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Résumé

COOL (Chorus Object-Oriented Layer, couche a objets pour Cho-
rus) étend les fonctionalités du systéme d’exploitation réparti Chorus,
avec des mécanismes destinés aux environnements 3 objets. COOL est
une couche construite sur le noyau Chorus V3, et qui étend |’interface
Chorus par des fonctions génériques pour la gestion-des objets: créa-
tion, destruction, stockage, invocation distante et migration. Notre
but principal était d’explorer la faisabilité d’une gestion d’objets gé-
nérique au niveau du noyau, pouvant convenir a3 des modeles d’objets
divers a un niveau supérieur. Nous présentons la mise en ceuvre de
COOL, ainsi qu’une premiére évaluation de notre approche, grace a
un environnement C++ basé sur les mécanismes de COOL.

Abstract

The Chorus Object-Oriented Layer (COOL) is an extension of the
facilities provided by the Chorus distributed operating system with ad-
ditional functionality for the support of object-oriented environments.
This functionality is recalized by a layer built on top of the Chorus
V3 kernel, which extends the Chorus interface with generic functions
for object management: creation, deletion, storage, remote invoca-
tion and migration. One major goal of this approach was to explore
the feasability of general object management at the kernel level, with
support of multiple object models at a higher level. We present the
implementation of COOL and a first evaluation of this approach with
a C++ environment using the COOL mechanisms.



1 Introduction

COOL is a distributed object-oriented system, built on top of the Chorus®
V3 kernel {23], alongside Chorus Unix? (MIX) [3]. It runs on a local network
of Sun 3/60 workstations.

COOL is a joint project between Chorus systémes and INRIA, with a
partial support from SEPT3, a french PTT’s research center.

The first goal of this project was to provide an object-oriented environ-
ment for the support of the CIDRE distributed document application [15] of
SEPT.

Another major goal was to evaluate the feasability of basic object man-
agement at the kernel level, which is able to support run-time systems with
different object models. Our assumption was that a large part of the basic
object management functionality can be shared by various object models,
while specific features can be realized in a higher layer. Another assumption
was that to place that management at the system level can improve the con-
trol on the system resources and the overall efficiency. To do so, we intended
to map the abstractions offered by Chorus and to extend them in a generic
and minimal way, while keeping their open features.

1.1 Related systems

As previously stated, in COOL, we intend to be able to support various
object models. In order to meet that requirement, it is necessary to define
a generic architecture that supports a large spectrum of existing object-
oriented models. Existing distributed object-oriented systems can be roughly
divided in two trends:

1. Systems that do not provide a uniform object model, such as Argus
(19, 20, 21], Clouds V2 [14], Eden [2, 18, 11], Hermes [12] and SOS
(24, 25, 26].

'Chorus is a trademark of Chorus-systémes

2Unix is a trademark of AT&T Bell Laboratories

3SEPT is the french acronym for “Service d’Etudes Communes des Postes et
Télécommunications”



2. Systems that do provide a uniform object model, such as Amber [13],
Emerald [9, 10, 16] and Guide [6, 7, 17].

Systems with a non-uniform object model are typically designed for spe-
cialized distributed applications with, for example, strong requirements in
terms of data consistency (Argus, Clouds and Eden). They distinguish be-
tween language objects, which are small, local and passive, and system ob-
jects, which are large, global, and potentially active. The granularity of
the system objects is, most of the time, of the order of the address space.
Another reason to choose a non-uniform object model is the desire to be
language independant (SOS, Hermes). In SOS, as in Hermes, the system ob-
jects are mobile and medium-grained. Object invocation relies on the proxy
mechanism.

Systems with uniform object-oriented models are coupled with an object-
oriented language. Such systems generally provide fine-grained object man-
agement along with thread and object mobility. While the advantage of such
an approach is obvious (uniformity and fine-granularity at the programming
level), there are several drawbacks. As the language and the system are
strongly coupled, you have to redefine all the layers of object management
for each programming language that you want install on the underlying op-
crating system. Also, except for Guide, solutions for efficiency don’t fit for a
large number of co-existing large applications.

