm.

O(m xloglog(nr)+nlog n), each message of size O(log 7+log log n), with probability
>1l-—e

Assuming n is known up to a factor of K > 1, thatis N < n < KN, the second algorithm
Aj requires — in the worst-case, and with termination detection —, O(m + nlog n)
messages, of size O(log n), with probability > 1 — .

Whenever the exact value of n at least known to one process — and with no error —,
the complexity of Ay shrinks to O(m + nlog n) messages, with message size O(lg n)

Algorithms A; and A3 run in (virtual) time O(D x loglog(nr)). A; and A; also require
O(log r + loglog n) and O(log n) bits of state information per node, respectively.

In section 3 we fully describe the message terminating algorithm A; which solves
LEP and STP in arbitrary (connected) anonymous networks with fixed error probability
€ when n is unknown. In section 4 we give the correctness proof of algorithm .4;, followed
by a brief analysis of the communication and time complexity in Section 5. Section 6
is devoted to the algorithm .A;. Assuming n is known up to a factor of K > 1, Ay is a
process terminating protocol which solves LEP and STP in general (connected) anonymous
networks with probability > 1 — €. Description, correctness proof and complexity analysis
of algorithm A, are given in section 6. The Annex gives a full specification of algorithms

A; in CSAP, an asynchronous variant of CSP.

3 The Algorithm A,

For algorithm .4;, we assume that no bound is known on the size n of the input graph
G. In the sequel, we show how the same algorithm A; can be modified in A3 to handle
the simpler case when there are bounds on the size n of G. For the sake of brevity, we
consider only the case when G is connected. The algorithms and their analysis can be
easily extended to the case when the input graph is not connected.

3.1 High Level Description

At each point in the algorithm a rooted forest of G is maintained which is composed
of subtrees building a spanning tree of G. The algorithm start by taking the spanning
forest which consists of each one of the nodes as a subtree or fragment of size one. Upon
termination, there is a single tree spanning the whole network, the root of which is the
elected leader, with probability > 1 —e.

At each node-process P;, we maintain the variable id;. This variable contains in-
formation on F; to which P; currently belongs. Define id;, the identity of process P;, as
follows :

Each process tosses a fair coin until a "head” occurs. This experiment is repeated &
times. Estimate logn as j, the longest waiting time for head in any of the & trials.
Let t; be a function of j defined as the number of tosses until P; tossed a head for

the first time in any of the k trials. Finally denote this procedure of choosing t; as
ESTIMATE (t).

Each process P; randomly selects a label s; from some domain I of size d, where d =
O(rlogr) (recall r = 1/¢, the value of d will be given in the analysis). These n initial
random drawings in the range [1,d] take place during the initialization procedure

INIT . Notice that throughout the paper, the domain I is a poset.

Finally, let id;, the identity of process P, be the ordered pair id; = (si,t;) (see procedures
INIT and ESTIMATE (t) in subsection 3.3). Note that a lexicographic order

on id; is defined in the natural way.

Initially, each fragment consists of a single node-process which is its own root. Similarly,
In the course of the algorithm, the tdentification number of a current fragment F; is the
identity of its root : id;.

38.1.1 The Merging Process

For any node a, its fatheris the next node on the path from node a to the root of the tree ;
root has no father. In the course of the algorithm, every fragment F finds an outgoing
edge (a,b) (a being an outgoing son of F). Eventually, either F' gets absorbed or merged
into the fragment on the other side of edge (a,b), becoming a subtree within bigger tree, or
F captures the latter fragment, this according to Sollin’s property [7,8], with probability
>1-—ce

However, in contrast to most distributed spanning tree algorithms which use the
technique of levels to ensure a balanced growth of the current fragments (thus pseudo-
synchronizing the algorithms), with merging process completed by means of wars between
kings which result in annezations of kings’ territories, our combination of fragments pro-
ceeds fully asynchronous as follows :

(i) A given fragment F is candidate for merging into some other fragment G : the root of
F sends a message of combination request denoted by comb to G. The combination
process never works in the (usual) reverse direction : viz. usually, the king of F asks
the king of G to capture his territories, not to get captured.

(#i) Any request of F' to get merged into G can only be initiated by the one privileged
node in F which may send messages comb, but it may be accepted (or rejected) by
the first node of G which receives the message comb.

(iti) Consider a chosen outgoing edge (a,b) in the network and suppose it is traversed
by a first message comb from node a to node b. In our algorithms, rejection of
that first message changes link (a,b) into the virtually directed link (b — a). Such a
virtual link reversal works in such a way as to strictly ensure that the next message
comb sent through this very link shall traverse in the reverse direction from node b
to node a. This “flipping-the-edge” mechanism is completed here by updating the
boolean array PORT([] at every node (see subsection 3.2.1). Thus the combination
process let the fragments grow possibly unbalanced and proceeds fully asynchronous.

Yet, it turns out that the fragments do combine and grow properly altogether since
the combination rules enforce any “worst merging case” to change into a somewhat
“best merging case” after one or only very few execution stages.

Note that for a given fragment, the first and second rules allow a fully decentralized
handling of several messages comb simultaneously.

3.1.2 The Combination Rules

Consider two fragments F' and G with identification numbers id; for the root of F and id;
for the root of G, respectively. Let (z,y) be an outgoing edge between F and G such that
z € F and y € G, and assume that process £ owns in fragment F the privilege of emitting
the message comb (see subsection 3.1.4 for description of this property that there is only
one process at a time having such a privilege in a given fragment).

