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Abstract

The advent of supercomputers with hierarchical memory systems has imposed the use
of block algorithms for the linear algebra algorithms. Although block algorithms may
result in impressive improvements in performance, their numerical properties are quite
different from their scalar counterpart and deserve an in depth study. In this paper, the
numerical stability of Block Gram Schmidt orthogonalization is studied and a variant is
proposed which has numerical properties similar to the classical Modified-Gram-Schmidt
while retaining most of the performance advantages of the block formulation.

Keywords: Gram-Schmidt orthogonalization, stability, block algorithms.

Résumé

L’apparition de mémoires hiérarchisées dans les supercalculateurs a entrainé I’emploi
d’algorithmes par blocs en algebre linéaire. Alors que ces algorithmes permettent souvent
d’importants progres dans les performances, leurs propriétés numériques peuvent nette-
ment différer de celles des algorithmes généraux; ils nécessitent donc un étude précise.
Cet article caractérise la situation dans le cas de 'algorithme de ’orthogonalisation de
Gram-Schmidt. On en propose alors une variante dont les propriétés numériques sont du
méme ordre que celles de l’algorithme habituel (Gram-Schmidt modifié) et qui conserve
la plus grande partie des avantages de la version par blocs.

Mots clés: Orthogonalisation de Gram-Schmidt, stabilité, algorithmes par blocs.
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1 Introduction

The so-called Gram-Schmidt algorithm is one of the most widely used algorithms to
orthogonalize a set of vectors. Let A € R**™ (n > m) be the matrix of which columns
(a;) have to be orthogonalized. The Gram-Schmidt method generates the orthogonal
matrix Q = [q1;- - -; ¢m], which corresponds to the Q factor of the QR decomposition of
A, according to the following scheme:

q = af e ] ;5
for k=1, m-1

Gy = Liaen ;

Q41 = a;c+l/ | arsr || ;
endfor ;

where L; stands for the projection onto the orthogonal complement of the subspace
spanned by (g1,---,qx). Several implementations of the procedure lie under this com-
mon presentation (depending upon the representation of Lg).

If Vi denotes the matrix [g1;--;qx|, Lx may be expressed as the matrix I — V; V/;
this corresponds to the so-called classical version (CGS). The matrix Ly may also be
expressed as the composition of the projections onto the orthogonal complements of the
one dimensional subspaces spanned by ¢y, - -+, gx:

L= (I —qeqr)--- (I — qrq}) (1)

The corresponding algorithm is the so-called Modified version (MGS).

Although (CGS) and (MGS) are equivalent in exact arithmetic, they behave quite
differently in finite arithmetic: (CGS) is considered unreliable, as we will see in the next
section. The advent of vector and parallel computers using hierarchical memory systems
has emphasized the use of matrix multiplication as an efficient primitive which allows
efficient data management, and has considerably renewed the interest in block algorithms
based on matrix multiplications [2, 3]. For example, in the case of the Gram-Schmidt
procedure, a natural block version can be obtained by using blocks of consecutive columns
to orthogonalize the blocks with respect to each other, (MGS) being used to orthogonalize
inside a block. In such a case, L; can be expressed as:

Li= (I —qeqi) - (I — ag)(I — QpQp) -~ (I — Q1Q3) (2)

by assuming that ¢4 is a column of the block Qp41, whose first column is ¢;. The
corresponding algorithm is:

Q1 = MGS(A,) ;
for B=1,v-1
Bgy1 = Apyr
for a=1,8
S = QuBst1 ;



_Bﬁ+1 = Bﬁ+1 — S Qa )

endflor ;

Q1 1= MGS(Bp41) ;
endfor ;

This paper addresses the estimation of the numerical reliability of (BGS) which, when
quickly examined, exhibits some similarities with (CGS). We prove that this is partially
true and that it can be improved to achieve the same quality as (MGS) at the price of an
increase in complexity by a factor of (1+1/v), where v is the number of blocks (supposed
of equal size). The estimation of the loss of orthogonality is heavily based on results
obtained by Bjorck, who first characterized the situation for (MGS) [1].

