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Abstract . We can consider a pushdown automaton as a word rewriting system with labelled rules
applied only in a prefix way. The notion of context-free graph, defined by Muller and Schupp is then
extended to the notion of prefix transition graph of a word rewriting system. Prefix transition graphs are
context-free graphs, and we show they are also the rooted pattern graphs of finite degree, where a
pattern graph is a graph produced from a finite graph by iterating the addition of a finite family of finite
graphs (the patterns). Furthermore, this characterisation is effective in the following sense : any finite
family of patterns generating a graph G having a finite degree and a root, is mapped effectively into a
rewriting system R on words such that the prefix transition graph of R is isomorphic to G , and the

reverse transformation is effective.

Sur la structure réguliére

des récritures préfixes

Résumeé . On peut considérer un automate & pile comme un systeme de récritures de mots, a régles
étiquetées, et ou les transitions sont préfixes. La notion de graphe d'automate, définie par Muller et
Schupp, est alors étendue en celle de graphe de transition préfixe de systémes de récritures de mots. Les
graphes de transition préfixe sont les graphes d'automates, et sont aussi les graphes ayant une racine,
dont chaque sommet est de degré fini, et a motifs, c'est-a-dire produit a partir d'un graphe fini en itérant
I'adjonction paralléle et déterministe d'une famille finie de graphes finis (les motifs). Cette correspondance
est effective dans le sens ou, & toute famille finie de motifs engendrant un graphe G ayant une racine et
dont chaque sommet est de degré fini, on associe de fagon effective un systéme de récriture de mots dont

le graphe de transition préfixe est isomorphe 8 G . De méme, le passage inverse est effectif.
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On the regular structure

of prefix rewritings (1)

Didier CAUCAL
IRISA , Campus de Beaulieu , F35042 Rennes-Cedex , France

Introduction

A rewriting system on a set X of terminal symbols and a set X of non-terminal symbols, is

a finite set of rules u L) v between words u, v e X", labelled by some word fe *. One step
of prefix rewriting in a rewriting system R is a labelled transition uw —f-> vw between words in
X*, where u L) v is arule of R. Prefix rewriting steps may be viewed as the arcs of a graph; a
prefix transition graph is the graph generated in this way from any axiomin X*.

As an example of prefix transitions, let us briefly introduce the transitions between the configurations
of a pushdown automaton, pda for short. Such a configuration may be represented as a word
qA;...A, where q is a state of the automaton and A; is the top of the stack contents A;...A, .
Then the transition relation of the pda may be seen as a rewriting system ; any transition between
configurations is mapped in this way to a step of prefix rewriting. The corresponding prefix transition
graph is called a pushdown transition graph. We show (in section 1) that every prefix transition graph
is isomorphic to a pushdown transition graph. Secondly, we will show (also in section 1) that the
correspondence may be lifted to the level of languages over X : the context-free languages are
recognized by the prefix transition graphs working like (infinite) automata, with finite, or context-

free, set of final words over X.

(1) This work will be presented at CAAP 90 .



A well-known property of accessible configurations of pda's is that they form regular
languages. A similar property holds in the case of prefix rewriting [Bii 64] : the set of words in X*
reachable from a given axiom is again aregular language. We get in fact a stronger result. Consider
the binary relation over X* induced from prefix derivations by forgetting labels in X*. This relation
is in fact a rational transduction. We give (in section 2) a procedure which, given a rewriting system ,
produces the corresponding transducer.

In a seminal paper, Muller and Schupp have proved that every pushdown transition graph has
a regular structure, which can be generated via a deterministic graph grammar. We will give an
effective proof of this result, by writing a procedure which produces the graph grammar (section 3).
Conversely, we will also show that any rooted graph with finite degree, generated by a deterministic
graph grammar, is isomorphic to a prefix transition graph, and we moreover give a procedure which
produces the corresponding rewriting system (also in section 3). At last, we establish effectively the
characterisation of Muller and Schupp [Mu-Sc 85]. As a corollary, we can decide that two prefix
transition graphs are isomorphic with respect to some given vertices.

The proofs are given in appendix.
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1. Pushdown automata and prefix rewriting

In this section, we recall basic facts about rewriting systems, and introduce prefix rewriting as
a special case of rewriting, constrained to operate on left factors of words. We then illustrate prefix
rewriting with the help of pushdown automata, pda for short, and their transitions. The transitions of a
pda are a particular case of prefix rewritings. They are equally powerful : the transition graphs are the
same, and the same holds for their trace languages, that is to say the language of labels along the paths
from an axiom to a vertex in a given finite set (which are respectively the context-free graphs and the

context-free languages).

Let us first introduce notations and terminology for rewriting systems. In the sequel, X and X

are fixed alphabets, of non-terminals, and terminals respectively. A rewriting system R on (X,Z) is

.. f .. ..
a finite set of rules of the form u— v, where fe ¥ and u,ve X*. A rewriting system is said

f
to be alphabetic if ue X foranyrule u— v, and e-free if both u and v are non empty in any

such rule.
Rewritings in a rewriting system are generally defined as applications of rewriting rules in any

context. On the contrary, we are exclusively concerned in this paper with prefix rewriting defined as

follows : given a rewriting system R, a prefix rewriting step (according to R) is a labelled transition

f f : . -
uw — vw where u— v isarulein R and we X*.Let u— v, resp. uk—v, represent an
elementary (unlabelled) prefix rewriting step, resp. an arbitrary sequence of such steps. For example,

let us consider the unlabelled rewriting system S = { abb — ab,abc »>ca,c—c¢cb)} on X =

{a,b,c} ; the language {u | ab" — u} of words obtained by prefix rewriting from abc is equal
to {ablc | 1<i<n)uUcba. |

Prefix rewriting may be seen as a way to generate terminal languages. Given a rewriting system R on
(X,Z), anaxiom re X', and aset F of final states in X*, the language L(R,r,F) recognized by
the sequential machine (R,F) starting at r, is the set of labels f...f, of paths w, He Wy ... LN

w,,, suchthat wy;=r and w,,, € F. Inthe case where F is a finite [resp. context-free] subset of

X", L(R,,F) is said to be finitely accepted [resp. context-free accepted].
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The following proposition about context-free accepted languages is easily proven on the basis of the

forthcoming lemmas 1.3 and 1.4, and from theorem 5.5 of [Sa 79].

