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Extended Free-Form Deformation:

A Sculpturing Tool for 3D Geometric Modeling

Sabine Coguillart
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78153 Le Chesnay, France

Abstract

Current research efforts focus on providing more efficient and effective design methods
tor 3D modeling systems. ln this paper a new deformation technique is presented. Among
other things, arbitrarily shaped bumps can be designed and sutfaces can be bent along
arbitrarily shaped curves

The purpose of this research is to define a highly mteractive and intwitive modeling
technique for designers and stylists. A natural way of thinking is to mimic traditional
trades, such as sculpturing and moulding.

Furthermore, with this deformation teclinique, the modeling tool paradigm is tro-
duced. The object is deformed with a user-defined deformation tool.

This method is an extension of the Free-Form Deformation (IF'FD) technique proposed
by Sederberg and Parry [17].

CR Categories and Subject Descriptors: 1.3.5 [Coinputer Graphics]:Computational Ge-
ometry and Object Modeling - Curve, surface, solid, and object representation; Geometric
algorithms, languages, and systems; Hierarchy and geometric transformations: 1.3.6 [Com

puter Graphics]: Methodology and Techniques - Interaction techniques.

Additional Keywords and Phrases: Solid geometric modeling, deformations.
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Déformation de Surfaces et Modélisation

Géométrique 3D

Résumé

Le processus de modélisation géométrique peut &tre décomposé en deux phases : la
construction des objets ou surfaces puis leur déformation. Ces deux étapes sont neces-

saires des que ’objet est trop complexe pour étre créé directement sous sa forme définitive.

Les systémes de modélisation offrent des méthodes de création de plus en plus perfor-
mantes et conviviales les techniques offertent pour déformer sont souvent beaucoup plus
frustes. Ce papier présente une nouvelle technique interactive de déformation de surfaces

ou d’objets.

L’objectif des recherches exposées est de définir une méthode de déformation inter-
active et intuitive, utilisable par des stylistes et des animateurs. Une fagon naturelle de
procéder consiste i s’inspirer de techniques issues des métiers traditionnels tels que la

sculpture ou le moulage.

La technigue de déformation présentée ici exploite la notion d’outil. L outil est fagonné
par l'utilisateur puis stocké. II peut ensuite etre appliqué a volonté sur différentes surfaces
ou objets pour les déformer.

Cette méthode est une extension de la inéthode connue sous le nom de FFD ou " Free-

Form Deformation” proposée par Sederberg et Parry [17].



1 Introduction

Geometric modeling has always been a major research area in computer graphics. Geometric
modeling includes both the definition of the geometric model and the development of design
methods. Often, systems offer design methods imposed by the underlying geometric model
or use geometric models imposed by the design methods. This solution is efficient for specific
applications. However, general modeling systems require less specific geometric models and
several design methods that are as easy as possible to use and that can be combined with
each other to increase the power of the system. A growing trend is thus to dissociate the
underlying geometric model and the design methods so that the geometric model becomes

transparent to the user.

This paper describes an interactive deformation technique independent of the geometric
model. As we wanted to define a highly interactive and intuitive modeling technique usable
by designers and stylists, it was natural to try to mimic traditional tools, such as sculpturing
or moulding. The use of the sculpturing metaphor for geometric modeling is not recent.
Several authors have suggested tools that allow a designer to see the design operations as
sculpturing tools (12,19, 7, 2, 1, 5, 17, 8, 15].

Our goal is to change the shape of an existing surface either by adding arbitrarily shaped
bumps to it or by bending it along an arbitrarily shaped curve. Four problems must be

considered:

e The position of the deformed region on the surface.
¢ The size of the deformed region.
¢ The shape of the boundary of the deformed region.

o The shape of the deformed region (inside the boundary).

A common practice consists of interactively moving the control points of a spline surface.

This solution is not satisfactory for the following reasons:

e The number of control points the user will have to move depends on the size of the
deformed region. For example, the design of a large bump may require moving many

control points whereas designing small bumps may be impossible.

e The shape of the deformed region (both along its boundary and within its interior)
is imposed by the shape of the surface isoparametric lines, that is, by the position of
the neighbouring control points. Designing a bump with a circular boundary is almost

impossible.



o The position of the deformed region on the surface is imposed by the position of the

control points since only the control points are moved.