In COOL, we have made the choice of a layered architecture. A basic
layer implements the generic object management functionality. Higher layers
will refine the facilities it offers and implement the semantics of their specific
model. In order to do this, the basic functionality must not enforce any policy
for object management. Also, the proposed mechanisms must be general
enough to fit a large spectrum of requirements. In a first approach, we have
chosen to allow the co-existence of multiple address spaces within each site
of the system, and to model objects as segments of those address spaces. We
felt that this model is general enough to fit with most of the object models
exposed above.



1.2 Outline of the document

The remainder of this paper describes the COOL abstractions. The next
section presents the architectural choices of the COOL system and its execu-
tion model. The basic object :nodel is described in section 3. Section 4 then
presents the inter-object communication mechanisms, i.e., invocation and mi-
gration. The following sectior discusses our approach for object persistence.
Section 6 presents an initial run-time of our system, the COOL/C++ library.
Section 7 presents our first evaluation of the sub-system on the basis of that
run-time environment. We finally conclude in section 8.

2 The COOL architecture

2.1 Execution model

In COOL, the execution domain, or contezt, is an address space, local to a
site. Several contexts can co-exist on the same site. Each context is composed
of objects and lightweight threads. Objects and threads are seen as orthogonal
entities by the system, which associates no relationship between them.

The notion of context maps that of the Chorus actor. At creation time, an
actor is an empty address space with a capability, which is a unique identifier,
and a default communication port. It can then be initialized with data and
code regions, and threads can be started within it. A COOL context is
created with an initial, user-specified object.

COOL does not add any functionality to the Chorus thread model, which
provides for thread creation, scheduling, synchronisation and deletion. While
threads always remain local to their creation context, objects are mobile and
can move between different contexts during their life-time.

2.2 The system architecture

The COOL architecture is based on the Chorus architecture, where tradi-
tional kernel functionality is ~ncapsulated in modular servers. Chorus also



allows integration of various sub-systems, such as Chorus Unix, with its min-
imal kernel.

As we intended to implement the main part of object management at
the system level, COOL is organized as a sub-system, which provides basic
context and object management, and a set of servers. All the low-level man-
agement is done at the kernel level. This choice has been dictated by two
considerations.

e Chorus does not provide intra-site lightweight RPC, as done in [8].

¢ We can implement group operations, such as migration of several ob-
jects, more efficiently in the kernel than in external servers.

Context management involves creation, deletion, and persistence. Object
management consists mainly of creation, copy, deletion, remote communica-
tion and migration.

The servers currently available are a class server (see subsection 3.2), a
segment mapper, and a name server.

The segment mapper collaborates with the kernel memory manager in or-
der to provide a distributed virtual memory management [1]. A segment is a
contiguous area of memory, generally located in secondary memory, managed
by a segment mapper. A segment mapper allows creation and destruction
of segments as well as reading and writing of segments to and from main
memory. It also manages segment sharing and copying. A context consists
of non-overlapping regions of virtual address space. Different protections
(read/write/execute, user/system) can be associated to the different regions
of a context. A region is mapped to (part of) a segment through a cache,
which manages the real memory currently in use for that segment on the cur-
rent site. Mapping consists of associating a segment capability with a region
of an address space. The kernel memory manager will then correspond with
the segment mapper in order to update or read the segment.

The name server associates a symbolic name with an object capability.
The COOL names are integrated in the Unix naming hiercharchy, so that
COOL objects can also be accessed from the Unix environment. Inversely,
Unix files are also visible from the COOL environment, and it is possible for
COOL objects to use the Unix I/O mechanisms. We thus spare the effort
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to implement such functionality. A storage server is also planned for the
future. Although we can rely on the Unix file system functionality, object
storage requires higher level mechanisms than the storage of uninterpreted
bytes streams. ' )

Although it is possible to use the raw COOL facilities, it is not very
convenient. The COOL sub-system is intended to support run-time systems.
A C++ [27] run-time environment has been implemented as a library linked
with users applications.

3 The basic object model

3.1 Object representation

COOL objects are passive and medium-grained. By this, we mean that a
COOL object is much more lightweight than a process or an address space
(in fact many COOL objects can coexist in any typical address space), but
still too heavywecight to make every user-visible entity into a COOL object. A
set of attributes, associated with an object, determines whether it is globally
known and whether it is persistent. A global object may request receipt of
messages sent by remote objects. A persistent object can only be explicitely
destroyed; it survives system shutdowns.

Figure 1 shows the different object components. A system descriptor,
located in the sub-system address space, handles the user part of the object
representation and the object attributes.