2 An illustration of the scene

Bjorck [1] proved that if (@, R) are the factors obtained by the (MGS) procedure, there
exist constants (K;);=1,3, only depending upon n and m, such that !:

|QR-QR|lFr < Kil| AfFre
|QQ~T], < K Alr||R|l,e
| U < K|l Allre

where (Q, R) are the exact factors of A, U is the upper triangular part of the matrix
Q'Q — I, and ¢ is the precision parameter. These results demonstrate the importance of
the condition number of A (x3(A)), which satisfies:

x2(4) < [Alr Rl < vVm x2(4)

For instance, let us consider the matrix:

oo qQ =
O Q © +—
Q © O ==

Its condition number is x(A) = V/3 + 02/0.. The loss of orthogonality when applying
(CGS) or (MGS) is reported in Table 1 for several values of o.

It should be noted with (BGS) that for a block size of 1 or m it corresponds exactly to
(MGS); the only case where (BGS) corresponds to (CGS) and not to (MGS) arises when
m = 3 for a blocksize of 2. Then, the very special example described above can be viewed
as an illustration of the potential bad properties of (BGS).

'In this paper, bounds are expressed with constants K, which only depend upon n and m, and the
blocksize p. We do not provide precise estimation of these constants because we feel that they are very
pessimistic and would only muddle the presentation. They are interesting because of their existence. For
the same reason, we systematically neglect the O(€?) terms.



o x(A4) | Q'Q -1 ||
MGS [ CGS
104 | v/3.10* | 3.10713 | 2.10~°
1075 | /3.10° | 7.10-13 | 5.10°8
10~¢ | /3.108 | 7.10~11 | 5.10~°
10-7 [ v/3.107 | 2.10~° | 1.10~2

Table 1: Loss of orthogonality in (MGS) and (CGS) (Experiments performed with MAT-
LAB and €= 2_52 ~ 2_10—16

3 Error in a projection

The elementary step of (BGS) is the projection of a block Aj onto the orthogonal com-
plement of 7(Q,) where a < 3 and r(Q,) is the vector space span by the columns of Q.
This step corresponds to the computation involved in the innermost loop of (BGS). The
sequence Aj is then defined by:

Ap = Ap and 3)
Ag“ = P,Aj where P,=1-Q.Q} for 1<a<pB<v

Due to rounding error effects, the computed sequences are not {A§} and {Qa}, but {A3}
and {Q,} and the recurrence formula (3) becomes:

Ay = Ap and (@)
AGTT = A5 -QuR5+ A% 1<a<f<v
where RS = QLAG. Let P, =1 — QaQ%.
Because our purpose is to look at the loss of orthogonality, we do not assume that
Q'Q, = 1. Let D, = Q' Q, — I. In such a case, P, is, a priori, no longer a projection.
Let us decompose any vector u as the sum of its components over r(Q,) and 7(Q,)*, i.e.:

u=Q,w+w with QLw=20

Then, we obtain:
Poau=—-Q,Dyv+w

which proves that P, is the identity over r(Q,)*, but is not the null operator over r(Q,),
as it would be if @, was orthogonal.
Below are some estimations which will be useful for the following section:

Lemma 3.1 Let Q. and D, defined as above, then the following inequalities hold:

o | Qall, =14l Dall, <1+1/2| Da |,

o under the assumption that | QuD, ||, <1:

I Pull, =1



Proof : Obvious. 0
Let 7 be the largest number such that 7(1+7/2) <1 (n = 0.78). We will assume that
forall a, || Dall, <7 (5)

and therefore | Py ||, =1.
The error Aj is bounded by the following estimation:

Proposition 3.1 There exists a sequence of constant numbers K§ such that:
a5 llr < K5I A5 llr e

Proof : The computation of /IEH consists of three steps. Dropping indices a and
for sake of clarity, these steps are:

W = fl(Q*A) = Q'A+VW
w® QW)Y = QQ!A+ Qv 4 v(©)
WO = fIA-W®) = A-00'A-QVM _ v 4 yE)

Using the classical results on the error bounds for matrix multiplications [4], we derive
the following inequalities:

VO Qe < K@) QI | Alre  and then
lQv@ir < K@IQIFlAlre and
VO < KEIQIE | Allr e+ 0()

where K () is a polynomial of low order and Q € R**?.
The error due to the substraction may be bounded by:

VO lr < A=W |re
< N T=QQ ||, [| Allr €+ O(e)
< | Allr e+ O(e?)

since we have assumed (5). Putting together all these bounds we obtain:

Al < RV s + | VE [p + VO |p
IAllr < K[[AlFe

O

Lemma 3.2 There cxists a constant 7 = O(e) such that || A ||lp < (14 7)Y Ag|lr
forala < B <. 4