Some of these problems, nainely small bumps, can be partially solved by using refinement
techniques. Note, however, that refinement has the unpleasant property of being non-local —

it causes regions far from the region of interest to be refined as well.

In [14] and [15] Piegl proposes a combination of control point-based and weight-based
modifications. The weight-based technique, valid for rational B-spline surfaces, is a nice
solution for the size problem. The position problem is partially solved by an automatic

refinement technique.

In (8], Forsey and Bartels describe a new geometric model where a surface is represented
as a hierarchy of refined surfaces. This representation solves the size problem as the user
can choose the resolution of each region of the surface. However, the shape problem is
not considered since the shape of the deformation is still influenced by the position of the
neighbouring control points. The position problem is not solved either because the control

point positions are fixed.

In [1], Barr suggests a set of powerful transformations for deforming a solid object. The
transformations he presents include stretching, bending, twisting, and tapering operators. In
spite of the fact that arbitrarily shaped deformations are not possible, it is a very efficient

method.

Cobb [5] presents the first modeling tool allowing the user to define bumps with different
shapes. She extends the basic warp technique previously discussed in {12, 19, 7, 2] and
introduces the region warp and the skeletal warp. With region warp, the user specifies a
polygonal region that defines the shape of the warp boundary. Skeletal warp is a variation
of the region warp where the region is defined by its skeleton. The size and the position
of the deformed region, as well as the shape of its boundary, are user defined without any
limitations but the shape of the interior is not free. Notice that Cobb solves most of the
previously listed problems by the addition of a structure which consists of a region or of a
skeleton. This structure is independent of the surface geometry. The user does not need to

know the underlying geometric model to deform the surface.

Sederberg and Parry [17] present a powerful deformation tool in which the representation
of the surface is also hidden by a FFD lattice embedding the object. The deformations of the
FFD lattice are automatically passed to the object. FFD has proved to be a very intuitive
and efficient modeling technique highly appreciated by designers [3]. It solves the size and
the position problems but not the shape one. The intrinsic parallelepipedical shape of the

FFD lattice prohibits arbitrarily shaped deformations.



This paper introduces an extension of the FFD technique called EFFD, for Extended
Free-Form Deformation. The new method uses non-parallelepipedical 3D lattices. The shape
of the user defined lattice will induce the shape of the deformation. This paper mainly
describes surface deformation although the technique is suitable for ohject deformation as
well. Deformations produced by this technique are more general than Cobb’s warps, they are
not restricted to bumps, and all the advantages of FF'D are not only retained but extended.

In addition, both the boundary and the interior of the deformation are arbitrarily shaped.

After a presentation of our implementation of Sederberg and Parry’s FFD technique, the
EFFD method is described. The steps of the deformation process are detailed and different

classes of EFFD lattices are presented. Finally, some examples illustrate our approach.

2 Free-Form Deformations

Free-Form Deformation (FFD) [17, 16, 13] consists of embedding the geometric model or
the region of the model that has to be deformed into a parallelepipedical 3D lattice regularly
subdivided, as shown in Figure 1. The deformations of the FFD lattice are then automatically
passed to the model. Let I/, m and n be the number of subdivisions along each of the
three directions, U, V and W. These numbers can be chosen by the user depending on the

deformation he wants to produce (in Figure 1,{ =2, m =1 and n = 2).

y Psos

b Fsoa

b Psoo

Figure 1: A parallelepipedical lattice

In our implementation the 3D lattice is represented by a tensor product piecewise
tricubic Bézier volume. This volume is defined by an array of (3{+1) x (3m+1) x(3n+1)



control points F;;,. Fach subdivision element, also named “chunk” by Clark iu [4], is
thus defined by :

L(u,v,w): Z B,~(u)Bj(v)Bk(w)P,'jk (1)

,2,k=0
with 0 < u,v,w < 1, where the B;(t) are the degree 3 Berstein polynomials, the P,

are the chunk control points.

