archives-ouvertes

On the optimal stochastic scheduling of out-forests
Edward G. Coffman, Zhen Liu

» To cite this version:

Edward G. Coffman, Zhen Liu. On the optimal stochastic scheduling of out-forests. [Research Report]
RR-1156, INRIA. 1990. inria-00075402

HAL Id: inria-00075402
https://hal.inria.fr /inria-00075402
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.inria.fr/inria-00075402
https://hal.archives-ouvertes.fr

Rapports de Recherche

N° 1156

Programme 3
Réseaux et Systémes Répartis

-

ON THE OPTIMAL STOCHASTIC
SCHEDULING OF OUT-FORESTS

Edward G. COFFMAN, Jr.
: Zhen LIU

Février 1990

L




I3

Sur I’Ordonnancement Optimal des Foréts
Divergentes

Edward G. COFFMAN, Jr. Zhen LIU

AT & T Bell Laboratories INRIA
Murray Hill Centre Sophia Antipolis
New Jersey 07974 06565 Valbonne Cedex
U.S.A. France

Résumé

Cet article présente de nouveaux résultats d’ordonnancement optimal de taches
sur K > 1 processeurs paralleles, ol P'objectif est de minimiser le temps total
d’achévement des taches pour l'ordre stochastique fort. Les taches satisfont des
contraintes de précédence de type forét divergente, c’est-a-dire que chaque tache
a au plus un prédécesseur immédiat. Les temps d’exécution des taches sont des
échantillons d’une distribution exponentielle donnée. Nous définissons la classe
des foréts divergentes uniformes ou les sous-arbres sont ordonnés par une relation
d’inclusion. On prouve qu’une politique intuitive gourmande est optimale pour
K = 2, et que si les foréts divergentes satisfont une contrainte supplémentaire
d’inclusion par racine, alors la politique gourmande est optimale pour tout K > 2.



On the Optimal Stochastic Scheduling of Out-Forests
Edward G. Coffman, Jr.

AT&T Bell Laboratories
Murray Hill, New Jersey 07974
USA

Zhen Liu

INRIA
Centre Sophia Antipolis
06565 Valbonne Cedex
FRANCE

ABSTRACT

This paper presents new results on the problem of scheduling jobs on X =1 parallel

processors so as to minimize stochastically the makespan. The jobs are subject to out-

forest precedence constraints, i.e. each job has at most one immediate predecessor, and job

running times are independent samples from a given exponential distribution. We define

a class of uniform out-forests in which all subtrees are ordered by an embedding relation.

We prove that an intuitive greedy policy is optimal for K =2, and that if out-forests satisfy

an additional, uniform roor-embedding constraint, then the greedy policy is optimal for all

K=2.



On the Optimal Stochastic Scheduling of Out-Forests
Edward G. Coffman, Jr.

AT&T Bell Laboratories
Murray Hill, New Jersey 07974
USA

Zhen Liu

INRIA
Centre Sophia Antipolis
06565 Valbonne Cedex
FRANCE

1. Introduction

This paper studies the problem of scheduling N =1 stochastic jobs on X=1 identical
processors so as to minimize stochastically the makespan. Job running times are
independent samples from a given exponential distribution, and the precedence constraints
among jobs form an out-forest (see Fig. 1 for an illustration). Thus, every job has at most
one immediate predecessor; a job without any predecessors forms the root of one of the

out-trees of the out-forest.

Reversing out-forest precedence constraints (reversing the arrows in Fig. 1) produces
an in-forest. Stochastic scheduling of in-forests has been the subject of a considerable
body of research. Chandy and Reynolds [3] proved that, when K=2, the preemptive
(respectively non-preemptive) Highest-Level-First (HLF) rule minimizes expected
makespan among the class of preemptive (respectively non-preemptive) policies. Here, the
level of a job is simply the distance from it to the root of the tree in which it appears.
Bruno [2] subsequently showed that HLF srochasrically minimizes the makespan. Pinedo
and Weiss [6] obtained similar results for the case where jobs at different levels are
allowed to have different expected running times. Frostig [4] later extended the model in
[6] to include families of increasing-likelihood-ratio distributions. Papadimitriou and
Tsitsiklis [5] showed that in the Chandy-Reynolds model with K arbitrary HLF is

asymptotically optimal as N ~=. Baccelli and Walrand (1] studied the problem in a fully



(%) ) () ) () (%)

Figure 1 — An Out-Forest of 4 Out-Trees, T(u;), T(u3), T(ug), T(uy7).
indexed in largest-subtree-first order.