Proof :  Obvious from Lemma 3.1 and Proposition 3.1 with

T = MaTa<p<s (Kg €)



Once fig is computed, a Modified Gram-Schmidt process is applied to get Q,.
Let Rj and Rp be the exact and the computed R-factor of the QR decomposition of
Ag, respectively. From [1], we have the following estimations:

| 45— QeRsllr < Ki {1§ lre
I QsQs — 1 ll,. < K f_lg lr |l R~ |, €
1 (Q5Qs —DRsllr < Ki|| Ag|lF e

Let C(B8) = || Ag e || R;B‘I ||, - If orthogonalization was exact, we would have
| Allr || B! ||, > ¢(B) and generally, it would be far from equal. We assume that it is
still the case with finite arithmetic. The quantity C = mazg<, C(B) is of importance in

the sequel.
Let Rg be the matrix Qfgfig From the equality:

Ri—Rs = (Q4Qs — )Ry + Q4(A5 — QsRy)
we obtain:
| RG—Rsllr < (Ks+1 Qs ll, K0l A5 ||r €

and if

we may write:

Ap = —A5+ QpRg + Qs(— Ry + RY)
which implies the following proposition:
Proposition 3.2 There exists a constant Kg such that:

1A llr < Kl AS|lr e

4 Loss of orthogonality in the whole process

By adapting Bjorck’s procedure for blocks, we define the following matrices:

Q\Qp forl<a<pB<v
Us = and
0 fori1<pg<a<gv



and: o
D, = QQu~1I forl1<a<vy

Let U and D be the upper block triangular and the block diagonal matrices defined
by the blocks {Ug} and {D,} respectively.

From the previous section, we may ensure that:
D), < Kice ™)
where C = maz, C(a). \ i
To estimate a bound on || U ||, , we first estimate a bound of || UR ||, where R is the
upper triangular matrix defined by the blocks { R }1<a<p<u-
Proposition 4.1 There exist two constants K4 and K5 such that:

[UR|r < (KiC+K5)||AllF e

Proof : By writing equation (4) for « = v+ 1,.--8 — 1, and from the definition of
Ag, we obtain the following equation by accumulating the equalities:

B B
A= 3 QaRy— . AG
a=yp+1 a=v+1

The block (i, ) of UR can then be expressed as:

[UR]MQ = 2§=E+-1}-IIJMQR%
QuAZ" + Zazus1 AF)

But from equation (4):

BAFT = (Qu— U+ D)@AG + Qi)
= —D,Q A%+ GLAk

which implies

1 QuAT" Nl < 1 Dull || Qula If A5

e+ 1 Qull. | AF llr

and

HURws e < I Dull 1@Qulle I A5 NIF +11 Qull. Z0-ll AF Il

From
I UR|F £ Zicucp<o | [URLg IF

and from lemma 3.2 and propositions 3.1 and 3.2, the result of the proposition is obtained.
O

10

')

N}



Let By = A — QR where A = QR and (Q, R) is the result of the QR factorization of
A. Then the following result can be proved.

Proposition 4.2 There exists a constant Kg such that:
[ Eillr =1QR-QR|lr < Kel| AllFr e
and the condition || E1 ||r || R7' ||, < V2 —1 implies that A has full rank.
Proof : By summing equations (3) from a = 1 to @ = f# — 1, we obtain:
i -1 p-1
Ag = Ap— Y QuR3+ > A5
a=1 a=1
Since Ag = QgRg — Ag it follows that:
v B
I B e = 32> 1A lF
B=1a=1
Propositions 3.1 and 3.2 provide bounds for {A§}:
v B _
FE e < (0 32 Kl AF llr e
B=1 a=1

Let Kg = maza<pK5(1+ 7)*~! where 7 is the O(€) quantity which has been introduced
in Lemma 3.2. Then

IENlr < KeShaall Asllr €< Kell Allr €

which corresponds to the first part of the proposition.
For the second part, Bjorck’s proof can be used:

AA = RY(I+ F)R (8)

where [y = (Q*EyR™Y)'+ Q'F R + (E,R™')'E R,
Since

IFE, <2 B le | BT, + 1B NE R

condition || Ey ||r || B™' ||, < v/2—1 implies || Fy ||, <1 and therefore the non singu-
larity of (I + F}) O

Theorem 4.1 Let C = maz,C(a). For sufficiently small (Ce) and (|| A||lr || R ||, ¢),
there exists a constant K; such that :