Proposition 1.1 . Finitely accepted languages (respectively context-free accepted

languages) coincide with context-free languages.

Prefix rewriting may also be seen as a way to generate labelled transition graphs. The prefix
transition graph G(R,r) generated from an axiom re X" according to R is the set of arcs w AN w'
induced by the corresponding prefix rewriting steps from words w such that r —> w . Figure A

gives an example of a prefix transition graph.

Let R be the rewriting system on ( {A,p,q}, (a,b,c.d} ) defined as follows :

a b c d
R={p->q.,p>pA ,pA>p,qA—>q ).

The prefix transition graph G(R,p) is represented by

@) b ®A) b (PAA) b b

@ @A) GAA)

Fig. A . Prefix transition graph .

In the remaining of the section, we establish a strong connection between prefix rewriting and

pushdown automata. To begin with, let us recast pushdown automata and their transitions in the

framework of prefix rewriting.

Definition. A pushdown automaton (without initial and final states) is a rewriting
system R on (X,Z), satisfying the following conditions :

() X is partitioned into Qg U Pr
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f *
(i) foranyrule u— v in R, wehave ue QR UQrPr and ve Qi.PR".

Of course, a pushdown automaton (pda) works under prefix rewriting ! Thus pushdown transition

graphs are certainly prefix transition graphs in the following sense.

Definition. A prefix transition graph (resp. a pushdown transition graph, an alphabetic
graph) is a graph isomorphic to G(R,r) for some rewriting system R (resp. some pushdown

automaton R with r in QR.PR* , some alphabetic rewriting system R) .

Here, a graph isomorphism is simply a vertex renaming. But the labels of arcs are preserved. The main

result of the section is the following.

Theorem 1.2 . Prefix transition graphs coincide with pushdown transition graphs.

The problem in establishing theorem 1.2 lies in the transformation of a prefix rewriting system into a
pda without introducing € transition, nor duplication in the prefix transition graph. The proof of the
theorem 1.2 will be cut into two lemmas. The ﬁfst lemma (lemma 1.3) shows that any prefix transition
graph is generated by a normal (see next definition) e-free transition system. The second lemma (lemma
1.4) shows that normal e-free transition systems are equivalent to pushdown automata as far as

generated graphs are regarded.

Definition. A rewriting system R is normal if both u and v have length (strictly) smaller

f
than 3 foranyrule u—s v in R.

Lemma 1.3 . Any pair (R;r) consisting of a rewriting system R on (X,Z) and an
axiom te X" normalizes effectively to another pair (S,8), where S is a normal e-free

rewriting system on (Y,X) and s€ Y, such that G(S,s) isisomorphic to GRr).
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Such a transformation is not usual. For instance and by identifying AA with B, the alphabetic system

b
R={A —a-> £E,A — A3 } can be transformed into the normal alphabetic system S = { A —a-> £

b b
,A — BA,B —: A, B — BB} recognizing the same language, on empty stack from A ;

nevertheless G(R,A) is not isomorphic to G(S,A).

Lemma 1.4 . Any pair (R,r) consisting of a normal e-free rewriting system R on
(X,X) and an axiom re X* may be effectively transformed into a pair (S,s), where S
is a normal pushdown automaton on (Y,X) and s € Qg, such that G(S,s) is isomorphic

to G(R,r).

After proposition 1.1 and theorem 1.2, we may ask whether alphabetic rewriting systems, which have
the same trace languages as the pda's, are also representatives of arbitrary rewriting systems as far as

generated graphs are concerned. The next proposition answers this question negatively.

Proposition 1.5 . The class of alphabetic graphs is a proper subset of the class of

pushdown transition graphs.

For instance, the prefix transition graph of figure A is not alphabetic. Nevertheless, in the restricted
case where G(R,r) has at least one co-root state (reachable from every other state), we have the

following result.

Theorem 1.6 . From any pair (R,x) consisting of a rewriting system R and an axiom t
such that its transition graph G(R,r) has a co-root, we can decide whether G(R) is an
alphabetic graph, and in this case, the pair (R,;r) may be effectively transformed into a pair
(S,8) where S is a alphabetic rewriting system and s is a letter, such that G(S,s) is

isomorphic to G(R,r) .

The construction, got with R. Monfort, needs the forthcoming theorems 3.2 and 3.3 .
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2. Prefix rewriting and rational transduction

In this section, we discard labels from transitions, and focus on the prefix rewriting relation

l—;-> defined in section 1 . Recall that — is the componentwise concatenation R.A where A is the

identity on the set of words. We show that for any R, the relation l—;e generated by R is a rational

transduction. A bunch of known results about prefix rewriting follows immediately. For instance,

a) the set of words originating infinite derivations along = is regular [Bo-Ni 84],
b) the set of accessible configurations (in QR.PR*) of a pushdown automaton R is rational

[Bii 64] , [Au 87] (problem 14),
¢) the equivalence generated by = is decidable [Ne-Op 80],
d) confluence and termination properties of I—R) are decidable [Da-et al. 87] and [Hu-La 78] .

Henceforth, R is a finite subset of X*xX*, and uw b vw holdsif uRv and we X* . Let

us state the main result of the section.

Theorem 2.1 . For any R, I-—;—> is a rational transduction, and a corresponding

transducer is effectively constructible from R .

The proof of this theorem is cut in two steps. We first construct from R a finite automaton A(R)
(i.e. a pushdown automaton A(R) with empty stack alphabet P,y = @) such that

L(A(Ru{r—r}),e,{r}) (see the beginning of section 1) coincides, for any r € X*, with the

language generated from r according to the derivation relation I—é—) (.e. with { w|r I—'R—> w ).
The complexity of this construction is polynomial in time and space, instead of exponential as in
Biichi [Bii 64] (lemma 3 and theorem 1). We then combine A(R) and the companion automaton

A(R™) into a finite state machine.