Suppose z sends y a message comb asking G to let F' get merged into G. Owing to
the partial ordering in the domain I , two main cases may occur :

Either id; # id; ; the merging operation is thus performed (or aborted) as usual, according
to the order relation between id; and id; : the process y may locally decide to send
back either a rejection message nok or an acceptance message ok to the process z

(see [7,8)),

or id; = id; ; in this second case, it is absolutely impossible to accept a priori the
combination request of process x because of the possible risk of building a cycle. On
the other hand, it is neither possible to simply reject a priori this (possibly fair)
request.

In such a situation, two conditions may actually arise. Either both processes z and
y belong to the same fragment (F = G), or not (F # G). Notice that, owing to their fully
local information, no process can distinguish the first condition from the second. Let P;
be the root of fragment F. In order to break the symmetry,

e y sends back a message equal to z, which passes up the message equal to the root
P;.

e Now the behaviour of root P; depends on the current value of its local variable credit,
viz. the current number of remaining random changes of identities with which P; is
still credited at this point in the algorithm : initially, the counter variable credit is
set to r in the procedure INIT (see subsection 3.1.3 for a precise definition of this
notion of credit).

If credit > 0, then the procedure RANDRAW is called, which makes P; ran-
domly select a new identity id; such that id} > id; (s} is randomly chosen in the
range [s; + 1, s; + d] : see subsections 3.1.3 and 3.3). Thereafter, the messages
newroot update each process’ identity within F to the new value id; chosen
in RANDRAW . credit is also decremented by 1.

If credit = 0, there is no way for P; to randomly select a new identity since the
root is no more credited with any random draw. Thus P; may regard equal as
a message received (via z) from some process (y) which actually belongs to its
own fragment F.

e P; sends y a message cousin via the same path used by the message equal to
traverse F. Note that a linking method must be used to keep track of this traversal.
Each process thus maintains a local logical clock 7 which is incremented by 1 each
time a process passes a message up to its father. The message contains this updated
time 7. Moreover, an array denoted by TABLE[r] is also maintained at each one
process which keeps the current values of 7 (the local time of the given process),
j (the number of the port through which the message was sent) and 7’ (the local
logical time for the process at the end of the port j). The method is fully described

in [8] (see also subsection 3.2.1).

e The receipt of a message cousin allows z to clear up the ambiguity of equal. So, «
locks its port labeled y, and updates its variables PORT and open. Then either z
keeps on sending messages comb to its neighbours as long as there still remains one
free neighbour (with open # false), or z grants its father the privilege of emitting
the message comb if none of its neighbours is free.

3.1.3 The Notion of Credit

The notion of credit and the variable credit arise here as a specific control parameter
which is fixed in advance to tune the precision of the algorithm. At each onme root and
at each point in the algorithm, the local counter variable credit is the current number
of remaining random drawings the root of the current fragment is granted to randomly
choose a new identity if necessary, in using procedure RAINDRAW . As to the procedure
RANDRAW |, it strictly increases the current random value of the identification number
id; of the fragment F; : viz. a number a being randomly drawn in the range [1,d], where
d = O(rlogr), s; is set to s; + a. We thus ensure that the new identity (s},t;) keeps the
same estimate t; (see subsection 3.3 for a full specification of INIT and RANDRAW).
Initially, every process is credited with r possible random changes of identity in the course
of the algorithm : in the initialization procedure INIT | credit :=r.

The larger the fixed credit, the better the algorithm. Namely, with fixed error
probability 0 < € < 1 and with credit credited with r possible random drawings in the
range [1,d], the algorithm solves (LEP) and (STP) with probability > 1 — ¢. In some
executions, the algorithm may use only part of its drawings’ credit and yet find a spanning
tree with probability > 1 — ¢. On the other hand, some executions of the algorithm may
consume the whole credit and yet terminate only with a spanning forest with fixed error
probability e.

8.1.4 Messages comb and Termination

Within each one fragment, only one single process at a time is allowed to emitt comb mes-
sages. When two fragments merge, the process which asked for merging, and was allowed
to send messages comb, looses this privilege upon receipt of message ok. The receipt
of either nok or cousin, causes the port used by the message comb to get locked with
the logical array PORTY]] (see subsection 3.2.1). If no more port is available to messages
comb, the process with the comb emission privilege grants its father the privilege, which
in turn locks the corresponding port.

Suppose the privilege owner is the root of a fragment. If none of its ports is available
any more, then the algorithm message terminates (see [8] for a full description). In the
case where the exact value of n is known to at least one process, the process termination of
the algorithm is fully completed whenever some process eventually learns that it belongs
to some tree of size n which thus spans the whole network (see subsection 6.2).

3.2 Notations

3.2.1 Messages, Variables and Arrays

Messages are composed of four records and denoted by < «,3,v,6 >.
The first record is the identification number of the sending fragment.

The second record is an element of the set {comb, ok, nok, equal, cousin, merge,
newroot, end}. This record is the message stricto sensu.

The third record is a boolean variable which possibly sets the logical state of the consirered
port.

The last record is a local logical time (see subsection 3.1.2 and (8]).

The algorithm uses three local arrays, PORT, SON, and TABLEFE, with the following
definitions :

1. PORT{] is a logical array with the ports’ labels of the current process as indices.
Note that each process is assumed to locally distinguish between its different ports.
PORT|] enables the current process to update the labels of the ports through which
messages comb may still be sent : PORT[i] = true or false, either if the port labeled
i is still available, or not, respectively. Imitially, (Vi) PORT[i] := true. When the
procedure UPDT (y, PORT,open) is called, PORT(y] is set to false upon receipt
of either a message ok or nok, or cousin.