I7-QQl, < K:ClAlr| R, €

11



Proof : From the definitions of matrices U and D, we have:
I7-QQl, < 21U, +IDl,

Since || D ||, has already been bounded in 4.1, we only have to consider || U ||, ; because
WU, <IHUR|F| R, , we only need to focus on || R™! ||, . Here again, we adapt
Bjorck’s proof by using the following formula:

RR = RI+F)R (9)
where
F,=F — (R_l)t(UR)t(RR_l) - (RR"l)t(UR)R_l — (RR'l)tD(RR_l)

with Fj being the matrix introduced at the end of the proof of Proposition 4.2. From 9,
it follows that, B
I RETM I} < 14| F2 |,

Let z =+/1+]|| F2]|, anda=|| A|lr || R~ ||, € From the definition of Fyand from

Proposition 4.2, we obtain:

£, 2 Evlle | B7 L+ Ex Nl I RIS

<
< 2Ksa + KZa® + O(€?)

Then from the definition of F3, from equation (9) and from Proposition 4.2 we may insure
that
2? <14 2Kga + K2a® + 2a(K4C + Ks)z + K,Cz¢

Then z is such that the following relation is true:
(1 — KoCe)z? — 2a(K4C + Ks)z — 1 — 2Kga — K2a®* <0

If (Ce) is small enough to keep (1 — K,C¥¢) positive, then the polynomial has two zeros:
one 1s negative and the other is greater than 1. The second root is denoted 1 + p; p > 0
and p = O(¢). In conclusion, we have || F2 ||, < p.

Let us assume that the quantities (J| A |{r || R-1 ||, €) and (C¢) are small enough to
ensure that p < 1. Then, by considering the inverse of both sides of equation (9), we
obtain:

PRV, < RV WU+ R, < Q=p) R

This last bound ends the proof of the theorem.
0O

The worst bound can be obtained when one block has a condition number almost

equal to the condition number of the whole sytem; in that situation, the quantity
(CllAllr || R71 ||, ) is of the order of the square of the condition number of A.

12



5 (B2GS) A block method as stable as (MGS)

Theorem 4.1 shows the importance of the constant C in the error bound. Even when it
is small, the error which occurs within the orthogonalization of a block may significantly
impact on the precision of the following steps. By reorthonormalizing every block, i.e. by
applying twice (MGS) to every block, the constant C would disappear from the estimation,
since it would correspond to the Q R factorization of the {@s} blocks, which have condition
numbers close to unity. This remark leads directly to the algorithm (B2GS) which has
exactly the same structure as (BGS) except that the reorthonormalization procedure is
applied twice on each block.

To illustrate the stability improvement in (B2GS) compared to (BGS), some numerical
results are presented below.

For the first serie of experiments, the results obtained by (BGS) and (B2GS) are
compared using MATLAB. The matrix under consideration is the so-called Hilbert matrix:

A= (a;) € RWOX10 where a; =1/(e+j—1)

The characteristics of the matrix are :

Al = 19
| RV, = 1.4 10"
X(A) = 2.6 10"

The value of the residuals, with respect to the block size, are reported in Table 2.

Block size 1 2 3 4 5
(BGS) 5210°%[2.810°°|23107°|1.110~*[5.210°°
(B2GS) 52107 13.010°° | 4.310°°|3.110°°|4.010°°

Table 2: Comparison of loss of orthogonality for (BGS) and (BGS) with reorthonogonal-
ization for each block size on a Hilbert matrix (MATLAB)

A second serie of experiments was performed by implementing the codes corresponding
to the three algorithms ((MGS), (BGS) and (B2GS)) in FORTRAN on the CRAY2. The
matrix used was a matrix A of size 1024 x 512 obtained by the multiplication of two
matrices M and H such that:

A=MH where

1024x512 i = 1 J=1,512
Mex mi; = 6i1ze i=2,1024 and j = 1,512
H ¢ R312%312 p.. randomly selected in [-1,+1]

where € is the machine precision parameter. The condition number of the resulting matrix
A was estimated by a LINPACK procedure and its value was x(A) = 0.503F + 08.