The user part of the object consists of two segments, each one mapped
in an individual region of the containing context:

o The code segment contains the code of the object methods. This seg-
ment is shared by all the instances of the same class among the system.

o The data segment contains the object state. It constitutes the private
“heap” of the object, and can grow or shrink following object’s dynamic
(de-)allocations. Its segment mapper can be selected at object creation
time.
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Figure 1: Object Representation

3.2 The class object

The class of an object is itself an immutable object, which carries the in-
formation needed by the sub-system for object creation. There is a unique
instance for each class?, managed by the class server.

A class object publishes a functional interface which provides a class
description; this description can be used for type-checking® by languages
that require it. A class description is a structure that contains at least the
following information:

*It can be replicated for avaibility.
5The sub-system doesn’t perform any type-checking itself.



e class attributes,

¢ initial data and code segment descriptors.

Object regions are created and initialised on the basis of the information
furnished by their class description. The only class attribute significant for
the sub-system is the global attribute: if present, a capability and a port are
created for each instance of the class.

4 Inter-object communication

4.1 Object invocation

Object interaction is mapped on the underlying Chorus communication fa-
cilities. From the sub-system point of view, the only way objects can com-
municate is message passing, either in a synchronous or asynchronous way.
An object created with the global attribute is assigned a capability and a
port tied to the capability. A global object can thus be the target of remote
invocations. It must request message reception ezplicitly.

object mobject n object o messagel

object a O O O . object b
O call receive O

: OO0 ™

message2 object i object j

Figure 2: Synchronous inter-object communication, with migration

COOL also allows the construction of object groups for asynchronous
communication with multicast or functional addressing.



4.2 Object migration

Object migration is piggy-backed on message transmission. Several objects
can migrate along with a message, either on request or on reply message
transmissions. One simply provides a list of objects to be moved or copied in
the target object context. Such an interface does not enforce any migration
policy. Run-time systems can build upon it either explicit migration primi-
tives, or argument passing with call-by-move or call-by-visit semantics, as in

Emerald [16].

Figure 2 illustrates remote object invocation with migration in synchronous
mode.

Although coupled with remote invocation, object migration is based on
the mechanisms of the distributed virtual memory management. Object
migration simply consists of unmapping the object’s segments from its source
context, transmitting its descriptor, and then mapping its segments in the
target context. If the migrated object is global, its port is also migrated from
the target context.

Inter-site port migration is more complicated than the intra-site migra-
tion. Actually, Chorus does not implement the remote migration of ports
with queued messages. We thus have to forward the messages queued on
the source site, without guaranteeing that they will be received before mes-
sages sent most recently on the remote site. This feature calls into question
our initial design of object representation, since associating a private port
with each global object only relieves us of the burden of forwarding pending
messages for intra-site migrations.

5 Persistence

In COOL, object persistence is achieved by context persistence. A context
that contains one or more persistent objects inherits the persistent attribute.

A persistent context cannot be destroyed until it loses its persistent prop-
erty, i.e., all its persistent objects are migrated or explicitly deleted. At
shutdown time, the state of persistent contexts is checkpointed on storage.
Objects and threads are saved, messages are lost. Persistent contexts are
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then automatically restarted at boot-time. The current state of work does
not address the problem of site or context crashes. Additional functionality,
such as explicit checkpointing, is needed.

Persistence in COOL is a lazy object persistence. To support full object
persistence, it is necessary to know the object’s internal structure in order
to track intra-context references and dependencies to other objects and to
transform them in a suitable format [4]. It is not possible to achieve this
without the assistance of a language [5, 22], a run-time system, or explicit
programmer intervention. “True” persistence can be achieved using the stor-
age service, but this involves a lot of work from the run-time system.

6 The COOL/C++ library

The COOL/C++ library, used by the CIDRE application, is our first vali-
dation of the COOL sub-system. We tried to bring additional functionality
to the COOL sub-system, while mapping closely the abstractions it provides
and without any special language effort.

The library provides a member mechanism which enables the application
of operations such as migration and deletion® to groups of related objects.
This mechanism, inspired by the Emerald “attach” mechanism, exploits the
grouped migration mechanism allowed by the sub-system.