The Free-Form Deformation technique is decomposed into two steps :

e Before deforming the 3D lattice, the coordinates u,, v, and wi,,., in the lattice
parameter space, of each object point are computed. With parallelepipedical
lattices, this step requires only the solution of three linear equations. For any

point X interior to the lattice, 0 < u, <, 0 < vy <m and 0 < w, < n.

o After deforming the 3D lattice, the deformed positions of the object points are
computed. The deformed position X4 of an arbitrarily point X with coordinates
(s, vs,ws) in the lattice parameter space is computed in two steps. First, deter-
mine the chunk where the point lies by computing the floor values (uy, vy, wy) of
Us, Vs and w,. Let u = u, — up,v = vy — vo and w = w; — wy be the X coordi-
nates in the chunk parameter space. The second step consists of computing the
Cartesian coordinates of X4 from u,v,w and the matrix of the 4 x 4 x 4 control

points P of the chunk, according to equation (1).

Tensor product Bézier volumes are used throughout the paper. Naturally, as
claimed by Sederberg and Parry, other bases such as B-splines or volumes of higher
degree could be considered as well. The piecewise structure of the volume allows the
user to design local deformations on the 3D lattice. This will be very important for

the proposed extensions.

In our implementation the deformation is specified by moving the ({ + 1) x (m +
1) x (n+1) control points (the Pa;3;31) corresponding to the corner control points of the
volume elements (or chunks). Only these points are represented on Figures 1 and 2.
The tangents at the corner control points can also be modified by the user. The other
control points are automatically updated. Two modes exist for the manipulation of
corner control points. Constant tangent mode, where the tangents of the point remain
constant when the point is moved, and non-constant tangent mode where the tangents
of the point are updated according to the position of the neighbour points simulating
a C-Spline interaction [4]. These two modes can be chosen independently for each of

the three directions.



3 Extended Free-Form Deformations

FFD is a very intuitive modeling technique but it is too restrictive to allow real sculp-
turing of surfaces. The restriction is mainly due to the shape of the lattice. As seen
previously, FFD solves only the size and the position problems but not the shape one.
For example, defining a circular bump on a surface is not possible with I°'I'D (see Figure
5a). One would like to use a cylindrical lattice instead of the parallelepipedical one
(see Figure 5b). The EFFD technique presented in this paper allows arbitrarily shaped
deformations by using non-parallelepipedical lattices. EFFD lattices are equivalent to
FFD lattices; only the initial lattice shape is different. The EFFD technique can be

described in four steps:

1. Editing an EFFD lattice.

2. Associating an EFFD lattice with the surface.
3. “Ireezing” an EFFD lattice.

4. Deforming the surface.

Notice that the EFFD lattice is defined independently of the surface to which it
will be applied. The EFFD lattice is a deformation tool that is designed by the user
and stored into a toolbox or a library until it is used. The modeling tool paradigm
faithfully reproduces traditional tools and greatly increases the power of the modeling
system. The user can adapt the modeling system to his needs by defining his owu

tools. Each of the four steps of EFFD will now be explained in detail.

3.1 EFFD lattices
3.1.1 Prismatic lattices

The prismatic lattice is a very significant special case. Prismatic lattices are especially
useful for applying a deformation to a surface. We have seen previously that the
deformation technique consisting of moving interactively the control points of a spline
is not satisfactory because the shape, the size, and the position of the deformation
are constrained by the geometry of the surface. The purpose of prismatic lattices is
to redefine the geometry of the surface. From a user point of view, the geometry as
well as the type (polygonal, B-spline, Bézier...) of the surface are hidden by a new

user defined structure, the EFFD lattice. The prismatic lattice is positioned on the



surface such that the surface passes through the lattice (see Figures 6a to 11a). Only
the corner control points, the Ps3j3c are shown on the shaded pictures presented in
this paper. Then, the user works directly on the EFFD lattice by moving some of its
points and the deformations are automatically passed to the surface. All the surface
points inside the EFFD will be deformed. The EFFD can be applied to non-planar
surfaces or, for example, to surfaces that have already been deformed with another
EFFD lattice. The height of the prismatic lattice must thus be adjusted such that
the desired region of the surface fits into it. The shape of the prismatic lattice is of
paramount importance. Control points and .consequently 1soparametric lines must be

carefully positioned in order to allow the desired deformation.