2. SON|] is a boolean array with the ports labels of the sons of the current process as
indices. SON|] enables the current process to know its sons :
(SON[i] =1) <= (The process connected to port ¢ is a son of the current process).

10

3. TABLE]] is a list data structure with the values of the local logical clock as indices
(see subsection 3.1.1, and [8]) :
(TABLE[t] = (j,7')) < (At local time t, the process received a message via its
port j, and the process connected to this port j had local time t').

Variables are the following :
e id is a local, integer variable the value of which is the identity of the current process.
e root is the identity of the root of the fragment to which the current process belongs.

e father is a local integer variable with value the number of the port which leads to
the current process’ father within the subtree.

e T is a local integer variable with value the last local time computed so far.

e credit is a local integer variable with value the number of random drawings with
which the current root of a fragment is still credited.

e req is a local boolean variable which either allows a current root to send a message
comb (req = 1), or do not (reg = 0).

e open is a local logical variable which determines whether the current process still
has free neighbours or not (i.e. neighbours which may possibly send back ok upon
receipt of comb).

e ambiguity is a local logical variable which gives knowledge that the current process
received back equal in answer to comb, and that some decision of its fragment’s
root is awaited.

8.2.2 Specification in CSAP

CSAP is the acronym for Communicating Sequential Asynchronous Processes. The syntax
of CSAP is very close to the syntax of CSP. However, the modifications entail important
repercussions with respect to the semantics of the language. Thus, the generation of a
message is a non-blocking primitive. Denote F;!! < > the emission of message < > via the
port labeled 7 in a non-blocking way. In such a case, ¢ may be regarded as the identity of
the process to which the message is transmitted. This also entails the presence of a buffer
at each one process for incoming messages. The corresponding queue must be bounded,
which is the case in the present model. Similarly, denote P;?? < > the receipt of message
< > through the port labeled j. As an example of such notations, “Vz € SON, P, !! < >"
means that message < > is sent from the current process to all its sons via the ports
labeled with the indices of the array SON.

11

3.3 Procedures
The full specification of algorithm A is given in the Annex.

1. The Procedure ESTIMATE

Suppose one starts the algorithm by performing the following local probabilistic
experiment to estimate logn. The experiment is set so that with high probability
at least one process deduces an estimate of a value < logn, and no estimate is
much larger than logn. Each process P; uses this estimate to randomly select its
label s; in a domain I whose size d depends on the largest estimate. Thus, in the
procedure ESTIMATUE , each process tosses a fair coin until a “head” occurs.
This experiment is repeated k times, and log n is estimated as j, the longest waiting
time for head in any of the k trials.

Procedure ESTIMATE (k,var :maz) :
maz :=0;
*xk>0—>t:=0;z:=0;
*[z =0 > t:=t+1;z := random({0,1})] ;
[t > maz —» maz:=1t]; k:=k—-1

]

2. The Procedure INIT

In the case where a process F; starts executing its algorithm upon receipt of a
message sent by process P;, P; righaway considers itself as a node in Fj. Then, P;
gains its identity (without random selection), and wakes up and so act all processes
which were not yet awakened. The variable TABLF is a recursive list type with four

" records: id,root, father,credit, T are integer-valued variables; regq, open,ambiguity
are boolean variables; SON and PORT are arrays of booleans; NEIGHB is a
variable which denotes the set of the neighbours of the current process and id is an
ordered pair of integers.

Procedure INIT (id,T,root, father,credit, PORT,req, SON, open, ambiguity) :
/* performed upon waking up or reception of first message
— whichever comes first */
[s := random([1..d]) ; ESTIMATE (k,t);
id := (s,t) ; root := id; father :=id ;
T:=0; req := false ; SON :=0;
open := true ; Vo € NEIGHB, PORT|z] := true ;
credit := 7 ; ambiguity :=0].
/* d = O(rlogr), with » = 1/e for fixed € */

3. The procedure RANDRAW
Procedure RANDRAW (d,var :id) :

[s :=id(1) ; a := random([1..d]) ; s :=s+a; id(1) := s].
/* id(1) is the first integer within the ordered pair (s,t) */

12

4. The Procedure SELECT

Procedure SELECT (var :z,PORT) :
z:=0;
[PORT(1] = true - z =1
[|

PORT[2] = true = z :=2;

PORT[n] = true =z :=n;
]

5. The Procedure UPDT

Procedure UPDT (y, PORT,var :open) :
[PORT[y) := false ; /* PORT is a boolean array which represents
open := \, PORT[k] ; the state of the port. y is the label of the port
. through which the current process
received a message nok or cousin */

6. The procedure TERM

Procedure TERM (SON) ::
[Vz € SON,P,!' < _,end,_,_>; STOP.].

4 Correctness

The correctness proof of the algorithm consists of two parts. First, at each point in the
algorithm (termination included) a rooted spanning forest of G is maintained. Second,
the algorithm eventually message terminates with a rooted spanning tree with probability
>1-—e

Lemma 4.1 In any ezecution and at each point in the algorithm, the set of current frag-
ments constitute a rooted spanning forest of G, which is an invariant for the algorithm.