The library also provides relocatable typed pointers for the internal data
of an object. As all the data of a given object, included dynamically allocated
data, are located in a single region, i.e., a contiguous area of address space,
it is fairly easy to provide relocatable pointers. Their data part contains the
relative offset of the referenced object. Dereferencing computes the absolute
address by a simple addition.

Finally, the library manages the relationship between objects and threads,
which is not taken in account at the sub-system level.

6And also storage, in the future.
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6.1 The COOL/C++ object

A COOL object is a C++ object whose root base class is the cool class. It
can run its own thread if it defines the main method, and it thus has the
active attribute.

As we wanted to avoid duplicating an object definition, depending on
whether or not it had to be known by the system, COOL objects are not
automatically known by the system”. In order to be known by the system,
an object has to be created using the system primitive for object creation.

From the run-time point of view, the public methods of an object are its
virtual methods. This feature has been dictated by the thread management
policy exposed in 6.3. We also wanted to avoid the cost of dynamic linking
of object methods, both at creation time and at migration time. In order
to do so, we compile objects as executables, linked at fixed addresses. The
only unresolved references are the calls to other COOL objects. As all those
calls are indirected via the C++ virtual mechanisms, they can be resolved at
execution time. The C++ class description contains two additional fields to
the fields mentionned above in 3.2, the addresses of the class constructor and
of the main method, and two attributes active and monitor. All the virtual
methods of a monitor object will be executed in critical sections.

6.2 The member mechanism

The member mechanism allows programmers to simply form composed ob-
jects for automatic grouped migration and deletion. As shown in table 1, to
attach a member to an object one has only to declare and assign a member
pointer. The member pointer can then be used as a C pointer. Detachment
occurs by reset or reassignment of the pointer.

An object may only be the member of a single object. On the other hand,
one object can have several members. It is thus possible to build member
trees. A member cannot be migrated independently of its root object. But
one can migrate copies of a member either in a shallow way (only the member
itself) or in a deep way (with all its own members).

"Nonetheless, it may be inadequate to create a simple C++ object of a class wich owns
the global or active attribute.

12



member (type) memberPointer;
type* objectPointer;
memberPointer = objectPointer;
memberPointer->method();

Table 1: Member pointers interface

6.3 Thread management

In COOL/C++, the only way to create threads is to create active objects®.
The attachment of a thread to an object occurs at object creation time. Once
the object regions have been created by the sub-system, the constructor is
called, then a new thread is started with the object’s main entry point. The
thread data is part of the user data region.

Active objects are likely to be resident objects, as it is difficult to provide
thread mobility without efficient language support [16]. They are used to
start a context and to provide pseudo-parallelism inside a context. However,
as objects are mobile, we wanted to provide a restricted thread mobility.
When an object has to migrate, its thread (if any) is destroyed in the source
context, and restarted at the main entry point in the target context. If other
threads are currently executing an object’s method, the migration is refused
and an error code is returned.

The system object management primitives are not methods of the COOL
objects. Instead for each thread, we maintain the notion of the current
object, to which system calls have to be applied. To retrieve the address
of the current object, we could rely on the C++ feature, which places the
address of the invoked object as the first argument of a method call. But
this feature is not safe, since a system call can be issued by a C procedure,
or in the CIDRE application, by a Lisp function. Instead, an object stack
is associated with each thread, which contains the addresses of all objects
actually crossed by the thread.

The thread’s current object is pushed on the top of the object stack before

8There are no predefined thread objects, but one can simply define “pure” thread
objects.
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Figure 3: Relationship between threads and objects

each call to a virtual object method. This is done by a logical intra-context
trap, in a transparent way. The trap occurs via an indirection table, global
to the context. Each table entry contains the address of a procedure which
implements:

1. a prologue (push of object’s address on the stack, increment of the
object’s activity count, monitor management),

2. the call of the object’s method,

3. an epilogue (pop of object’s address, decrement of the activity count,
etc.).

All the informations needed by the trap procedures are members of the
cool base class. The indirection is realized at object creation time.

7 Evaluation

In the current state of the work, we can only give a preliminary evalution of
our work with a C++ environment. For example, we have not yet done any
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performance measurement; it would not be very significant, because our run-
time is implemented on top of a simulator. Unfortunately, at the time the
project started, Chorus Unix was not yet available on Sun workstations. As
it was not convenient to develop on the native Chorus system, a COOL pro-
totype has been implemented on top of a Chorus simulator. This prototype
is currently being ported to the native Chorus.