13



[ (MGS) residual: 0.423 108

|

Block (BGS) (B2GS)
Size Residuals | Residuals
16 | 0.11510-* | 0.140 10-8
32 [/ 0.25510~* | 0.353 10~%
48 [ 0.775 10~* | 0.286 1078
64 [ 0.997 10-* | 0.279 10~3
80 [ 0.104 103 | 0.298 10~3
96 [ 0.724 104 | 0.299 103
112 [ 0.876 10~ | 0.454 10~%
128 |l 0.941 10~* | 0.549 1072
144 [ 0.102 1072 | 0.342 10~8
160 |l 0.693 10~ | 0.483 103
176 [ 0.752 10-* | 0.620 10~3
192 [l 0.101 1073 | 0.708 10~8
208 [ 0.117 10=3 | 0.123 10~

Table 3: Comparison of residuals for (MGS), (BGS) and (B2GS)

Table 3 compares the Frobenius norm of the residuals for various block-sizes and for
(BGS) and (B2GS). These results show clearly the interest of (B2GS) which gives results
with an improvement in the order of magnitude of 4 compared to the standard (BGS).
Furthermore, for all the block-sizes, (B2GS) achieve results very close to the standard
(MGS) procedure (results of which are given in the first row of table 3).

6 Performance analysis of (B2GS)

Since one of the major advantage of block algorithms is to provide a good data locality
together with a good potential for vectorization and parallelization, our performance
analysis will be carried out along two axes: number and characteristics of the arithmetic
operations (i.e. number of operations, vectorization and parallelization properties) and
data locality. First, the methodology for the performance analysis will be briefly described,
then the two axes mentioned above will be studied. The behavior of (B2GS) will be
systematically compared with the (BGS) one and the choice of the block size will be
analyzed. Finally, some experimental results on an ALLIANT FX80 and a CRAY-2 will
be presented.

6.1 Performance model

Throughout all section 6, we will use the same framework as the one used in [2] [3]
for studying block algorithms. Let us recall briefly its major characteristics. The target



machine will be assumed to be a shared memory multi-(vector) processor, using a memory
systems consisting of a cache (of size C'S) with fast access and a large memory with slower
access. According to the methodology developed in [2] [3], the total execution time will
be split into two components:

1. T,: Arithmetic time: this represents the total computation time assuming that the
cache has an infinite size and that initially all the data reside in cache

2. T;: Load time: this represents the extra time spent in the loads to be performed
from the memory due to the finite cache size (this includes the initial data loads as
well as the ones occurring because all the data cannot fit in the cache)

The first component (T,) takes into account all the parallelization and vectorization prop-
erties of the algorithm studied while the second one (7}) attempts to quantify its data
locality characteristics. This second measure is extremely difficult to evaluate accurately
because it depends upon many intrinsic details of a particular cache organization; as it
was proposed in [2] [3], instead of considering the problem of optimizing 7; we will con-
sider the problem of optimizing N; which is the total number of loads from memory. For
determining NV}, we will assume that the data transfers between the cache and the mem-
ory are under software control (i.e. we can specify what are the data which will reside
in cache). Such a measure is much simpler to compute and allows to capture most of
the trends in performance behavior of the algorithm. Furthermore, we will evaluate the
ratio p = N;/N, where N, is the total number of floating point operations. This quantity
allows to get a better appreciation of the relative cost of the loads from memory.

Our analysis of (B2GS) is greatly simplified due to the fact that the differences be-
tween (BGS) and (B2GS) are minor. For example since (B2GS) is using exactly the same
computational primitives as (BGS), all the results relative to the parallelization and vec-
torization properties can be carried out from (BGS) to (B2GS); the only difference is the
different weight associated with each primitive.

6.2 Optimization of the arithmetic time

First, let us evaluate the cost in terms of number of floating point operations of the extra

computation involved in the reorthonormalization. The regular version of (BGS) has the

same complexity as (MGS) or (CGS). For a n x m system, this number of operations is

given by: '
Nop(BGS) = Nop(MGS) =~ 2nm?

Let us assume that m = kw where w is the block size. Then, an extra reorthonormal-
ization of every block leads to a total of number of operations for (B2GS) given by:

Nop(B2GS) ~ 2nm? + 2knw® = N,,(BGS) + 2nmw (10)

This clearly shows the interest of keeping w relatively small. Additionnaly, it also
indicates that the idea of varying block sizes is not worth from the arithmetic point of
view. In fact, if we assume non constant block sizes (i.e. a sequence {w;}i=1t), the extra

15



cost associated with the reorthogonalization step is Y%, nw?. For a fixed number of

blocks, this quantity will be minimal if all the block sizes are constant and equal to m/k
In terms of relative costs:

N,,(B2GS) w 1

N,(BGS) " Tm='T%

Besides the extra number of operations, (B2GS) differs from (BGS) by the work repar-
tition between the different primitives. Although all the primitives used in (BGS) (and
therefore in (B2GS)) offer a good degree of vectorization and parallelization, there will be
a sensible discrepancy in performance between the block factorization ((MGS) primitive
on a block) and the matrix multiply primitives. This is due to the fact that matrix mul-
tiply lends itself to a very efficient use of chaining and registers and has a much simpler
synchronization graph than the (MGS) primitive.