Two classes of prismatic lattices are defined, the elementary prismatic lattices and
the composite prismatic lattices. There is no restriction on the shape of elementary
prismatic lattices. All prismatic lattices obtained by moving or mergiug any points of
a parallelepipedical lattice are valid. It is therefore advised not to define lattices that
intersect themselves. The cylindrical lattice (see Figure 2) is a useful lattice obtained
by welding two opposite faces of a parallelepipedical lattice and by merging all the
points of the cylinder axis. Control points along one of the directions (V on Figure 2)
are defined in order to approximate circles. An exact representation of a cylindrical
lattice is only possible with rational splines. Other elementary prismatic lattices can

be designed by moving and merging some of the points of a parallelepipedical lattice.

P36 Q
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Figure 2: A cylindrical lattice



3.1.2 Composite prismatic lattices

Elementary prismatic lattices are not general enough. Composite lattices must be in-
troduced in order to allow the design of some unconnected shapes (see the “8” example
in Figure 9). Composite prismatic lattices are defined as several elementary lattices

welded together; see 3.1.4 below.

3.1.3 Non-prismatic lattices

Non-prismatic lattices can also be used to create deformations of objects and some
non-prismatic lattices such as spherical lattices can be very attractive. Composite nou-
prismatic lattices are also valid. However, the use of lattices which are too complex

can lead to unpredictable results.

3.1.4 EFFD lattice design process

From a user point of view, an EFFD lattice is defined either from a predefined three-

dimensionnal lattice or from two-dimensionnal lattices.

o Predefined EFFD lattices include parallelepipedical and cylindrical lattices. The
number of subdivisions (or chunks) along each axis is user definable. In Figure Ga,
a predefined cylindrical lattice with respectively 2, 12 and 1 subdivisions along
each of the three {/, ¥V and W axis has been selected. This lattice has then
been transformed by selecting one plane of points out of two and by moving them
toward the axis. Valid editing methods include moving (both points and tangents
can be moved either alone or as a group), merging, inserting (by subdividing the

lattice) and removing points.

o EFFD lattices can also be created from two-dimensional lattices in the same way
as surfaces are defined from curves (loft, sweep, extrusion,...). 2D lattices are
similar to surfaces. Traditional surface modeling methods are emploved to define
them. Valid editing methods for non-predefined 3D lattices are the same as for
predefined 3D lattices. In the “S” example (see Figure 3a), the 3D EFFD lattice
is defined from a two-dimensional lattice. The 2D lattice is a loft on Lhiree curves,

two of them being an offset from the middle one.

Two elementary two-dimensional lattices can be welded together in order to form

a composite two-dimensional lattice and further a composite three-dimensional lattice.



The welding operation is realised by merging the points of each lattice. Two or more
points of the same lattice can also be merged. When merging two points (0 and P1),
two of their tangents (¢0 with t1 and t'0 with ¢'1) are merged either automatically or
on user request such that merged points are equivalent to other points (see Figure 3).
In order to be able to assure tangent continuity at a merged point, the two tangents
t”0 and t”1 must be marked as aligned, which is also done either automatically or by

user request.

1

Pl

PO

0t”0

Figure 3: Merging two points

Some tricky cases cannot be solved automatically, such as the one representing the
center point of the “8” lattice, in Figure 4. In this case, the four points, PO, Pl, P2
and P3 are merged together, as well as 0, t1, t2, t'2 and ¢'0, ¢'1, t3, ¢'3.

When several points are merged together, such as the center of a disc, some con-
tinuity problems may occur. These problems are discussed in paragraph 3.1.5. While
the implemented welding method is very simple, some more sophisticated ones such as
the one presented in [9], could be implemented as well. In the “8” example (see Figure
9a), the 3D EFFD lattice is defined from a composite two-dimensional lattice made

from 3 elementary two-dimensional lattices, two discs and an exterior lattice.