Jobs are

-



stochastic setting, where in-forests arrive in a Poisson stream. They showed that for k=2

HLF minimizes the expected number of forests in system.

Of course, there has also been a longstanding interest in the corresponding out-forest
problems. But these problems appear to be much more difficult. This fact is obscured by
the simple relation between in-forests and out-forests, and may be surprisiﬁg at first
glance. An aim of this paper is further insight into this greater difficulty. To this end, we
shall define a class of uniform out-forests and show that for K=2 the greedy policy
analogous to HLF stochastically minimizes makespans for such out-forests. By means of
counterexamples, we illustrate how greedy policies fail to be optimal when attempts are
made to extend significantly the class of uniform out-forests. Finally, for K arbitrary, we

exhibit a subset of the uniform out-forests for which the greedy rule is optimal.

2. Preliminaries

Definitions - We define an out-forest F as a directed acyclic graph on a set of jobs
{ui,...,uy}. Then the set of directed edges in F is such that for all 4; in F, u; has at most
one immediate predecessor. F is an out-tree if it has exactly one job (root) with no
predecessors. Hereafter, the terms forest and tree will refer to out-forest and out-tree,
respectively. Also, in a harmless, but convenient abuse of notation, we shall often use F

to denote just the set of jobs, as in the expression u; € F.

The job u; € F and all of its successors is a subtree denoted by T(x;). The depth d(u))
of u; is the maximum of the lengths of the paths from u; to the leaves of T(u;). Thus, if
s(u;) denotes the set of immediate successors of u;, then d(¥;) =1 if w; is a leaf and

dly)=1+ x?a(x)d(v) otherwise. The number of jobs, or size of T(y;), is denoted by
v C3(u

z(u;). If u; is not a root of F, then p (¥;) denotes the immediate predecessor of u; € F.



A tree T, is said to embed the tree T,, or T, is embedded in T,, if the ‘pattern’
represented by T, exists in T,. We write Ty =, T, or T; =, T,. Formally, let 5,(u),
respectively s,(u), denote the set of immediate successors of u in T,, respectively T;.
Then T, embeds T, if there exists a one-to-one mapping f from the jobs of T, into the
jobs of Ty such that for all u, v €T,, v € s,(u) implies f(v) € 5,(f (v)). We write f(T,) to

denote the image of T, in T, and we call fan embédding Sfuncrion.

A forest F with jobs u;,...,uy is said to be uniform if the set of all its subtrees
{T(w), 1=i= N} can be ordered by the embedding relation; by convention the indexing
of jobs is assumed to be such that T'(u;) =, T(u;) =, * -+ =, T(uy) is such an ordering.
Figure 1 shows a uniform forest. We emphasize the recursive nature of the definition; just
a collection of trees ordered by the embedding relation is not necessarily a uniform forest

(see Fig. 2). The embedding ordering must extend to the set of all subtrees of the forest.

The embedding relation is e;ctended to uniform forests as follows. :Let the jobs of the
uniform forests F, and F; be uy,...,uy, and vy,..., Vy,, respectively, so that by
convention, T(u;) =, T(4;+,), 1<i<N;, and T(v)) 2, T(v;4;), 1=i<N;. Then F,
embeds F,, or F, is embedded in F, if N;=N; and T(v;) s, T(4;), 1 =i=N,; we write

F,=z,FyorF, =, F,.

To each job u; in a given forest we associate a random variable 1; denoting the running
time of & on any of the X identical processors Py,...,Px. The 7;’s are independent
samples from a given exponential distribution. Except for numerical work, the parameter
of the distribution is left unspecified, as it will play no role in characterizing optimal

scheduling policies.

Scheduling Policies - Let w denote an arbitrary scheduling policy. With X given, the

makespan (latest job finishing time) of the schedule produced by = for forest F on K



Figure 2 — A forest of embedded trees that is not uniform. T(u;)=,T(u3)=,T(u,),
but neither of T(u3) and T(u3) is embedded in the other.



processors is denoted by w(F). The standard relations of stochastic equality and
inequality are denoted by the subscript “st,” e.g. <,, denotes *‘stochastically less than or
equal to.”” A policy m, is said to be optimal in a class @ of forests, if for any policy r,

wo(F) <, w(F) for all F € <.