More formally, if Vags (resp. Varar) denotes the speed in megaflops of the (MGS)
primitive (resp. the matrix multiply primitive), we end up with:

_ 2mnw | 2ma(n - w)

VMmas VMmar

dmnw  2mn(n —w)

T.(B2GS) =
( ) VMmas VMmar

The difference between (BGS) and (B2GS) is therefore:

T.(B2GS) — T.(BGS) _ “CMGS‘
T.(BGS) oAz 4 k-]

If we assume that Y4 < 6 which is reasonable for many practical machines, this
Vess
gives:
T.(B2GS) - T,(BGS) < 6
T.(BGS) k-5

This last estimation insures that as long as the number of blocks (k) is large enough,
the discrepancy in performance (due to the extra arithmetic operations) between BGS
and B2GS will be low. In practice, for large problems, it is relatively easy to obtain a
large number of blocks: for instance, for 512 vectors and a block size of 16, the discrepancy
is less than 22%.

6.3 Optimization of data locality

Again due to the fact that (B2GS) uses the same primitives as (BGS), similar conclusions
can be derived: increasing the block size increases data locality. For simplifying the
analysis, we can assume without loss of generality that w < CS/n; this corresponds to
the case where the orthogonalization of a block m x w fits in cache. In the case of (B2GS),
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such a restriction is really not too constraining due to the fact that the use of block sizes
larger than C'S/n would generally result in a prohibitive penalty for the number of floating
operations.

The good point of (B2GS) is that the two orthogonalizations primitives are applied
one after each other for each block, this means that no additional loads will be involved
due to reorthonormalization:

NI(BQGS(&))) = Nload(BGS(w))

Using the results presented in [3] on (BGS) behavior, we derive that:

1 2 1

w(B2GS) = —(1+ k — -k-) +

1

-7

As expected, p is an increasing function with respect to k. This trend is exactly con-
tradictory with the one observed for the optimization of the arithmetic time. A precise
determination of the best choice of the number of blocks requires a precise knowledge of
the cost of the memory fetch versus a floating point operation in order to find the right
trade off between arithmetic time minimization and memory loads minimization. How-
ever, it should be noted that a value of k = 10, which gives a relatively good arithmetic
optimization, would result in a value for u(B2GS) given by:

m n

10.8 0.9
w(B2GS) ~ — + —

m n
which gives reasonably good value for x4 under the conditions that m and n are large
enough. In fact, if these conditions are not met, as we will see in the next section on

experimental results, (B2GS) performance as well (BGS) are sensibly affected.

6.4 Experimental results

In this subsection, experimental results obtained on a CRAY-2 (1CPU) and an ALLIANT
FX80 (8 processors) are presented; they support the performance analysis results by
exhibiting trends as predicted and showing that B2GS offers comparable performance
with BGS. The choice of these machines was motivated that they had both a hierarchical
memory systems with three levels: vector registers (8 vector registers of 64 elements for
the CRAY-2, 8 vector registers of 32 elements for the ALLIANT), an intermediate memory
level (a private local memory of 16Kwords for the CRAY-2, a shared cache of 64 Kwords
for the ALLIANT), and finally, the main memory.

6.4.1 Various block sizes

In this experiment, (BGS) and (B2GS) were run on a 1024 x 512 matrix with various block
sizes (machine used: CRAY-2, one CPU). The timings obtained are presented in Figure 1,
where the result for the classical MGS is plotted as a reference point. As predicted by the
performance analysis, we clearly see two conflicting trends: at the beginning, increasing
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the block size decreases the total execution time (the benefit from minimizing the load
is bigger than the extra arithmetic work), then keeping increasing the block size reverses
the situation: the penalty due to the extra operations is overwhelming, resulting in an