Let us proceed to the construction of A(R). For u in X", let left(u) denote the longest
left factor of u in the domain of R, or € by default, and let u = left(u).right(u) . The principle of

the construction is to set a producer-consumer relation between the prefix rewriting system R and the
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automaton A(R) : segments laid down from right to left by prefix rewriting are taken from left to

right by the automaton. Let us first revert' the rules of R. We set

f
H { left(v) — u | f=right(v) and uR v}

f
and I { left(u) — va | f=right(u).a and ae X and vaRv}.

HuT is not yet the desired automaton, because a 'left member' may be laid down in several slices,
produced in successive steps in prefix rewriting. Thus, the transition of the automaton should be cut

into corresponding slices. So, we set A = <H u I>, where for any finite set G of labelled
f . . oo . .
transitions s — t, the sliced version <G> of G is its closure with respect to the following

property :

if s—»te G and ve L(Ge(s)) with u' #¢

u
then vu'—> te G if vu'=left(vu'u") and u" ¢ L(G,vu'{t}).

The above construction has been proved correct in [Ca 88] and is illustrated in figure B .

Let R = (€ 2ba,bab >ba} . Then
H={elf>e, eb—a>bab}
I=( 2% pab )

The automaton A(R) = <HUI> isrepresented by

Fig. B . Automaton of a prefix rewriting .

As an immediate corollary, we get a decision algorithm for the termination of = b has a

infinite derivation from r if and only if the connected component of A(Ru{r—r}) containing r has

acycle.
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We are ready to prove theorem 2.1. Let T be the finite union of product languages
L(AR),e,{u}) x L(AR),&,{u}) for ue Dom(R) u (g} .
Clearly, T is a recognizable subset of X*xX* by Mezei's theorem [Be 79], and a transducer of
= is effectively constructible from R . Then — is the required transducer, as shown by the

following lemma.

Lemma 2.2 . u }'T:. v ifandonly if for some we X' and z e Dom(R)u{e}

u=xw , v=yw and x l%) z l%) y.

In view of theorem 2.1, the derivation relation I;R> generated by a finite relation R is a

rational transduction. Furthermore, we have seen in the proof that l%) = 'T) for some
recognizable relation T . We are indebted to J.M. Autebert for a positive answer to the question :
when R is recognizable, does I—'?) still coincides with = for some recognizable T ?

This extended result allows us to state that one step prefix rewriting relations, according to

recognizable relations, form a 'rational’ family in the following sense.

Proposition 2.3 . The family of relations { = | R is arecognizable relation } is

closed under union, composition, and starred composition (of relations).

This is in fact a generalization of theorem 2.1, for the proof given in appendix is effective. Let us
remark that the family of the proposition 2.3 is not closed under intersection, nor under
complementation (by de Morgan law), because we have the following equality :

(c*xcHA N A = ({chx{ch A .
Let us remark that ({a}x{€}).A is not a prefix rewriting relation L—%—) over {a,b}*.
Furthermore, we get for free a solution of the decision problem for the confluence of > for

recognizable R.

Proposition 2.4 . The confluence of — is decidable for recognizable R .
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3. Prefix rewriting and pattern graph

Since, for any finite relation R on X", the prefix rewriting relation I—%—) generated by R is
a rational transduction, prefix rewriting has a regular behaviour. In particular, the set of words of any
prefix transition graph is a regular language (over X”). A natural question is then whether the regular
structure of prefix transition graph is preserved when transitions are labelled, as in section 1 . The
answer is positive, since those graphs are pushdown transition graphs (by theorem 1.1), and since
Muller and Schupp [Mu-Sc 85] show that pushdown transition graphs coincide with context-free
graphs : a context-free graph is a rooted and finite degree graph which has a finite number (up to
isomorphism) of connected components got after removing all vertices closer to a given vertex than a
distance d, for any d. Thus, context-free graphs may be cut into slices of a finite number of
‘patterns’.

Building up over Muller and Schupp's ideas, we devise an effective construction of patterns for
context-free graphs given by pda's. We also relax the constraint of splitting up the graph 'by slices' and
allow to remove patterns of arbitrary shapes and sizes. This adds nothing to Muller and Schupp
decomposition, but gives more leeway for the construction of patterns. Furthermore, we establish the
converse result : we give a procedure which, given any finite system of patterns (of arbitrary shapes
and sizes), produces a pda whose transition graph is obtained by pasting these patterns together (along a
regular tree of formal patterns).

To begin with, let us introduce patterns and their gluing. In order to ease the presentation, we

use graph grammars, and first recall their definition.

Definition. A graph grammar on a graded alphabet F and set of vertices V, is a finite set
of hyperarc replacement rules fv,...v;, = H where the word fv,...v, is an hyperarc labelled
by the non-terminal f e F,, the v; are vertices and H is a finite hypergraph, that is a
(multi-)set of hyperarcs, but where the v; are distinct vertices. Every terminal of the
grammar, that is to say every label of a right member rule hyperarc which is not a non-terminal,

is of arity 2.
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A graph grammar is deterministic if two different rules cannot have the same non-terminal f.

Figure C is an example of a deterministic graph grammar.

Let A,a,b be in F of respective arity 3,2,2.

Let G = { (A123, (al2,al4,a25,a36,A564} ) } be a deterministic graph grammar.
A is the unique non-terminal of G , and G is represented as follows :

)
MDe (1)® ——>e

a )
e A — 2) ¢ ————>pe A

©

(3)e (3)e ———>e

Fig. C . Deterministic graph grammar .

Each deterministic graph grammar defines a graph, resulting from a given axiom graph by iterating the

graph rewriting [Ha-Kr 87] . We use the symbol + for the addition of multi-sets.

Definition. Given a graph grammar G on (F,V) and an hypergraph M on (F,V), M
rewrites in one step to a hypergraph N, and we note M —g N, if for some rule
fs;...s, — H, there exists a hypergraph M' such that M = M'+ {ft;...t.} and

N = M'+ { hg(xy)...g(xy) | hxy...x, € H} for some matching function g mapping s; to

t;, and mapping injectively the other vertices of H to vertices outside of M .