Proof At the beginning of the algorithm, each subtree of the rooted spanning forest
of G consists of a single node. Consider a rooted spanning forest of G at some point
in the algorithm. Let F; and F, be two current fragments in the forest, F; and Fy are
connected with at most one edge. Denote p; and p2 the number of nodes in F; and F5,
respectively : F) contains p; — 1 edges and F> contains p — 1 edges. Merging F) and F
builds a new connected component in the forest, say F, which consists of (p; + pz) nodes
and (p; — 1) + (p2 — 1) + 1 edges. Set (p; + p2) = p. F contains p nodes and p — 1 edges,
and thus F is actually a tree. Therefore, as far as no cycle is built, the tree structure is
preserved all along the course of the algorithm. Now to make sure that no cycle can be

13

built in case of equality, consider how the procedure RANDRAW works and breaks
the symmetry (see subsection 3. 3). Hence, the structure of rooted spanning forest of G
is always preserved and is an invariant of A;. O

Theorem 4.1 In any ezecution, the algorithm eventually message terminates. Upon ter-
mination, all the fragments constitute a rooted spanning forest of G.

Proof It is easy to see that the size of fragments never decrease. Since the size of the
network and all values and parameters are finite in LEP and STP (in particular the variable
credit), the network will reach a quiescent state in some finite stage of the algorithm. In
the case where all processes have distinct identities, the proof of the theorem is given in
[7]. Suppose at least two processes have the same identity. The termination is triggered
either whenever all roots have consumed their whole drawings credit and all have the same
identity, or whenever the privilege owner is the root of a fragment while none of its ports
is available any more. In such a case, the root considers the algorithm terminated : viz.
root = i Areq = false A ambiguity = 0 holds. The latter formula implies that each process
in the fragment will receive a termination message end. Therefore, the algorithm message
terminates, and, by Lemma 4.1, upon termination all the fragments constitute a rooted
spanning forest of G (see [8] for a detailed proof). O

Let € be the error probability and let d > [2/€]. Recall that the labels are randomly
selected from a domain of size d in the procedure RANDRAW .

Theorem 4.2 When the algorithm message terminates, the probability that a spanning
tree ts found is at least 1 — €.

Proof Suppose that the algorithm terminates with more than one fragment left. By
Theorem 4.1, we have that all the roots have the same identity and that credit = 0 at each
root. The probability that all drawings at credit = j > 0 selected the same label (given
that more than one drawing occurred) is bounded from above by 1/d?. The probability
that the algorithm fails at the last value of credit is the probability that all drawings at
credit = 1 selected the same label (given that more than one drawing occurred). It is
whence bounded from above by 3, 1/d7 <1/(d-1) <e.]

5 Analysis

The worst-case message complezity of an algorithm (for a given input size) is the maximum
over all networks of the given size and over all schedulers, of the largest number of messages
sent in any execution of the algorithm. The expected message complexity (for a given input
size) is the maximum over all networks of the given size and over all schedulers, of the
expected number of messages sent in an execution with this scheduler in the network ; the
expectation is over the random choices of the algorithm.

In the following, denote T = mazi{t;}, and M = maz{id;}. We first make sure
that at least one of the estimates ¢; is > logn with probability > 1 — ¢, and then prove
that T < log(nr) with probability > 1 — €.

14

Lemma 5.1 Lett; be one of the estimates. (3i € [1,n]) Pr{t; >logn} >1—e.

Proof Assume that for all i € [1,n], we have 2571 < n < 2%, Let ¢; = ¢. The probability
that the waiting time for head is > ¢ is 27 > 1/2n. Now the probability that no waiting
time of ¢ or more occurred in kn trials at all nodes is (1 —27%)* < (1 —1/2n)*" < e7#/2,
Thus, it is sufficient to take k = 2In(1/¢), and for at least one i € [1,n], Pr{t; > logn} >
1-—e]

Lemma 5.2 Let t; be one of the estimates. Pr{(3i € [1,n]) t; <log(nr)} >1—e.
Proof For fixed i € [1,n], Pr{t; > log(nr)} = 2~ 108(") = 1 /np. Therefore,

Pr{(Jie[1,n]) t; > log(nr)} < 1/r =e.

Corollary 5.1 (Ve > 0) Pr{logn > T <log(nr)} >1—e.
Proposition 5.1 Let T = maz;{t;}, E[T] = O(log(nr)).

Proof T is the highest estimate computed by a process, viz. T is the maximum of kn
waiting times in independent Bernoulli sequences of trials with probability 1/2 of success.
Thus, E[T] = ¥; Pr{T > j}, and

E[TI < Y, Pr{T>j}+ >, Pr{T>j}.

i<logn j>logn

Since (Ve > 0) Pr{T > log(nr)} <,

log(nr)
(Ve>0) E[T|< Y, Pr{T>j}+ Y, Pr{T>j}+e
j<logn j=logn
and
E[T] < (logn)Pr{T > logn} + (logn +1)Pr{T > logn} +e.
Hence,
E[T] = O(logn + log 7), (1)
and the expected value of T is O(log(nr)). a

The main idea in the procedure ESTIMATE (see subsection 3.3) is that there
is one process with a t; larger than the others. The following claim and lemma prove the
existence, with high probability, of such a unique process.

Definition 5.1 Denote as candidate a process P; such that t; > logn — t, for some
parametert to be fized later. The function ¢(t) =logn—t is a threshold function which
identifies processes with large identities, denoted as candidates, from all other processes.
The function ¢ 1s an integer-valued, nonnegative, monotone nondecreasing function of t.

15

Claim 5.1 Let M = maz;{id;}. If the number of candidates is < C, and s; was randomly
selected from a domain of size Cr, then M is unique, with probability > 1 — ¢.