: f th tion time,
tnerease oFigSrgxf:C%{tnning times for (MGS) (BGS) and (B2GS),

rectangular matrix (1024x512), (CRAY-2 1CPU)
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In the case of BGS, the minimal execution 1.72s is obtained for a block size of 48 while
for B2GS, the minimal execution time 2.15s corresponds to a block size of 32. The extra
cost of B2GS is 25%. A part of this penalty is due to the fact that our implementation
of B2GS on the CRAY?2 did not keep the block of columns in the local memory between
two successive orthonormalizations (this requires a slight modification of the performance
analysis); this implies that this implementation B2GS does not only increase the number
of operations but also the number of loads. Such a characteristic explains also why B2GS
times are ramping up much faster for large block sizes than BGS. However B2GS still
achieves a speedup of over 2 when compared to the standard MGS.

6.4.2 Various matrix sizes

In these experiments, (MGS), (BGS) and (B2GS) were run for different matrix shapes and
sizes on an ALLIANT FX80. The results are presented in Figure 2 (square matrix n x n),
Figure 3 (rectangular matrix 1024 x n) and Figure 4 (rectangular matrix 2048 x n). In
all these figures, the y-axis correspond to the normalized Megaflops which is obtained by
dividing for the three codes the same number of floating point operations (corresponding
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to MGS) by the timing. This allows a fair comparison between the three algorithms:
essentially, if the normalized Megaflop rate is 3 times higher for BGS than for MGS, this
means that BGS execution time is 3 times smaller.

The experiments were performed by surrounding the code to be measured by a repe-
tition loop in order to reduce the impact of the clock accuracy. This has an adverse effect
for the small matrix sizes which entirely fit in cache; in such cases, the first iteration will
load the matrix in the cache then all the subsequent operations will be performed with the
data entirely resident in cache. This explains the strange shape of the curves for MGS,
where the performance first increases then decreases when the data do not fit any more
in cache. It should be noted that BGS and B2GS are not affected by such a phenomenom
due to the fact that their structure in blocks allows them to keep most of their references
to cache.

The block sizes were chosen according to the following rules:

e Square matrix, n x n, (Figure 2):

BGS: Block size = 16 for 32 < n < 96
Block size = 32 for 96 < n < 1024

B2GS : Block size = 16 for 32 < n <160
Block size = 32 for 160 < n < 1024

e Rectangular matrix, 1024 x n, (Figure 3):

BGS: Block size = 16 for 32 < n < 64
Block size = 32 for 64 < n < 1024

B2GS : Block size = 16 for 32 < n <128
Block size = 32 for 128 < n < 1024

¢ Rectangular matrix, 2048 x n, (Figure 4):

BGS: Blocksize = 16 for 32 <n < 64
Block size = 32 for 64 < n < 512

B2GS : Block size = 16 for 32 < n <160
Block size = 32 for 128 < n < 512

This choice of the block sizes were done accordingly to experimental results.

The main conclusion of the experimental results is that B2GS costs between 12 and
25 % in terms of performance, compared with BGS; however, the speedups over classical
MGS are still impressive, over 3 for large matrices. The only negative point is small size
problems, where B2GS is not competitive but it should be noted that BGS performance
is also severly affected in such cases. However, for such small problems, the best choice
seems to be classical MGS, the reason being that in such cases, the whole data set is close
to fit into the cache and therefore does not require specific block algorithms.
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Figufe 3: Normalized Megaflops for (MGS), (BGS) and (B2GS),

rectangular matrix (1024xn), (ALLIANT FX80)
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Figure 4: Normalized Megaflops for (MGS), (BGS) and (B2GS),
rectangular matrix (2048xn), (ALLIANT FX80)
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7 Conclusion

In this paper, it has been proven that by using a reorthogonalization procedure on blocks
at an additional cost of low order, the algorithm (BGS) numerically behaves very closely
to the (MGS) algorithm. Another alternative consists in replacing for the reorthonormal-
ization process (MGS) by an other orthogonalization procedure such as the one based on
polar decomposition. Since a block Qg is nearly orthonormal, its orthogonalization may
be performed in the following way [5]:

D = Q3Qs—1I np* flops ( not considering symmetry)
T = (1+D)7 0() flops
Qs = QT np*flops

With such a choice, using reorthonormalization costs twice as much as using (MGS),
but only involves matrix multiplication. The use of such primitives (resulting in speedup
over 2 compared to Blasl or Blas2 primitives) may in fact offset the additional price in
number of operations, and constitute an interesting alternative. ’
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