A positive observation is that the library was easy to implement on top
of the sub-system. We were able to provide high-level functionality without
any special language effort, for example:

e The member mechanism was implemented with the group migration
mechanism of the sub-system.

Yo &

e Variable-sized object mobility was provided, based on the object’s “pri-
vate data segment” feature coupled with a relocatable pointer mecha-
nism. It allows migration of a composed object, such as a linked list,
to a remote context or storage, without the cost of encoding its state
in an external representation.

Unfortunately, the segmented approach does not map very well with the
granularity of language objects, at least for the data part of the object. We
have tried to design the COOL/C++ object to fit the segment granularity
when possible, by inserting the thread state in the data segment of active
objects. In general, this is not sufficient, however it is not a major problem for
the CIDRE application, which encapsulates C++ and Lisp objects in COOL
objects. CIDRE deals with rather large objects, but it implies a non natural
way of programming. Also, while an object is composed of a code and a data
part, the actual one-to-one matching between regions and segments and the
choice of two regions per object is somewhat arbitrary. For the code part,
for example, it does not map the sharing semantics of the class hierarchies of
object-oriented languages. We feel that further work in that area is needed
in order to make our model more general.

Finally, we also feel the need of additional functionality such as object
location. As objects are uniquely identified and location transparency is
provided by ports, we didn’t feel the need, at the sub-system level, to locate
objects. Noneless, in order to exploit distribution, some applications may

15



need explicit knowledge of object location. We have thus to provxde some
location functionality and finding mechanisms.

In order to test the generality of our system, it would be interesting to
see how COOL abstractions map with the object-oriented systems mentioned
above in 1.1, both in terms of granularity and functionality.

At a first glance, our model maps well with non-uniform object-oriented
systems such as Argus, Clouds or Eden, which provide large-grained objects.
Problems arise as the granularity becomes finer. While COOL can be used
for medium-grained object management as provided in SOS and Guide, it is
clearly inadequate for run-time environments such as Emerald and Amber.

Our communication model, based on the message passing semantics, is
not general enough. It does not map the local invocation model based on
the procedure call semantics, because objects have to request the receipt of
messages. This feature can be easily fixed. In order to allow remote procedure
call semantics, we have to couple ports with objects in a loose way. We still
have to assign a capability to each object but, for example, we can associate
the default port of the object’s context with that capability.

As they provide object mobility, systems like Amber and Emerald also
implement thread mobility while executing an object operation. We don’t
provide it in COOL. In Amber, thread mobility is made easier by the im-
plementation of a distributed global address space. It would be difficult to
implement such a feature in a system of the scale of COOL. In Emerald,
thread mobility is made easier by the help of the compiler which provides
templates of object layouts and of context dependencies such as registers.
This functionality is realized at a higher level than the COOL sub-system.
Our belief is that it is not safe to deal with thread mobility at the ker-
nel level, since the sub-system does not hold enough information to move
threads without leaving residual dependencies in the source context.

8 Conclusion

We have designed and implemented COOL, a system layer for distributed
object management. A prototype is currently available on a local network
of Sun 3/60 workstations. It is used by SEPT to support a distributed
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document application. The goal of the COOL project was to be able support
a large spectrum of object-oriented run-times. The COOL layer provides
address space management and basic functionality for object management,
such as creation, deletion, invocation, migration and persistence. In a first
approach, we have chosen a segmented architecture as the basis of the object
representation. Relying on distributed virtual memory management brings a
lot of nice features. One can associate different mapping policies to objects by
choosing the segment mapper for its data at creation time. Object migration
simply consists of changing the mapping of the object components and is not
restricted to fixed-sized objects. Noneless a segmented approach does not
scale very well with small object management.

COOL is actually under redesign on the basis of those observations. Lan-
guage objects can hardly be the unit of segment management. On the other
hand, the segmented model allows us to rely on Chorus’ underlying mecha-
nisms for basic storage management and sharing. Also, we are not convinced
that it is possible to efficiently manage fine-grained entities at the kernel
level. Our current idea is that the regions which constitute an address space
can be viewed as container entities that host collections of related objects.
Containers are composed of one or several segments. They may be a unit of -
migration and persistence. Our investigation focuses on the way to provide
container assembly and to migrate individual objects between containers.
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