Trivially, forest structure is preserved in the remaining graphs at each decision point of
a policy m scheduling a forest F. If F is uniform, then by the transitivity of the
embedding relation the uniform property is also preserved in the forests remaining at each

decision point.

The class of policies of interest here is unrestricted; in particular it contains the
preemptive policies. However, there are two useful reductions that can be made. These
observations are standard and apply to directed acyclic graphs in general. Formal proofs

of the two lemmas below are easily supplied and left to the interested reader.

Lemma 1. There exists an optimal policy whose decision points occur only at time 0 and all

but the last job finishing time.

In other words, preemptions and new job assignments occur only in the initial state
and the states resulting from all but the last job completion. This fact results from the
memoryless property of the exponential distribution; between job completions the state
represented by the remaining graph and the distributions of remaining running times does
not change. Hereafter, we confine ourselves to policies having the property given in

Lemma 1.

Lemma 2. An optimal policy never allows a processor to remain idle if there is an available

job, i.e., an unassigned unfinished job all of whose predecessors have finished.

A policy violating Lemma 2 will be called an idling policy. The non-idling property of

Lemma 2 follows easily from the fact that policies are allowed to preempt jobs at any



time. Lemma 2 can be extended to include general distributions with infinite support.
For distributions with finite support, the lemma must be weakened to the assertion that
there exists an optimal policy that never allows a processor to remain idle if there is an
available job. By convention, we assume that if a policy runs only k<KX jobs in the
interval between some pair of decision points, then those jobs are run on processors

Plv ...,Pk.

A recursive computation of expected makespans under a given policy m is easily
expressed. Let R = R(F) be the nonempty set of roots in the forest F and let § = S§(m, F)
denote the subset chosen by = to run on |S| = KA\ [R| = min(X, |R|) processors. Then if

p is the rate parameter of the given exponential distribution, we have

L i L EmE -,

BT = L&A R * 2 AR

where m(d) =0. A Bellman equation for an optimal policy , can then be written

1 1

E[m,(F)] = m ‘:

+ min 3 E[w,(F—-{ubh]].
SCR ue€s
[St=KA[R]|
These results form the basis of a computer program that was written to evaluate various

policies. Examples given later illustrate the application of this program.

A job u in an in-forest has at most one immediate successor; the set of all successors is
the set of jobs in the path from u to the root of the tree containing u. An important
consequence for in-forest schedules, which is policy independent, is that the number of
jobs available for scheduling is a monotone non-increasing function of time for all samples
{r;; 1=i=sN}. It is easy to see that this property does not carry over to out-forest
- schedules, except when forests are sets of chains. This suggests that the general out-forest

scheduling problem may well be more difficult than the in-forest one.



From a related point of view, one must expect this greater difficulty because depth in
out-forests can not occupy the critical role played by level or height in in-forests. For
example, consider the forest in Fig. 3, and with X'=2, consider the greatest-depth-first
policy corresponding to HLF for in-forests. As k becomes large compared to /, it becomes
more and more important to schedule job uj at the outset, even though its depth is less
than that of u; and u;. In general then, both the size z(u) and depth d(u) influence

scheduling decisions concerning job u. This issue is discussed further in the next section.

3. Greedy Policies for X =2

Two obvious greedy policies, denoted 4 and v,, are as follows: vy, schedules jobs
greatest-depth-first with ties resolved in favor of roots of larger trees, and ¥, schedules
jobs largest-tree-first with ties resolved in favor of deeper roots. Ties remaining after both
criteria have been applied are broken in favor of lower indexed jobs in both vy, and ¥,.
Figure 3 with (k, 1) =(3,3) gives a counterexample to the optimality of v,, and Fig. 4
shows a similar counterexample to the optimality of +v,. Moreover, Fig. 3 with
(k, I) =(3,4) supplies an example where neither vy, nor +; is optimal. For, it is easily
verified numerically that an optimal policy must begin with a greatest-depth-first decision;
then, with pos;itivc probability, an optimal policy will reach the state in Fig. 3 with

(k, I) = (3, 3), wherein a largest-tree-first decision is optimal.