Sketch of Proof Assume that all candidates have the same t;. If such is not the case,
then the definition of a candidate should be refined as follows : the candidates are the
only processes whose estimate is T. C drawings are completed from a domain I of size
d = Cr. Now, let p be the probability that in C drawings from I the largest s; (among
those which were drawn) is drawn only once. We know that p > 1—C/d (see [9, Claim 12
for a detailed proof). Hence, we have that maz;{s;} (over the P; which are candidates),
is unique with probability > 1 ~C/Cr =1 —e. a

Lemma 5.8 There is a unique process P; with tdentity id; = M, with probability > 1 —e.
Proof The proof of the lemma consists of two parts.

e We first show that (a) there are ©(log r) candidates, with probability > 1 — e. This
ensures that, with high enough probability, there is at least one candidate but not

too many.

e Second we show that (b) with probability > 1 — €, maz;{s;}, where 7 is over all the
candidates, is randomly selected in INIT by only one among the candidates. This
((a) and (b)) is sufficient to show that there exists a unique process with identity
M, with probability > 1 — €.

(a) is proven in using Tchernov’s bounds [10]. Let X be the number of candidates.
The probability of a process to be a candidate in any of the k trials is 2t—logn = 2t /n:
i. e. the probability to obtain (logn — t) tails in (logn — t) tosses. Since, the number of
trials is k at each one of the n processes, ¢ = E[X] = k2.
Now if we let ¢ = 12In(2r), by Tchernov’s inequalities [10, p. 121],

Pr{c/2 < X <3c/2} > 1 — [exp(—c/12) + exp(—c/8)] > 1 —2/2r > 1 — ¢,

and the number of candidates X is ©(logr) with probability > 1 — e.

(b) is a straightforward consequence of Claim 5.1 : Let C = 181n(2r), then by Claim
5.1, we have that there exists one unique process P; with id; = M (over all the candidates),
with probability > 1 — e. This concludes the proof of the lemma. O

Remarks :
- If we let C = 18Inr, then by the tight inequalities of Tchernov, we know at the

same time that
e the number of candidates is ©(log r) with probability > 1 — ¢,
e if the number of candidates is < C, then M is unique with probability > 1 —e.

- As a direct consequence of Lemma 5.3, we are now able to compute the size d
of domain I : since the number of candidates is < C = 18Inr, d needs to be
2Cr = 36rlnr = O(rlogr).

16

- Our average number of candidates is larger than in [9] : ¢ = k2!. This is due to
the fact that k initial tosses are experimented at each one process in our procedure
ESTIMATE , which improves the number of processes with estimate closer to

log n.

We now turn out to compute the (virtual) running time and expected message
complexity of the algorithm, and the size of messages, with probability > 1 — .

Theorem 5.1 A rooted spanning tree can be built with probability > 1 — ¢ in ezpected
message complezity O(mloglog(nr) + nlogn), with message size O(logr +loglogn), and
ezpected (virtual) running time O(D x loglog(nr)) (where D is the diameter of the net-
work).

Proof Given E[T], we can compute the expected complexity of the algorithm as a
function of E[T) and M = maxz;{id;}. All processes are waken up with O(m) messages
in time O(n). The k trials can take place simultaneously, although they have to be
triggered by messages, so that the expected number of messages per node is O(T'). Hence,
ESTIMATE requires an expected number of messages of O(m+nlog(nr)) in expected
running time O(n + log(nr)).

The highest message cost is the number of messages newroot, since all identities
of processes within one of two merging fragments are updated upon receipt of messages
newroot. Indeed, the total number of other messages is O(m +nlog(nr)) on the average.
Since the number of candidates is ©(log r) with probability > 1 — ¢, the upper bound on
the number of times a fragment is updated is ¢(T'logr). Thus, the number of messages
newroot used in the algorithm is O(m x ¢(T'log r)). It follows that the total number of
messages required by the algorithm is O(nlog n+ m x ¢(T'logr)). Similarly, the (virtual)
running time is bounded by O(D x ¢(Tlog r). Assuming that the threshold function ¢ is
concave and by equation (1), we have E[p(Tlogr)] < ¢(E[Tlogr]) = p(logr x E[T]) =
O(p(log r xlog(nr))). Hence, the expected message complexity is O(nlog n+m x p(log r x
log(nr))), and the expected (virtual) running time is O(D X ¢(logr X log(nr))).

Using the threshold function ¢(z) = [logz] we obtain the results given in the
algorithm. The expected number of messages used by the algorithm is O(nlogn +
mlog(log rlog(nr))) = O(nlog n + mloglog(nr)), with probability > 1 —e. The expected
(virtual) running time is O(D x loglog(nr)), with error probability e. The maximum
number of bits per message is the number of bits in T plus the maximum number of bits
in s; (selected from [1,d), where d = rlog 7). Therefore, the size of messages is bounded
by O(logr + log log n). O

17

Remarks
- As a corollary, one can see that LEP and STP can be solved with errer probabil-

ity € on a ring of unknown size with O(nloglogr + log n) messages, each of size
O(loglog n+log r). Thus the bit complexity is O(n log nlog log), for fixed €, which
meets the result in [9] and is an improvement on the O(nlog®n) bound in [11].

- Besides, LEP and STP can be solved with error probability € on a complete network
of unbounded size with O(n?log log(nr) +log n) messages, each of size O(loglogn +
log 7). Thus, the bit complexity is O(n?(log log n)?), for fixed ¢, which improves the
results in [9] and [11].

- Algorithm A; requires O(loglogn + log r) bits of state information per node, which
again meets the result in {9].