Beware that —¢ is not in general a functional relation, even though G is deterministic. Nevertheless,
if we let M =g x N denote the rewriting of a non-terminal hyperarc X, then

M -_)G,Xl 0...0 __)G,Xn N ifand Only if M _—>va1[(1) c...0 _)G,Xn(n) N
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for any X;€ M, and for any permutation ® on {1,...,n} . Thus, it makes sense to define steps of
complete parallel rewriting M =g N as follows :

M =g N if M —9gx,°0...0-x, N,
and M has exactly the n non-terminal hyperarcs X;, ..., X, . One step of complete parallel
rewriting corresponds to the Kleene substitution. On that basis, we define G®(M), the set of

hypergraphs generated from the axiom M according to the deterministic graph grammar G, as

follows :

Definition. G®(M) is the set of hypergraphs N for which there exists an infinite sequence
of hypergraphs (N n)nZO , suchthat Ny=M and foralln, N, =g N,,;, with limit

N ={fs;...sp | 31, fs;...s,€ N; and f is aterminal }.

Since G is deterministic, G®(M) has a single element up to hypergraph isomorphism. When M is
finite, this element is called the pattern graph generated by G from M . Pattern graphs are the
equational graphs of Bauderon and Courcelle [Ba 89 a] , [Co 89 a] . The grammar of the figure C

generates from A123 the pattern graph of the following figure D.

a b a
[ > e PO g e} @
a a
a a b
[ > e »e | ~—P g XX}
a
a
b a a
[ >0 : X J ‘ N )

Fig. D . Pattern graph.

Let us recall that a graph G is of finite degree [resp. of bounded degree] if [resp. there exists a bound
b such that] for every vertex s in G, the number of arcs to which s belongs is finite [resp. is

smaller than b]. Let us point out that every finite degree pattern graph is a bounded degree graph. A
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vertex r is a root of a graph G if each vertex is reachable from r . In particular, every prefix
transition graph G(R,r) has a finite degree and a root r.

Our goal is to establish constructively the following statement.

Theorem 3.1. Prefix transition graphs coincide exactly with rooted pattern graphs of finite

degree.
This theorem may be equivalently restated in two others theorems, one for each the inclusions.

Theorem 3.2 . Any pair (R,r) of a word rewriting system R on (X,X) and a axiom
re X, may be effectively transformed into a pair (G,M) of a deterministic graph grammar
G and a hyperarc M, such that the corresponding graphs G(R,x) and G®(M) are

isomorphic.

A restricted version of theorem 3.2 was established in [Ba-Be-K187] for grammatical graphs with a

co-root with out-degree zero.

Theorem 3.3 . Any pair (G,M) of a deterministic graph grammar G and of an axiom
M = fs;...s,, such thar G®°(M) has finite degree and has root sy, may be effectively
transformed into a pair (R,;r), of a word rewriting system R and an axiom t, such that

the corresponding graphs G°(M) and G(R,r) are isomorphic.

After theorem 3.2 and theorem 3.3, we can determine a word rewriting system of the inverse of any

prefix transition graph with a co-root.

Proposition 3.4 . Any triple (R;xr,c) consisting of a rewriting system R , an axiom
and a co-root ¢ of G(R,r), may be effectively transformed into an another triple (S,s,d)
such that there exists an isomorphism f from G(S,s) to the inverse of G(R,r) satisfying

f(s)=c and f(d)=r.
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Theorems 3.2 and 3.3 allow the study of other effective transformations of prefix rewriting systems,
and not only computing the inverse as in proposition 2.4 .
We shall now establish effectively the characterisation of Muller and Schupp [Mu-Sc 85] .

The next definition translates their notion of finite decomposition into the framework of generating

grammars.

Definition. A uniform grammar is a deterministic graph grammar when all rules
fvi...v, > H of G satisfy the following conditions :
(1) all vertices of all non-terminal hyperarcs of H are distinct,
(2) every vertex of a non-terminal hyperarc of H also belongs to a terminal arc of H, and
is different of the v;,
(3) every terminal arc of H goes through at least one v;,

(4) G®(fvy...v,) is connected.

For instance, the grammar of figure C is uniform. It is obvious to see that a context-free graph is a
graph with a co-root which can be generated by a uniform grammar. So, a context-free graph is a finite
degree pattern graph. Our goal is to establish constructively the following characterisation of Muller

and Schupp [Mu-Sc 85].
Theorem 3.5 . Context-free graphs coincide exactly with pushdown transition graphs.

From theorems 3.3 and 1.2, every context-free graph is effectively a pushdown transition graph. The

converse follows from theorem 3.2 and from the theorem below.
theorem 3.6 . Any pair (G,M) of a deterministic graph grammar G and of an axiom M
such that G®(M) is a finite degree connected graph, may be effectively transformed into a

uniform grammar H such that H°M) is equal to G®(M) .

A non-effective version of theorem 3.6 has been given by Bauderon [Ba 89 b] . After theorem 3.6
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and theorem 3.2, we can decide that two prefix transition graphs of word rewriting systems are
0 isomorphic with respect to some given vertices (i.e. the isomorphism is given on a pair of vertices, say

on the roots).

Proposition 3.7 . From all triples (Rrr') and (S,s,s') consisting of a rewriting
system, an axiom and a vertex of the generated prefix transition graph, we can decide whether

there exists an isomorphism f from G(R,r) to G(S,s) such that f@")=s".