It is difficult to see how to balance structural parameters like depth and size in
formulating optimal scheduling decisions. This situation motivates the definition of
uniform forests, where depth and size orderings are always the same; i.e., if 4 and v are
jobs in a uniform forest, then either d(u)=d(v) and zu)=2z(v), or d(u)<d(v) and
2(u) =< z(v) throughout that part of a schedule where u and v are still in the forest which

remains to be scheduled. Then vy, and <y, become the same policy, which we denote



E

J l\_\/___,J
T~ _
2 chains of { k leaves
vertices each

Figure 3 — Counterexample to depth-first

Figure 4 - Counterexample to largest-first



-10 -

simply by y when dealing with uniform forests. The theorem below shows that vy is
optimal in the class of uniform forests, when X' =2. The proof uses a coupling argument

based on the following well-known result.

Lemma 3 (Strassen [7]). Two random variables X and Y satisfy X =, Y if and only if there
exist two random variables X and Y defined on a common probability space such that

A

X=4,X7Y=, f’ and X =Y almost surely (a.s.).

Theorem 1. Let F be a uniform forest and let 7 be an arbitrary scheduling policy. Then for

K=2

Y(F) s, w(F).

Proof. First, we explain the coupling argument and the use of Lemma 3. Define
¢ =T10,C11,... and 03 =0y, 023, ... as independent sequences of independent samples
from the exponential job running-time distribution. Let forest F be scheduled by y and =,
coupled by the sequences o; and o, as follows. Let#,, n= 1, denote the n® epoch when
¥ or 1 or both finish a job, and define ro = 0; i.e. {r,; n =0} is the union of the decision
points under vy and 1, respectively. The jobs, possibly different, assigned or reassigned to
P, at 1, by vy and m are taken to have the same remaining times o, ,. Similarly, any job
assigned to P, at t, under y or 7 is taken to have remaining time o, ,. Within this
coupled probability model, let ';((F) and m(F) denote the makespans under y and 7,
respectively. By the memoryless property of the exponential distribution, it is easy to see
that -;(F) =, y(F) and 7(F) =, w(F). To prove the theorem we need only show that, if

F is uniform, then
(3.1) N(F) = #(F) a.s.,

for by Lemma 3, y(F) =<, w(F) then follows.



-11-

Let Fy(n) and F(n), n= 0, denote the respective forests remaining at 7, under vy and
7 in the coupled probability model. It is clear that if F,(n) and F ,(n) are uniform and if
Fy(n) =, Fo(n), for all n =0, then (3.1) holds. The remainder of the proof shows that

Fy(n) =, Fy(n) for all n=0.

The proof is by induction on n. The basis n =0 is trivial, since F,(0) = F,(0) =F, so
suppose Fy(n) <, Fn(n) for some n=0. Let u, l=is|F,(n)|, and v,
1sis |Fq(n)|, denote the jobs of Fy(n) and F.(n), respectively, so that by our

convention

(3.2) T@u) =, T(i+1), 1sis|Fyn)|, Tw) =, T(vi4y), 1Sis|Fam)].
Then by the inductive hypothesis, F,(n) =<, F,(n), we have

(3.3) |Fy(n)| = |Fa(m)|

(3.4) Tw) =, T(v), 1sis|F,(n)].

“Let Fy(n) have j roots u,,, u,,, ..., u,, and let Fo(n) have k roots vy, vy,, ..., Vg,
with 1=r;< - -+ <r;and 1=5,< -+ <s. By definition of v, root u,, =u; and, if
j>1, root u,, are assigned by vy at t, to P, and P,, respectively. If k> 1, let v, and v,_,
5; < 5m, denote the roots assigned by w at 1, to P, and P, respectively; if k=1, v, denotes

the root assigned to P,.

By the coupling of the running times in the schedules of y and 7 the following case

analysis suffices, based on the job or jobs that finish at time 1, 4+,.
Case 1. u; and v, (5;= 1) finish at 1, +1. Then by (3.3)
(3.5) |[Fy(n+1)| = |Fy(n)| = 1 S |Fu(n)| = 1 = |Fp(n+1)].

Now u; and v, s;+1 =i IF,(n)I, are jobs in F(n+1) and F,(n+1) respectively, so

by (3.4),



-12-

(3.6) Tw) s, T(v), s+1sis|Fyn)].
We have T(v)) s, T(v;-;) by (3.2), so (3.4) shows that
(3.7) T(u,) =, T(vl—1)9 25i$3’.