In the future, more specific two-dimensional lattice design methods will be devel-
oped. An example of these methods is to automatically compute the 2D lattice from

either the skeleton of the shape or from its boundaries.
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Figure 4: Merging four points

3.1.5 Continuity versus complexity

Continuity is one of the most important problems to consider when working with
piecewise surfaces or volumes. Before examining continuity constraints for voluines,
let us recall some results on piecewise surfaces continuity; see [6] for a complete survey.

Assuming non-degenerate 4-sided cubic patches, known results are as follows:

e C! and G! smooth connection between patches defined over a topologically rect-

angular network can be guaranteed.
e C?! continuity cannot be guaranteed if more than 4 patches meet at a point.

e For G! continuity around an n-patch corner (n>4), constraints intertwining often

requires either to subdivide patches or to increase their degree (cf. [6]).

With degenerate patches constraints propagation is even more important. With vol-
umes the problem is more tricky. Surface continuity property can easily be extended to
prismatic volumes but general non-prismatic volumes can lead to unsolved continuity
problems. Even when a solution to the continuity problem exists, maintaining this
continuity may be penalizing for the EFFD technique. For example, as continuity con-
straints require the increase of the degree or of the subdivision level of chunks, editing
points have to be added automatically. This is not convenient for the user and allowing

only lattices for which continuity problems are easily solved (without adding poiuts)

11



is too restrictive. Our choice is thus not to restrain volume complexity but rather
to insure lattice continuity only for the simnplest cases. What is important for the
user is the surface continuity but not the lattice continuity. Depending on the surface
type, it is often possible to guarantee the surface continuity even if lattice continuity
is not assured (for example with spline surfaces). Thus, from our point of view, lattice

continuity is not a primary concern.

3.2 Associating a lattice with the surface

The next step consists in taking an EFFD lattice out of the library and associating it
with the desired surface. A list of EFFD lattices may be associated with the surface.
Associating an EFFD lattice with a surface consists of adding the lattice to the list.
While an EFFD lattice is associated with a surface, one can still edit it without de-
forming the surface. At this time, an attractive capability is the positioning command

which allows moving the EFFD lattice to a user specified poiut on the surlace.

3.3 Freezing a lattice

Everything is now ready to deform the surface. Assuming that several lattices are
associated with the surface, the user must first select one of the EFFD lattices and
“freeze” it. Freezing a lattice consists in computing the u,, v, and w, coordinates
of each point of the surface in the EFFD lattice parameter space. For each surface
onlv one EFFD lattice can be frozen at a time. With arbitrarily shaped lattices,
hnding the (u,, vs, w;) coordinates of the surface points is decomposed into two steps.
First, the chunk where the point is supposed to lie is determined by using the convex
hull property of Bézier volumes. The (u,v,w) coordinates inside the chunk are then
computed using Newton approximation. Two problems have to be considered: the

technique convergence and the degenerated chunks treatment.

o The convergence and consequently the determination of the starting point of
Newton iteration is usually considered as a delicate problem. However, for our
problem, experience has proved thatl choosing v = 0.5, v = 0.5 and w = 0.5 as a
starting point leads to very good convergence. No divergent cases have been so
far noted. A simple solution has thus been chosen. It consists of subdividing the

chunk in order to get a better starting point when no convergence is detected.

12



o With degenerated chunks, matrix inversion required by the Newton technique
may not be possible because of differential vanishing. In this case, as proposed

by Lukacs in [11], the pseudo-inverse matrix method is used.

3.4 Deforming the surface

When an EFFD lattice is frozen, all the transformations applied by the user to the
lattice are passed to the surface when the user selects the update command. Only
moving transformations are valid for frozen lattices. The (' continuity along the
intersection of an exterior face of the lattice with the object can be assured either
by keeping the two planes of control points adjacent to the lattice border fixed or by
guaranteeing the surface continuity as suggested in 3.1.5. The computation of the X,
coordinate points of the deformed surface is equivalent to the I°I'D one.