Let us point out that proposition 3.7 is also a consequence of theorem 3.2 and of corollary 4.5 of [Co

89b].
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Appendix

Lemma 1.3 . Any pair (R;r) consisting of a rewriting system R on (X,X) and an
axiom re X' normalizes effectively to another pair (S,s), where S is a normal e-free
rewriting systemon (Y,X) and s€ Y, suchthat G(S,s) is isomorphic to G(R,1).
Proof.
We may suppose R e-free and r €. Otherwise, we could take a letter a in X appearing neither in
R nor r, and replace (R,r) by (aR,ar) with aR = { (au,f,av) | (u,f,v) € R }; so aR is e-free, ar #
€ and G(aR,ar) = aG(R,).
Let m be the greatest length of r and the words of X* in R, ie.
m=max {lul | w=1r) v IfIv (ufivyeR v (vfueR)}.
Let us extend an injection i from {ue X"|1<Iu/<m} tosome given alphabet Y to an injection j :
X* = Y* sothat j(€) =¢ and for every word u#¢, j is defined recursively by
j@) = j(v)i(w) with vw=u and Iwl = min(m,hl) .
The rewriting system S over (Y,X) defined as
S = { Guw),fjivw)) | ufv)e R A we X" A lwl<m)
is normal and e-free. Moreover s = j(r) is a letter and we show that

G(S9) = [ (W) [ W@hY) € GRD) ). | R

Lemma 1.4 . Any pair (R,;r) consisting of a normal €-free rewriting system R on
(X,X) and an axiom re X* may be effectively transformed into a pair (S,s), where S
is a normal pushdown automaton on (Y,X) and s e Qg, such that G(S,s) is isomorphic
to GR,r).

Proof.

Given the following alphabets :

Q
and IF'={u@ | 2<i<hl A 3f3v (wfv)eR v (v.fu)e R) },

{u@ | w=r) v IfIv ((ufv)eR v (vfuy e R) }

where u(i) isthe i letter of u.
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With an injection i from I' to an alphabet P disjoint of Q ,we extend i to a total injection from QI
to QP* as follows :
i(au) = ai(u(1))...iu(ll)) with ae Q and ue I'"*.
The rewriting system S on (PUQ,X) defined by
S = { {(u),fi(v)) | (uf,v)e R}
is a normal and pushdown automaton with Qg=Q and Pg =P. Furthermore, we show that
G(S,9) = { (i(.fiW) | ufv)e GR,) }

with s =i(r)=r € Qg. ~ ¢

Proposition 1.1 . Finitely accepted languages (respectively context-free accepted
languages) coincide with context-free languages.
Proof.
Let X and Z be alphabets, R a rewriting system over (X,X), r awordin X" and A a context-
free part of X* . To lay down proposition 1.1, it is sufficient to established that L(R,,A) is context-
free. From lemma 1.3 and lemma 1.4, we may assume R is a pushdown automaton and r is a state
of R. Forany state q, the language L= q(q'l.A) is context-free, and from theorem 5 p. 110 of

Sakarovitch [Sa79], L(R,r,A) is context-free. ¢

' Proposition 1.5 . The class of alphabetic graphs is a proper subset of the class of
pushdown transition graphs.
Proof.
Any alphabetic graph is a prefix rewriting one and after theorem 1.2, algebraic as well. Let us show
that the algebraic graph of figure A is not alphabetic. Let us take R = { (p,a,q) , (p,b,pA), (pA,c,p),
(qA,d,q) } and suppose there exist an alphabet X, an alphabetic system S on (X,{a,b,c,d}) anda
word s in X" so that G(R,p) is isomorphic to G(S,s) according to a bijection f. Then there is an
integer m so that
EPA™ ) > If(PA™) > If(q)l .

Let us put v =f(pA™) and w = f(pAm“) . As S is alphabetic, Iwl>Ivl and (w,c,v) e G(S,s),
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thereis B e X with w=Bv. S being alphabetic and (w,a,f(qA"‘*l)) e G(S,s), thereexists xe
X" such that f(QA™') =xv . As there exists an unique pathin G(S,s) from f(qA™") to f(q), and
vl 2 If(q)! in the alphabétic S, thereis aninteger n, 0<n<m+l and f(qA™) =v. So f(pA™) =

f(qQA™) , then pA™=qA™, so p =q which is a contradiction. *

Lemma 2.2. u ;—%—) v ifand only if for some we X* and ze Dom(R)u{¢e}
u=xw , v=yw and x l—-é—) z ';n) y.
Proof.

The if part is immediate. The only part is established by induction on the length of the derivation. ¢

Proposition 2.3 . The family of relations { — | R is a recognizable relation } is
closed under union, composition, and starred composition (of relations).

Proof.
The closure of the family F = { R.A | R recognizable } by union follows from the distributivity of
the concatenation over the union. Moreover, F is closed by composition because
(AxB).A o (CxD).A = ( ABICHD u AxD(CIB)).A,

where B'IC = {ul3ve B, vue C} is the left quotient of C by B.
Finally, the proof of the closure of F for the starring of composition is given by J.-M. Autebert. Let
us consider a relation R =U{ A;xB; | 1<i<p } recognizable, which means that for every i between

1 and p, the languages A; and B, are rationals on X*. Taking an alphabet X of 'underlined'
letters in bijection with X . To any word u =a,...a, with a;€ X, there corresponds the word u =
a,...3; , and to any language L on X, the language L={ulue L}. The language

A = (U{BA;I1<i<p))

is rational on X u X . From Benois theorem [Be 797,

p(A) = —;—>(A) with S={(aa,1)lae X}

is a rational language on X u X . So its intersection with X*_X* can be written in the following way
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pA)NX'X =U(CDjlI1<i<q).

The relation between any language L and U{ Ci(Di‘lL) | 1<i<q } is a rational transduction,

belonging to ¥ and corresponding to (A.R)* = l—%). ¢

Proposition 2.4 . The confluence of > is decidable for recognizable R .

Proof.

To establish the confluence of = where R is recognizable, it is necessary and sufficient to decide
of the following inclusion :
(RLA) o RA) € RA) o (RLA)*.

From the proof of proposition 2.3, it is sufficient to prove the decidability of the inclusion on ¥ . To
this end, to every relation R on X" is associated the set (R) of pairs of words obtained by
cancelling the greatest common suffix from any pair of R, i.e.

R) = RAY - ((X'xX*).{(aa) lae X}).
If R is recognizable, sois (R). As RA=(R)A and (R.A) =(R), we have

R.A ¢ SA ifandonlyif (R) ¢ (S).