Since Fy(n+1)=F,(n)—{u;} and F,(n+1)=Fq4(n)—{v,}, we obtain Fyn+1)=,

F . (n+1) directly from (3.5)-(3.7).

Case2. j=2, k=1, and u,, (r;=2) finishes at ¢,,;. Then by (3.3), (3.4), and the

reasoning in Case 1,

IFy(""'l)I = [Fy(")l—l = IFﬂ(n)I-l < IFﬂ(n+l)|°

T(w) =,T(v), Isisry—-1.
and -
T(w) =, T(vi-1), rptlsis IFy(”)l

Fy(n+1)=Fy(n) —{u,,} and Fn(n+1)=F,(n), so Fy(n+1) =, F.(n+1) follows as in

Case 1.

Case3. j=1, k=2, and v, (s,=2) finishes at f,4,. In this case, Fy(n+l)=
Fy(n)=T(u,) and by (3.4), T(u4;) <, T(v;). But since v, is the root of a tree other

than T(v;), T(vy) isin Fn(n+1). Fy(n+1) s, Fa(n+1) follows at once from
Fyn+1) =T(u;) =,T(vy) S, Fn(n+1)
and the transitivity of the embedding relation.

Cased. j=2, k=2, and 4, and v,, (r3,5,=2) finish at #,4,. Trivially, as in Case 1,

(3.3) implies
(3.8) IFy(n+1)| = |Fatn+1)].

Now suppose r, < s,. By (3.4) we have



-13-

(3.9) T(w) <, T(v), 1sisry=1, sp+lsis|F,n)].
By the argument in Case 1,
(3.10) T(u;) =, T(Vl_l), r, + I1=siss,,

so Fy{n+1) s, Fp(n+1) follows from (3.8)-(3.10) and the fact that
Fy(n+1)=Fy(n) = {uy,}, Fa(n+1) = F n(n) — {v,}.
Finally, suppose r; >s,. By (3.4),
T(w) s, T(vy), 1siss,—1
(3.11)

T(w) s, T(v), ry+lsis|F,m)].

Next, observe that, since u; and u,, are the lowest indexed roots in Fy(n), T(w) is a
subtree of T(u,) for all 1si=<r,— 1. Then since T(v,) and T(v,) are disjoint trees and

since T(u;) <, T(v,), we must have
(3.12) Tw) <, T(vi+1), Sm=isry;-—1.

Then F (n+1)=F(n) = {4,,} and Fo(n+1)=F,(n) —{v,,}, along with (3.8), (3.11),

and (3.12) allows us to conclude that F (n+1) =, F4(n+1).

This completes the induction step and hence the proof that Fy(n) =, F,(n), for all

n=0. B

The above proof breaks down in an attempt to extend it to any K> 2; it is easily
verified that the embedding F,(m) <, F,(m) is not necessarily preserved at all decision

points.

4. The Greedy Policy for K Arbitrary

The optimality of y can be proved for uniform forests and any X'=2 if embedding

functions are restricted to those mapping roots into roots. When there exists a function f



-14 -

embedding T (u) in T(v) such that f(u) =v, then we say that f is a root embedding function
and write T(v) =,T(u) or T(x) <,T(v). Extending this concept to forests, we say that a
forest F is root-embedded if its trees can be ordered by the root embedding relation 5,. If
the set of all subtrees of F can be so ordered then F is said to be r-uniform. (Note that the
root-embedded forest in Fig. 2 is not r-uniform.) The main result of this section states
that, except for the resolution of ties, vy is uniquely optimal in the class of r-uniform
forests for all K =2. This result follows as an easy corollary to a more general theorem:

For any root-embedded forest, the decisions in the initial state must be greedy decisions.