The presented method has been implemented with polygonal surfaces but, as II'D,
it also works with other surfaces, such as spline surfaces, and it should work with
hierarchical surfaces [8] as well. Whatever surface is used, a subdivision technique such
as that of Griessmair et al. [10] is recommended in order to maintain an acceptable
resolution of the surface. The technique of Griessmair et al. is valid for polygounal
surfaces. Each polygon is subdivided into triangles that are again subdivided according

to a given accuracy threshold.
C'onsidering a surface with several lattices positioned on it, the deformation process
can be described as follows:
Loop 1:
Deform the unfrozen lattices (move, insert, remove and merge control points)
Freeze one of the surface EFFD lattices
Loop 2:
Deform the frozen EFFD lattice (move points)
Update the surface |
End loop 2
Unfreeze the EFFD lattice

End loop 1

The ability to work with several EFFD lattices associated with the same surface is

very important; it allows the user to apply successively different shaped deformations.
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In order to allow for an exact repetition of the same deformation on several surfaces,

a recording operator has to be implemented.

4 Examples and concluding remarks

Some simple examples of surfaces deformed using the EFFD technique are illustrated
in I'igures 6 to 11. Figures 6a to 11a present the initial surfaces with the EFFD lattices
positioned on them. In Figures 6b to 11b, the EFFD lattices have been frozen, some
of their points have been moved, and the surfaces updated. Both the deformed lattices
and the deformed surfaces are shown. In Figures 6¢ to llc, shaded pictures of the

resulting surfaces or objects are shown.

In Figures 6 and 7, the same EFFD lattice (see Figure 7a) is used to define two
different deformations. In Figure 6, the axis and the intermediate cylinders of points
are translated whereas in Figure 7, the axis and every second column of points of the
intermediate cylinder have been moved back. As shown in Figures 6¢ and 7c, sandpies
are easily modeled with EFFD. In Figures 8 and 9 two characters are impressed onto
a surface. The “8” is sculptured into a piece of marble by “pulling” some of the lattice

oints whereas the granite “S” is sculptured by “pushing” the points.
p g p Y P g

Sculpturing and moulding are accurately simulated by EFFD. Other types of defor-
mations can also be reproduced with this technique. The shape of cloth-like surfaces
can also be simulated. Figures 10 and 11 are two examples where folds are modeled
with EFFD. In Figure 10c, a leather-like cushion is shown. Starting with a surface of
revolution embedded into a cylindrical EFFD lattice, the points of the lattice axis are
first moved in order to create a hull at the center of the cushion, then the folds are
designed by moving some of the intermediate points of the lattice (see [igure 10b).
In Figure 11, an oilcloth on a round table has been modeled. Starting with a planar
surface embedded into a cylindrical lattice, the outermost points of the EFFD lattice
are moved as shown in Figure 11b to create the folding effect. The resulting textured

picture is shown in Figure 11c.

EFFD is an easy to use and efficient method for modeling cloth-like surfaces. Shapes
cannot, of course, be as natural as with physical methods {20} {18] but it can be an
interesting alternative when other methods are computationally prohibitive or when

naturalness is not the main objective.
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Deforming a surface with EFFD technique is very efficient. Ouly a few minutes
were needed to design most of the previous examples. It is very easy to implement
EFFD on a system including the FFD capability. This deformation technique is part
of ACTION3D, a general interactive modeling system developed jointly by SOGITEC
and INRIA.
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Figure 5 a: A sphere deformed with a parallelepipedical Figure 6a: A lattice positioned on & planar surface
lattice

) . . Figure 8a: An "S" lattice positioned on a sphere
b: A sphere deformed with a cylindrical lattice

Figure 6b: The deformed lattice and the deformed Figure 7b: Another lattice transformation and Figure 8b: The deformed lattice and the deformed
surface the deformed surface surface

Figure 6¢: A sandpic Figure 7¢: Another sandpie Figure 8c: An"S" sculpted inlo a granit sphere



Figure 9a:  An "8" lattice positioned on a planar Figure 10a: A cylindrical lattice positioned on a surface Figure 11a: A cylindrical latiice positioned on a
surface of revolution planar surface
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Figure 9b: The deformed lattice and the deformed Figure 10b: The deformed lattice and the deformed Figure 11b: The deformed lattice and the deformed
surface surface surface

Figure 9¢: An "8" sculpted into a picee of marble Figure 10c: A leather like cushion Figure 11c: An oilcloth
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