The inclusion being decidable on the set of recognizable relations on X", soisiton F . ¢

Theorem 3.2 . Any pair (R,r) of a word rewriting system R on (X,X) and a axiom
re X*, may be effectively transformed into a pair (G,M) of a deterministic graph grammar
G and a hyperarc M, such that the corresponding graphs G(R,r) and G®(M) are
isomorphic.
Proof.
From lemma 1.3, we may take R normal and e-free, and a letter r. The grammar G to be
constructed generates G(R,r) by vertices of growing length.
Taking a vertex u of G(R,r), we note G(R,r), the connected component of G(R,r) restricted to the

vertices of length > lul, and containing u.
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From theorem 2.1, we can determine the set' V(u) of vertices of G(R,r), of length lul. Indeed if R,

={(uv) | 3f, (uf,v) e R} is the set of unlabelled rules of R, we can construct the automaton
A(Rou{(r,r)}) recognizing the language l%o) ={w]r l—;;) w } of vertices in G(R,r). So, we can
determine the finite set D(u) = kt;» N XIUIX* of vertices in G(R,r) of the same lengthas u. To
determine V(u), we construct the system S of unlabelled word rewritings on XIuIX* , defined by

S = {(xz,yz) | xRyy A Izl = max(0,lul-IxI) } .

To decide if two elements in D(u) are connected in the restriction of G(R,r) to the vertices having
length > |ul, we determine the following relation T on D(u) :

T=(xy)|x,ye D) A (l%)(x)n 1—;—>(y))-{z||z|<|u|}¢f2f}.
So V(u) is the class in the partition of D(u) by the equivalence T, containing u, ie.

V) =T'@={v |uT v}.
As R is normal, all vertices in G(R,r), have a common suffix s, of length max(0,lul-2) . Indeed
GR,u), = GR,V(u)), where G(RE) =U{G(R,e) |e € E} is the set of arcs in G(R,e) with ee E.
Then for every proper subset P of V(u), there exists two paths in G(R,r),, whose source are in P
for the first one, and in V(u) - P for the second one, i.e.

VP, 3#Pc V@), 3xe Vw)-P,3ye P, |—;+(x)m l%)(y)#@.
So, all vertices in V(u) have the same suffix s, of length max(0,lul-2) , and the same holds for all
vertices in G(R,1),, .
Two vertices u and v of G(R,r) are equivalent, noted u=v, if V(u).su'1 = V(v).sv'l. If usv
then G(R,r), isisomorphic to G(R,r), . Moreover, the equivalence = is of finite index and a set U
of representatives is constructible from (R,r) with re U. Forany ue U, we associate the graph
H, of arcs of G(R,r), with a vertex of length lul . To construct the grammar G, we howe only to
add to each H, aset K, of non-terminal hyperarcs which generates by G the graph G(R,r),
restricted to the vertices of length > lul .
To this end, we take a graded alphabet F disjoint from X and an injection j from U to the set of
hyperarcs labelled by F with vertices in X* , such that for any u in U, we have

j) =fs;...s, with {s;,....,5,} =V(u) , si#sjif i#j, f#j(v)(1) if ve U- {u}.

Forany ue U, we define

K, = {f(5184)...(sp8y) | w isavertex of GR,r),, Ive U, Iwl=lul+l , w=v
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and j(v) = £(s;8y)...(sp8v) }
and we define the deterministic graph grammar G = { (ju)H,vK)|ue U}.
Forany ue U, G(R,), isisomorphic to G®@j(u)) and in particular for M = j(r) : G(R,) is
isomorphic to G®(M) . _ *

The construction of theorem 2.2 is illustrated in figure E .

Applied to the pair (R,p) of figure A, the construction of theorem 3.2 gives the following grammar G :

) b @A) A (pA) b (pAA)
(p). —~, @ .) —,
k(_:./ V\C/
l 6 —» 2 l v oo 1 y —» 2 l v
° °* ¢——mg P 0 ———sumg
@ @ d @ @A) @A) d  @AA)

Then the prefix transition gfaph G(R,p) is isomorphic to the pattern graph Gm(cbpq) generated by G from ¢pq.

Fig. E . Extraction of a graph grammar from a prefix transition graph .

Theorem 3.3 . Any pair (G,M) of a deterministic graph grammar G and of an axiom
M = fs;...s,, such that G®(M) has finite degree and has root s, , may be effectively
transformed into a pair (R,;r), of a word rewriting system R and an axiom t, such that
the corresponding graphs G°(M) and G(R,r) are isomorphic.
Proof.
Let us consider a graph grammar G on (F,V) and a hyperarc M in the domain dom(G) of G such
that G®(M) has finite degree and has root M(2) .
By removing useless rules, we can suppose G to be reduced, which means that for every hyperarc X
in Dom(G), G®(X) is not empty and the non-terminal X(1) is accessible from M, ie. AN,3Y
eN, M (——)c;)"= N A Y(1)=X(1). As G°(M). is of finite degree, the same holds for G®(X) with
X € Dom(G) ; such a grammar G is said of finite degree. The removal of useless vertices from the
hyperarcs in Dom(G) , yields a proper grammar : for such a grammar G, every vertex of an

hyperarc X in Dom(G) is also a vertex of any hypergraph in G®(X) . For instance, the grammar

L)
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with the only rule A12 — {al3,A32} is not proper. As G is proper and of finite degree, rewritings
by (=>G)* of the right members of the rules in G convert G in a Greibach normal form, that is to
say for each rule (Y,H) of G, the vertices of every non-terminal hyperarc of H are disjoints from
the Y's ones . After a possible renaming (and adding rules), we may suppose G with separated
OUIDULS, SO that for any rule (Y,H) of G, two non-terminal hyperarcs of H have no common
vertex, and every non-terminal hyperarc of H has distinct vertices. For easy writing and after a
possible renaming, we may suppose that any right member hypergraph of a rule in G doesn't have two
non-terminal hyperarcs with the same label. Finally and after a possible renaming of vertices, we may
assume that the right member hypergraphs of the rules have no common vertex.