To prove the theorem, we adopt the more convenient, but equivalent probability model
of Sec. 3, introduced here for the purpose of coupling the decision points of two different
policies scheduling the same forest. Let ¢ = 0y,..., ok be a set of independent sequences,
where @; =0, 0, ... IS @ sequence of independent samples from the exponential job
running-time distribution for each j=1,...,K. If 0=¢o<t; < - - denotes the sequence

of decision points under some policy 7 and sample o, then

4 =1 + min o, n=0,1,2,...,
n+1 n 1SSk, Jn

where k, < K is the number of processors assigned by m at 7,. The job finishing at time

t,+ is the job, say u, assigned to P;, where o, = | n}ink ajs; the state at 1, is then
< sk,

given by F.(n+1) = F.(n) — {u}. Makespans in the new model are stochastically equal to
those in the original model. In addition, the sequence of states {F (n), n=0} at the
decision points of « comprise the same stochastic process in the two models, i.e.,
corresponding joint distributions are equal in the two models. For this reason we simplify

the presentation by continuing our previous notation w(F), Fn(n), etc. in the new model.

.Corresponding to the state sequence {F »(n), n =0}, we introduce the decision sequence

{V4(n), n=0}, with V_(n) = (VL(n), VE(n), ..., VK(n)), where V% (n) is the job assigned



Y

-15-

by m to processor P, at time f,; by convention, V4 (n) =0 indicates that no job is assigned
to P; at t,. Additional notation that will be of use is b ,(u), which denotes the time when
job u begins under policy 1, i.e., when u is first assigned to a processor by =, and c,(u),
which denotes the completion time of x under 7. In all of the above notation, the forest

being scheduled will be understood in context.

Theorem 2. Let F be a roor-embedded forest. Then for any K =2 the decisions of an

optimal policy in the initial state must be greedy decisions.

Proof. As noted above we adopt the coupling probability model with samples &. Let F be
a root-embedded forest and let  be a policy that makes at least one non-greedy decision
in the initial state. We define below a transformation of = to a policy . such that
w.(F) = w(F); in the initial state v, makes the same decisions as 7 except that one of =’s
non-greedy decisions has been replaced by a greedy decision; and r, is an idling policy.
By Lemma2 m., can be transformed into a non-idling policy .. such that
fr;.(F ) < m.(F) and .. makes the same decisions as 1. in the initial state. Lemma 3
then proves the theorem, since iterating the above argument at most X times shows that we
can construct a non-idling policy with a makespan less than w(F) and onmly greedy

decisions in the initial state.

The transformation -, entails an exchange-type construction. Let one of #'s non-
greedy decisions at time O be the assignment of root u instead of root v, where
T(u)=<,T(v) and T (u) is smaller than T(v). We construct ., to be the same as 1r except
for the scheduling of jobs in T(u) and T(v). Policy 7. begins with the same decisions at
time 0 as w except that the assignment of u is replaced by the assignment of v. In general,
at any decision point t,, n=0, when a job y € T(u) is scheduled by m, we want «, to
assign the image f (y) € T(v) under a root embedding function f of T(x) <,T(v). When

assigns a job y € T(v) and y is not an image of aﬁy job in T (u) then we want . also to



-16 -

make the assignment y. But if « assigns y € T(v) and y is an image of some job in T (),
then we want ., to assign f~!(y). The above prescriptions must be conditioned on the
availability under 7. of the appropriate jobs. Formally, the decisions of . are

constructed from those of 7 according to the following procedure.
form=0,1,...,.N—1

for each j such that VL (m) T (w) Uf(Tw)) or VL(m)=0
(4.1) V5. (m) = Vi(m).

for each j such that Vi (m) € f(T (u))

Vi (m), if 1. has not yet finished Vi, (m)
(4.2) Vi, (m) = by tn, ie. if Vi(m) €F, (m),

- WVL(m)), otherwise.
for each j such thar VL (m) € T (u)

f(Vh(m)), if f(V](m)) is available for assignment
4.3) V{,.('n) _ a t, by m.,

Vi (m), otherwise .

Note that in (4.3) a job x is available if and only if x € F,, (m), p(x) £ F, (m), and x has
not already been assigned at t,, according to (4.2). It is clear from (4.1)-(4.3) that 1, has

exactly one fewer non-greedy decision at time O.