6 The Algorithm A,

We now address the case when the network is bounded. Assume n is known up to a factor
of K : viz. N <n < KN, with K > 1. Then Algorithm A, is process terminating and
solves LEP and STP with fixed error probability € if K > 1, and with no error if n is
exactly known. '

To handle the case where bounds are known on the size n of the network, algorithm
Aj is designed with slight modifications of A;, mainly within the procedure INIT , with
the new variable size, and also regarding the termination of the algorithm in the subcase
where the exact value of n is known to at least one process.

The procedure ESTIMATE is not changed in algorithm 4;. By contrast, the
procedure INIT takes all the additional information about n into account. In words,
INIT uses the new parameters 4 and ¢ (computed in the analysis, subsection 6.2) to
ensure that each process can check if it is a candidate or not. Now, no process but each
one candidate process P; can randomly choose its label s;, and can thereafter trigger the
computation by sending a message comb to a selected neighbour. Upon receipt of a
message comb, any noncandidate process gains the identity id; = (s;,%;) of the emitting
process P;, and is “merged” into its fragment. In the case where two candidates exchange
messages, algorithm Ay and algorithm A; are similar.

6.1 The Modified Procedure INIT

The variable size maintained at each process F; is merely a local integer-valued variable,
which counts the number of nodes in the current fragment F; to which P; belongs.

Procedure INIT (id,,root, father,credit, PORT,req, SON, open,ambiguity, size) ::
/* performed upon waking up or upon reception of first message
— whichever comes first */
[ESTIMATE (k,t)
{(dy,t)>p -V € NEIGHB,P,!' < _jend,_,_> /* the algorithm fails with
probability < € */

18

.
(dtysp—t=t—9;
[t > ¢ — s :=random([1..d]) ; id := (s,t);
size :=1; root := id ; father :=1id ;
7:=0; req:=false ; SON :=9;
open := true ; Yz € NEIGHB, PORT[z] := true ;
credit .= r ; ambiguity := 0]

)

/* d = O(Krlogr),p = (rlogr) x log(12Krlog), and ¢ =log N —log(12lnr) */

6.2 Analysis

Lemma 6.1 Let N < n < KN. The number of candidates is, for some setting of t,
O(K log) with probability > 1 — .

Sketch of Proof Sett = logc, where ¢ = (n/N)12lnr. Thus the threshold for the
candidates is now ¢ = log n —log ¢ = log N —log(12In). Similarly to the proof of Lemma
5.3, for K > n/N, the number of candidates is ¢ = ©(K logr), with probability > 1 — e.
[}

Let t.=t; —p, and T' = maz;{t}}.
Claim 6.1 T' = O(log(Kr)) with probability > 1 — e.
Proof t.=1t;,—¢p =1t;— (log N —log(12lnr). Therefore,
T' =log(nr) — log N + log(121lnr) = O(log(Kr)).
a

Whenever we have this additional information about n, we can use the initial knowl-
edge on N, K, and = to improve the complexity. The threshold ¢ = log N —log(12lnr)
can also be given in advance to all processes. Thus, the identities can be reduced by ¢ to
yield smaller size messages.

By Claim 6.1, for K = n/N, we have

M = mazi{id;} < (rlogr) x (log(12Krlnr)) = p.

The value of u can thus be also given to all processes when the algorithm starts, together
.with N, K, r and ¢. All of this information is used to modify the procedures INIT in
subsection 6. 1.

We can now turn out to compute the complexity of algorithm .4, whenever n is
exactly known, and in the cases where N < n < 2N and N < n < KN, with K > 2.

Lemma 6.2 Suppose N < n < K, with K > 2. (a) If there are (I — 1) current fragments
whose size is larger than that of some fragment F, then the latter is bounded by (n/l). (b)
The total number of nodes in all fragments such as F is at most O(nlogn).

19

Sketch of Proof (a) is immediate. (b) is straightforward, since

KN
Zn/l =nHgy = O(nlogn).
=0

H,. being the k*h harmonic number, with asymptotic expansion : H, =lnk+0(1). 0O

We now give the computation of the size d of the domain I whenever the exact
value of n is known to the processes, or in the case where N < n < KN, with K > 2.

In the procedure INIT , an initial sequence of random drawings is completed. Let
d = d(r) be the size of the domain I from wich the labels are drawn, and where r = 1/e.

1. Assume the exact value of n, the size of the network, is known to at least one process.
We can compute the exact value of d which is sufficient to draw n distinct identities
with high probability. Let id; and id; be the identities of the two processes P; and
P;. Let p = Pr{id; # id;}. Notice that

. d(d—l)-;ﬁd—n+1).

For all real £ < 1/2,1 — z > e~ 2®. Assuming that n/d < 1/2, or d > 2n yields

n—1 n—1
p= H(l —i/d) > H e~2i/d 5 g—n'/d,
=0 1=0

Since (V0 < € < 1) In(1 — €) < —¢, we have that p > 1 — € when d > n2/e. Hence,
it is sufficient to randomly draw the n initial identities from a domain I of size
d = O(n?r), for fixed e. In that case, the identities randomly selected in INIT
will all be distinct with probability > 1 — .

2. Assume now n, the size of the network, is only known up to a factor of K, i.e.

N < n < KN. Suppose also that only the candidates can randomly select their
own labels. Using the fact that C = ©(K logr) (where K = n/N, with probability
> 1 —€), we can compute the value of d such that two identities are distinct with
probability > 1 — €. By Claim 5.1, we know that the size of I can be d = Cr.
Therefore, it is sufficient to take d = O(Krlogr) to have all the identities randomly
selected in INIT be distinct with probability > 1 — e.