Let N be the set of non-terminals of G, and Vy be the set of vertices of a hypergraph H. To each
rule (Y,H) of G, we associate a total function py from Vg to VU V.N, which is the identity on
the set of vertices in H which do not belong to non-terminal hyperarcs of H. For any vertex s of a
non-terminal hyperarc Z of H, we have py(s) = T@)T(1) where T is the non-terminal hyperarc in
the domain of G with the same label as Z, and i is the placeof s in Z, i..

py(s) = s for any se Vy suchthat s¢ Vy forany Je H and J(1)e N

py(s) = TG)Z(1) if thereexist Ze H and T € dom(G)

such that Z(i)=s and T(1)=Z(1).
As G has separated outputs , py is well defined .
Let R(G) be the rewriting system on (NUV,F) defined by
R(G) = { (py(s).Y(1),a,py(t).Y(1)) | 3H, (Y,H)e G and aste H and a¢ N }.
We show that G(R(G),M(2).M(1)) is isomorphic to G®(M) . Py

Applied to the grammar G of figure E, the construction of theorem 3.3 gives the following rewriting

system S :
a b c d
S={pd— qb, pp — [pAlYo , [PAlyd® — pd , [qAlYO — qo ,

b d
PAlY — [qAlY , [pAlY —> [PATVY , [PAIVY —> [pAlY , [QAIVY — [qAly } .

So G(S,p9) is isomorphic to Gm(q)pq).



Proposition 3.4 . Any triple (Rx,c) consisting of a rewriting system R , an axiom t
and a co-root ¢ of G(R,r), may be effectively transformed into an another triple (8S,s,d)
such that there exists an isomorphism f from G(S,s) to the inverse of G(R,r) satisfying
f(s)y=c and f(d)=r.
Proof.
By renaming, we can suppose that two rules in R have not the same label. From theorem 3.2, we can
transform (R,r) in (G,M) where G is a deterministic graph grammar, and M is the left member
hyperarc of arule in G, such that an isomorphism f from G(R,r) to G®(M) exists. The system R
being 'deterministic' , the co-root ¢ is unambiguously determined by a path from r to c¢. Provided
that we rewrite M sufficiently often, we can assume that it contains f(r) and f(c) . The grammar H
is constructed by inverting the right members of the rulesin G, ie. H = { XKH | XKeG }.
So H®(M) is the inverse graph of G®(M), s =f(c) isarootand d =f(r) is a co-root of H*(M) .

Consequently by handing back the renamed labels, the system S constructed in theorem 3.3 works. ¢

theorem 3.6 . Any pair (G,M) of a deterministic graph grammar G and of an axiom M
such that G®(M) is a finite degree connected graph, may be effectively transformed into a
uniform grammar H such that H°M) is equal to G°M) .
Proof.
As in proof of theorem 3.3, even if it entails the transformation of G, we can suppose G reduced.
As G®(M) is connected, by cutting up the rules of G, we can put G in a connected form, that is to
say G"’(fvl...vn) is connected for every left member hyperarc fv,...v_ ofarulein G. We can
transform G into the grammar {(M,M")} u G’ such that M'e Dom(G") and G' is proper: every
vertex of an hyperarc X in Dom(G') is also a vertex of any hypergraph in G®(X). As in proof of
theorem 3.3, we can put G', hence G, in Greibach normal form. In addition, we can suppose G
has separated outputs, the non-terminal hyperarcs in the right member hypergraph of every rule have
different labels, and the right members hypergraphs of the rules of G have no common vertex.
Let S be the vertex set of the right members of G, N the set of its non-terminals, and T the set of
its terminals. We define an order < on S.N* preserved by right concatenation, and for all graph C

with vertices in S.N* and every word u in N*, we write
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Cu = { f(sju)...(su) | fs;...s,€ C} the suffixing of the vertices of C by u,
Cul = { fs;...s, | f(squ)...(spu) € C} the right quotient of C by u,
Sc the set of verticesin C,
and sc the greatest suffix in N* of the vertices of C.
We define a representative R(G,M) of the set G®(M) of the pattern graphs generated by G from M.
To do this, let us consider a sequence (N,f;) , where N, is an hypergraph whose vertices are in
S.N* and £, is an injection of non-terminal hyperarcs of N, into N*, and we have R(G,M) = { X
| 3i, Xe N; A X(1)¢ N }. This sequence is defined as follows :
No={M} and fz(M)=¢
Ny = {XeN, | X1)e N}uU{Gx | Xe N, A X(1)e N} where for every non-
terminal hyperarc X of N and for every rule (Y ,K) of G suchthat Y(1) = X(1), we have
Gy = { fgx(s))...gx(sn) | fsy...5,€ K}
and for every vertex s in K, gx(s) is defined by
gx(s) = s.f(X) if s is nota vertex of a non-terminal hyperarc of K

U@{).V(1).f,(X) if s isthe i vertex of a non-terminal hyperarc V of K and

gx(8)
U is the left member hyperarc of a rule in G with the same labelas V,
and for every non-terminal hyperarc Z of Gy, f,,1(Z(1)gx(Z(2))...gx(Z(1Z1))) = Z(1).f,(X) .
We verify that R(G,M) is well defined and is a member of G°M).
Forevery n 20, we determine the restriction G, = { fste R(GM) | ds,M)<n v d(tM) <n }
of R(G,M) to the vertices s whose the distance d(s,M) at M isatmost n-1. So GO=® and as
G is in Greibach normal form, G, € N, . The grammar H to be constructed and satisfying the
proposition, must be able to generate from M in n steps of parallel rewritings, a graph whose the set
of terminal arcs is G, . With the exception of M(1), a non-terminal of H will be a couple (P,Q)
where P is a finite set of terminal arcs with vertices in S.N*, and Q is a subset of vertices of P .
Let n=1. We will determine a set [G,] of non-terminal hyperarcs allowing the generation of the
graph R(G,M) - G, according to H. To do this, we determine the connected components Dy, .. »Dp
of Npjp-G,. For 1<i<p, wetakethe set C; = {fste D; | f¢ N A (se Sg vte Sg)} of
terminal arcs of D; whose a vertex is also a vertex of G;,. The hypergraph [G,] is defined by
[Gal = { (Cilse)™ 5 Sc,nS6,)-(5¢) " )iy ujg | 1i<p