Trivially, the decision points of 1, are those of 7, viz. 0=ry<r; < -+ - <ity_y, and
both = and 1, finish a job at each r,, 1 = n =N, where 1y is the latest job finishing time
under 1. Also, it is readily verified from the root-embedding ordering of F that at each I

both w and m, assign the same number of jobs. In particular, if VL (m) € f (T (u)), then



-17-

either VL(m) or f~Y(VL(m)) is available under mw. as needed by (4.2); and if
Vl(m) € T(u), then either V5 (m) or f(V/(m)) is available under m, as needed by (4.3).
Then m.(F) = w(F) for any sample 0. To make use of this fact we must verify that =, is

a valid policy. For this purpose, it is sufficient to prove that the following claims hold.
Claim 1. Forallm=0,1,...,N-landx€F

xEF,(m) = VL () #x for all msl=N-1, 1sj=K.
In words, according to any given sample @, . never assigns a job already finished.
Claim 2. 1, finishes all jobs; i.e., Fo (N) = o.
Note that Claims | and 2 show that b, (x) and c,, (x) are well defined for all x € F.

Claim 3. 1, respects precedence constraints: For all jandm, 1= j<Kand 0=m=N-1,

if V{,. (m) = x and x has at least one predecessor then ¢ (p(x)) < tp,.

Claim 4. 7, is non-redundant, i.e., ™. never assigns the the same job to two or more
processors at the same time: For all m,j, k, 0sm=N-1, l=j<k=K, if

Vi, (m) = V’,‘,_ (m) then both must be 0, i.e. P; and Py are not assigned jobs at t,,.

Given these claims it remains only to observe that s, is an idling policy at some
decision point t,, n=1. Figure S shows a simple example illustrating why . must be
such a policy. As suggested by the figure, it is easy to verify in general that, with positive
probability, . runs jobs over some interval [t,,f,4+;), n=1, where there is an idle
processor and an available job to run on it. For example, we need only consider those
instances o where the running time of v under = exceeds the sum of the running times
under « of all jobs not in T(v). Since T(u) is strictly smaller than T(v), w and . must

eventually run jobs over some interval in which, for some j,



1
1y
I3
[ PR
Is:

tg -

OO

T
P, P, P,
U Uy uj3
U, Y U3
ug Uy ug
Ug 0 173
Uy 0 0
Ug 0 0

-18 -

e
P, P, P,
W U2 U3
By u2 w
Uy uz Usg
Uy 0 Ug -~ ug available but
not scheduled
o 0 0
Ug 0 0

Busy-processor sequences under m and ,; jobs in boldface
finish and create the state transitions.

Figure 5 — Example showing that m, is an idling policy; K =3.



-19 -

— v is running on P; under  and  is running on P; under .,
— there is an idle processor under both w and ., and
— there is an available root under m, but not .

We conclude the proof by establishing Claims 1-4.

Proof of Claim 1. For all jobs in F — T («) — f (T (u)), . makes the same assignments as
7, by (4.1). Since 1 is a valid policy, the claim must therefore hold for these jobs under

Te.

Now consider x € T(u) and bear in mind the property of (4.2) and (4.3) that if m.
assigns x € T(u) at some decision point, then 7 must assign either x or f(x) at that
decision point. Suppose the claim does not hold for x € T(u); there exist / and m such that
. assigns x at 1,, but finishes x at 7, =<1,. Then either x or f(x) must be finished by m at
t;. Assuming that  finishes x at r;, then m must assign f(x) at time t,,. Then, since m,
aséigns x at t,,, we have by (4.2) that w, must have finished f(x) at some time 1, <1,
r # 1. Since w is assumed to finish x at 7;, w must finish f(x) at ¢,. This last fact and «’s

assignment of f(x) at r,, contradict the validity of .

Analogous reasoning shows that if m is assumed to finish f(x) at #; and hence assign x
at 1,,, then we again get a contradiction. Then the claim holds for all x € T(u). A similar

argument proves that the claim holds for all x € f (T (u)). ®

Proof of Claim 2. As noted earlier, v and m, assign the same number of jobs at each
decision point, and at times r;,...,fy a job is finished by both 7 and .. Then by
Claim 1 the jobs finished by m, at 7y, ..., ty must all be distinct. Therefore, m, finishes all

jobs. B



-20-

Proof of Claim 3. For all n=0,1,..,,N—1, m. and = schedule the jobs in

Fa,(n)=T(u)—T(v) in the same order. It follows that . respects the pfecedence

constraints of all jobs in F — T (u) — T(v).

It is also easy to see that i, respects the precedence constraints of jobs in

T(v) —f(T(u)). Indeed, a sample-path analysis according to (4.1)-(4.3) shows that

(4.4) Ca.@X)) = cp(x), x€f(T(u))
(4.5) Cr,@(X)) = cx(x), x€T(v) = f(T(w)).