Remark Taking only the lower bound N into account would yield the following. Let s;
and s; be the labels of two processes. Let p = Pr{s; # s;}. Assuming d > 2N yields

N-1 N-1 ,
p= H (1—1/d) > H e B/ 5 e~ N/d,
i=0 =0

Hence, it is sufficient to take d = O(N2/In(1 — €) = O(N?/e to have all identities distinct
with probability > 1 — € in the initial random drawings of procedure INIT .

20

Following the above calculations, we can conclude :

Lemma 6.3 For fized error probability ¢, (i) If n is known in the range N < n < KN,
with K > 2, then the size of domain I is d = O(Krlogr). (ii) If the ezact value of n is
known, then the size of domain I is d = O(n’r).

By Lemmas 6.1 and 6.2, the number of messages is at most O(K'mlog r + nlog n).
However, this is a very pessimistic upper bound. The main point is that we can use our
knowledge on the size of fragments at any point in the algorithm and the upper bound on
n to update processes with only a constant number of messages per link. This shrinks the
message complexity down to O(m + nlogn)

The algorithm A solves LEP and STP with termination detection and with no error
provided the variable credit is not used as defined for A; — or simply removed. Indeed,
the algorithm may be restarted repeatedly (with new labels chosen in each run) till some
process eventually learns that its fragment’s size is n, and thus spans the whole network.
The process termination is then completed with no error, and with O(m+nlog n) messages
each of size O(logn). This yields the result :

Theorem 6.1 If the ezact value of n 18 known to at least one process, then Az solves
LEP and STP with termination detection and with no error. The worst-case message
complezity is O(m + nlog n) and each message is of size O(logn).

Remarks

- Removing credit is not really necessary, since one can set the initial value of the
variable to a sufficiently large fixed value, say V', where V = Q(n?) for example. The
algorithm shall be rerunned till size = n, and shall thus eventually succeed.

- In such a case, Aj is a “Las Vegas” probabilistic algorithm in the sense that it reacts
by either returning a correct solution, or admitting that its random decisions have
led to an impasse. In the latter case, it suffices to resubmit the same instance to 4,
to have a second, independent chance of arriving at a correct solution. The overall
probability of success therefore increases in each round of Aj;.

Theorem 6.2 Ifn is known in the range N < n < 2N, then Ay solves LEP and STP with
probability > 1 — € and with termination detection. The worst-case message complezity is
O(m + nlogn) and each message is of size O(logn), with fized error probability e.

Proof If algorithm A; is executed with € = 1/2, the labels are randomly selected from
a domain of size d = 2K log 2 = 2n/N.

When a fragment F; merges with another fragment, the new root P; knows its new
fragment’s size : for example, size; := size; + size;.

If size; < N, then P; knows for sure that it is not the leader (possibly not yet).

If size; > N, then P, is still not necessarily the leader, since F; may be surrounded with
other fragments (all of size < N) with the same identity. It is also possible that
there exists a fragment with larger identity elsewhere in the network.

21

However, F; can enlarge till either reaching a larger identification number, or possibly till
it spans the whole network. In the latter case, F; wins the game.

With probability > 1 — ¢, the algorithm eventually process terminates with a span-
ning tree. Altogether, the algorithm requires a constant number of messages newroot
per link, and therefore, since the total number of other messages is O(m + nlogn) from
Lemma 6.1 and 6.2, the worst-case message complexity is O(m + nlogn). The size of
messages is O(log(Krlogr)) = O(log n), for fixed e.)

Theorem 6.3 If n is known in the range N < n < K, with K > 2, then Ay solves
LEP and STP with probability > 1 — € and with termination detection. The worst-case
message complezity is O(m+nlog n) and each message is of size O(log n), with fized error
- probability e.

Proof The problem with the case K > 2 is that there might exist several fragments
with the same identification number, all of size > N. However, there are at most K
such fragments. Thus, in the same conditions that in the previous case K = 2, we are
guaranteed with probability > 1 — € that the labels are all distinct after at most K/2
calls of the procedure RANDRAW . Hence, a fragment (with new label s') can be
surrounded with similar fragments only with probability < €, and if there is a unique
leader the algorithm will eventually process terminate.

As to the (worst-case) message complexity, it remains the same as in the case K = 2,
up to a constant factor, with probability > 1—e. The size of each message is again O(log n).
a

Remarks
- As a consequence, LEP and STP can be solved with error probability € on a ring of

bounded size, N < n < KN (K > 2), with bit complexity O(nlog?n).

- In complete networks of bounded size, these problems can be solved with bit com-
plexity O(n?logn). This also improves some of the bounds in [9,11].

- Algorithm A; requires O(loglog n) bits of state information per node, wich again
meets the result in [9].

7 Open Problems

The open problems raised in [11] still remain open. In particular, can one compute span-
ning trees in anonymous networks of unbounded size with O(m + nlog n) messages, i.e.
with a constant number of messages per link ? Or, conversely, is it possible to give a lower
bound showing that the number of messages per link is not constant ?

In the analysis of algorithm A; (Section 5), we used the threshold function ¢(z) =
flog(z)]. But the number of messages can be drastically reduced in using a very slowly
growing threshold function ¢, such as, for example, the iterated logarithm function ¢(z) =
[log*(z)], or the inverse of the single-valued function of Ackermann ¢(z) = A~1(z).