A U 15050g.) =ScnSg, A Vi, 1Sj<q, uj<ujjg ).
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The grammar H we look for, is defined as the union of a sequence of grammars (Hy), - This
sequence is inductively constructed as follows :
H, = {(M,G;u[G;])}
and Hpp = { X6 Clso)™) | Xe [G,] A X(1) ¢ M, A C is the connected
component of (G, - G,) U [G,,;] having the vertices of X },
where M, is the set of the non-terminals of H; ,..., H, .
To prove the existence of H, i.e. H, isempty after arank n, it suffices to show the existence of a
finite number of possible non-terminals for H. To do this, it suffices to find a bound of the distance in
R(G,M) of vertices common to C and G,, forevery n and every connected component C of
R(GM) - G, .
As G is connected, we can take the integer b = max{ dR(G'Y)(s,t) | 3(Y.K)e G, ste Sg}. Let
us consider a connected component C of R(G,M) - G, forany n, and vertices s and t common to
C and G, . We want to find an upper bound depending of b on the distance drGmy(s:t) . Let us
take a vertex u of C with minimal length. As R(G,M) is connected, there exists a path of minimal
length dgigap(s;M). The grammar G being in Greibach normal form, this path goes through a vertex
v with the same suffix in N* as u, i.e. v(2)...v(lvl) = u(2)...u(luh) = sc - Also drgmy(u,v) <
dR(G'Y)(u(l),v(l)) for the rule (Y,K) of G suchthat u(l) is a vertex in K ; hence dR(GM)(u,V) <£b
. As s isaborder vertex of C and G, , we have
drem($:V) + dromy (VM) = drgag(s,M) < drean@M) S dggayW,V) + dyg (VM) .
So dremy(s,v) < dR(G'M)(u,v) < b; hence drioa(u,8) < dr M(u,v) +dR(G_M)(v,s) < 2b and the
same holds for dgg \p,(u,t) . Consequently drm)(s;:t) < 4b, and the existence of H is proved. By

construction M € Dom(H) , H is uniform, and R(G,M) € H°(M) so H°M) = G(M) . .
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Let us consider the following (non uniform) grammar G :

1 b 3) 3 b
[ ] ® '0
A NE/ &E/
. —> a lB ; IB —> a lB
@ * g P ) ®
2 d @) 4 d

®
The representative R(G,A1) of G (Al) is the following graph :

M b ©GB p (BB) b (3B

) 4B) (4BB) @B%)

The transformation in proof of theorem 3.6 gives the following uniform grammar H :
(3B) b (3BB)

(1) b @3B) ) (3B) b (3BB) (3B)
[} ‘O ] Y o [} [ ®
A N~ N S
C C .
. —» \IE s lE —»> \IF ; F —» a F
M ° ™ o ¢——op . ® &———o
¥3)] (3B) 2 d @B) 4) 4) d @4B)
b c a d
oi E=({3B—3BB, 3B 3B ,3—=>4B, 4B 22} , {2,3B}))
b d
E =( (3B 23BB,3BB—3B, 3B 4B, 4B 4) , (43B))

with the natural order on {1,2,3,4} extended lexicographically on { 1,2,3,4].B* .

Hence HYAD) = GALD .

Fig. F . Transformation of a grammar into a uniform grammar.

Proposition 3.7 . From all triples (R,rx') and (S,s,8") consisting of a rewriting
system, an axiom and a vertex of the generated prefix transition graph, we can decide whether

there exists an isomorphism f from G(R,r) to G(S,s) such that f(r') =s'.

Proof.
From theorems 3.2 and 3.6, we transform (R,r,r") into a uniform grammar G and an axiom agr'
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such that the preﬁx transition graph of R from r be a graph generated by G from ay', ie. G(R,r)
€ G®(@ayr’) . In the same way, we transform (S,s,s") into (H,bs") . Let us denote Ng [resp. Nyl
the set of non-terminals in G [resp. H]. We will now compare the right member hypergraphs of the
uniform grammar rules G and H, starting from the ones associated to a, and by : two such
hypergraphs are comparable if there exists an isomorphism identifying their terminal arcs, and
associating to every non-terminal hyperarc of the first one, a non-terminal of the other, up to a
permutation of vertices. To do this, we consider the set E of the couples e = (a,bn(1)...m(n)) where
a and b are non-terminals of arity n, from G and H respectively, and © is a permutation of
{1,...,n} . Tosuchacouple e of E and given the rules (as;...s; — P) in G and (bt;...t; - Q)
in H, we associate the finite set B, of the bijections h of the vertices of P onto the vertices of Q,
such that the following conditions hold :

h(s}) = ty; for 1<i<n,

cx1..Xxpn€ P A c¢ Ng & ch(x))...h(x, ) e Q A c¢ Ny,

CX;...Xn € P A ce Ng = 3dy;...yne Q, de Ny A {y1,...¥n} = (h(xy),....h(xp)} ,

dy;..ym€ Q A de Ny = 3Jcxi..xpe P, ce Ng A {y1,...¥m) = {h(xp),....h(x )} ;
we write E.j the set of such couples (c,do(1)...0(m)) where c € Ng and h(x;) =Yoq) for 1<i<
m.
Hence there exists an isomorphism f of G(R,r) onto G(S,s) such that f(r') =s' if and only if there
exists a directed unlabelled graph C, with vertices in E, such that (ag,bgl) is a vertex of C and if
e = (a,bm(1)...n(n)) is a vertex of C then there exists a bijection h of B, with E. is the ends of
arcs of C starting. at . Asthe set C of such graphs is finite and constructible, we can decide on the

isomorphism of G(R,r) and G(S,s) associating r' with s'. ¢
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