Then, the expected message complexity becomes O(mlog*(nr) + nlogn), or
O(mA~1(log nr) + nlogn), respectively : e.g. A~l(lognr) < 5 for log(nr) < 265536

22

or for nr < 22 (recall 65,536 = 216). In other words, A™l(lognr) < 5 for all n
and r one is ever likely to encounter. However, the size of each message is here at least
linear in n, and the average bit complexity is as large as O(mnlog®n + n2log n), or
O(mnA~!(log nr) + nlog n), respectively.

Hence, the conjecture that one can compute spanning trees in nameles networks of
unbounded size with a constant number of messages per link is not at all unreasonnable,
However, we should also conjecture that the size of messages is small enough : e.g the bit
complexity remains of order O(mlogn + n?logn).

23

References

[1] K. ABRAHAMSON, A. ADLER, L. HIGHAM and D. KIRKPATRICK,
Probabilistic solitude verification on a ring, Proc. of the 5th ACM Symp. on Prm-
ciples of Distributed Computing, 161-173, Calgary, August 1986.

[2] K. ABRAHAMSON, A. ADLER, L. HIGHAM and D. KIRKPATRICK,
Randomized function evaluation on a ring, Distributed Computing 8, 107-119,
Springer- Verlag, 1989.

[3] Y. AFEK, M. SAKS,l Detecting global termination conditions in the face of
uncertainty, Proc. of the 6th ACM Symp. on Principles of Distributed Computing,
109-124, Vancouver, August 1987,

[4] D. ANGLUIN, Local and global properties in networks of processors, Proc. 12th
Annual ACM Symposium on Theory of Computing, 82-93, Los Angeles, May 1980.

[5] H. ATTIYA, M. SNIR, M. K. WARMUTH, Computing on an Anonymous
Ring, J. ACM, Vol. 35, No 4, 845-875, October 1988.

[6] A. ITAI, M. RODEH, Symmetry breaking in distributive networks, Proc. of
the 22nd IEEE Symp. on the Foundation of Computer Science, 150-158, Nashville,
October 198.

{7 L LAVALLEE, C. LAVAULT, Yet another distributed election and spanning
tree algorithm, R.R. INRIA No 1024, April 1989.

(8] L LAVALLEE, C. LAVAULT, Un algorithme probabiliste d’élection et d’arbre
couvrant sur des réseaux anonymes, R.R. INRIA No 1151, December 1989.

[9] Y. MATIAS, Y. AFEK, Simple and Efficient Election Algorithms for Anony-
mous Network, Proc. of the 3rd International Workshop on Distributed Algorithms,
183-194, Nice, LNCS 392, Springer-Verlag, September 1989.

[10] A. PAPOULIS, Probabilities, Random variables, and Stochastic Processes,
McGraw-Hill, 2nd Edition, 1984.

[11] B. SCHIEBER, M. SNIR, Calling Names on Nameless Networks, Proc. of the
8th ACM Symp. on Principles of Distributed Computing, 319-328, Edmonton,
August 1989.

24

8 Annex

Specification of Algorithm A,

Proc ::
INIT ;
*[(root = id A req = false A ambiguity = 0) — [open = false - TERM (SON)] ;
SELECT (x,PORT[1,-,-); T:=1T+ 1; req := true ; Py !! <id, comb,-, >

i
Py M<a,By,6> -
[B=end - TERM
|
B=comb Ay=father — [open =true = SELECT (x,PORT(},-,-) ; Px!l<a,BY,6>
|
open = false — Py l!<-nok,open,->
]
1
B =comb Ay #father — [a=root — Py!!<-equal,-,->
|
a < root =Pyll<root,0k,-,-> ; SON :=SON U {y}
B
a > root > Py l1<-,nok,-,->
]
]

B =ok = [y € SON —> SON := {SON — {y}}u{father};
[root =id — root .= a , UPDT ; Py! I<-,merge,open,-> ;
Vxe SON, Py !l<anewroot,-,->
1
root #id— root := & ; Pfaher !!'<t,B-,->

) father ==y

25

e e e er e An e sy

|
B =nok — [y = false > UPDT] ;
[root #id — [open = true — SELECT (x,PORT(1,y father) ; Py l<root,comb,-,->
]
open = false — Pfgrher!!<a,nok false,->
1
1
root = id — req := false
1

|
B=-equal > [y € SON — [id = root — [credit >0 — RANDRAW ; Vx€ SON, Py !<id .newroot,-,->;

root :=id ; credit := credit — 1

|
credit=0— Py! l<-,cousin,-, &>
1
|
id #ro0t > T:=7+1; TABLE[1] = (y, ¢) ; Pfa,her!ka,ﬂy,b
]
|
y & SON — ambiguity :=1; 1:= 1+ 1; TABLE[1] = (3,-); Pfather”<a’ﬁ’7">

]
|
B = cousin — [ambiguity =1 — (z,-) := TABLE[e] ; UPDT(z, PORTY },0pen) ;
[open = false > Pfath or! |<--NOK false,-,->
[|
open # false - SELECT (x,PORT[)); Px!!<root,comb,-,->
) ; ambiguity := 0
l]
ambiguity =0 — (k, 1) :=TABLE[d] ; P} !'<a,By,™>
| .
|
B = newroot — root = a ; Vx€ SON, Py !!'<a, newroot,-,-> :
[ambiguity = 1 — ambiguity .= 0 ; SELECT (x,PORT[)); P !<root,comb,-,->]
1
B=merge - SON := SON U {y} ; PORT[y) := v ; open := ,:/PORT[k] ;

W xe SON, Py !'<q, newroot,-,-> ; [root # id —» Pfather!!<a,Bopen,->]

Imprimé en France
par
I'Institut National de Recherche en Informatique et en Automatique

ISSN 0249 - 6399