These two relations yield the desired result for a job x with immediate predecessor p(x),

ba,(x) = ba(x) = cx(p(x)) = Cq,(x), x€T(V) = f(T(w)).

Consider now the jobs in T(u) Uf(T(u)). As a preliminary observation we have, as

in the proof of Claim 1, that for any x € T (u) either

Cr,(X) Scp(x), ca(f(X)) = cu(f(x))

or
cﬂ.(x) = c'rr(f(x))» c'rr.(f(x)) = Cqp(x)

holds. Hence,

(4.6) Cr,(X) VEr(f (X)) = ca(x) V ca(f(x))

4.7 Ca(X) N Cq,(f (X)) = Ccu(x) N\ ca(f (2)).

It is also readily verified that similar relations hold for starting times, viz., for x € T(u),

(4.8) bw.(x) me(f(x)) = bn(x) V bﬂ(f(x))
“4.9 ba,(x) Aba f(x)) = ba(x) N\ ba(f(x)).

We now prove that, for any x € T(u) U f (T (u)) with at least one predecessor,



-21-

(4.10) bp (%) Z ca,(p(x)), x€TW)US(TW),

where by convention c,, (p(x)) =0 if x has no predecessors. We consider x € f (T (u))

first. By (4.5)-(4.9), the relation between b, (x) and cq4, (p(x)) is determined by four

possibilities:

1. c.,,,(p(x)) = cn(p(x)), bw.(x) = balx)

2. cn@(®) = cx(fTMPE)), ba(x) = ba(fTx))
3. cn @) = calf 1P (R),  ba(x) = bakx)

4. cp,(P(x) = calp(x), ba(x) = ba(f~l(x)).

In the first case, (4.10) holds trivially since w is a valid policy. In the second case, "

(4.10) follows from
cn(P(X) = (TP X)) = caleFT ) < ba(fTHX)) = ba,(x),

where the second equality derives from the fact that the root-embedding function f

preserves precedence relations. In the third case, we use (4.4) to obtain
CaaP (X)) = ca(P(x)) = bp(x) = by (%),

and in the fourth and last case, c,,(p(x)) = b, (x) follows easily from (4.3). Thus, the

claim holds for x € f (T (u)).

The proof of (4.10) for x € T(u) proceeds along the same lines. We have the following

four possibilities:

1. cﬂ,(P(x)) = Cn(P(x))v bﬂ.(x) = bﬂ(x)
2. Cr,(P(X)) = ca(f@(X))),  ba(x) = ba(f(x))
3. ¢ @() = cx(F @), ba(x) = ba(x)

4. cn(@(x) = calp(x)), bp(x) = bn(f(x)).



-22.

We obtain (4.10) in the first two cases as before. In the third case, (4.2) yields
crP(X) > ca, F (X)) = cr,(P(f(x))),
which implies b, (x) = b, (f (x)). By (4.8) we obtain
b (x) = bn, (X)) V by, (f(3)) Z bn(f (X)) Z ca(P(f (X)) = ca,(p(x)).
Again using (4.2) for the last case, we obtain
b, (%) Z cq,(f(x)) > ba, (f ().
It then follows from (4.8) that
ba (¥) = bn (%) V br,(f () = br(x) Z cap(x) = Ca,(p(x)).
Thus, (4.10) and hence the claim is proved. =

Proof of Claim 4. For some 0=m =<N-1 and j # k, suppose that V/, (m) = V%_(m) = x.

It is easy to see from (4.1) that a violation of the claim requires x € T(x) U f(T(w)). If

X E'T(u), then since & is non-redundant, V{,. (m) and Vf,_ (m) must be determined by both

(4.2) and (4.3), i.e. V§(m) =xand V&(m) =f(x) or VL, (m) = f (x) and V& (m) =x. Then

4.1 CalX) Nea(f (X)) > .

But in this case (4.2) implies ¢, (f(x)) = t,,, which together with (4.11) contradicts (4.7).
Finally, suppose that x € f(T(x)). Again, since w is non-redundant, V{,. (m) and

Vf,_ (m) must be determined from both (4.2) and (4.3); one of V] (m) and VX (m) must be

x and the other must be f~!(x). But under (4.2) and (4.3), x will first be mapped into x

and then f~!(x) will be mapped into f~!(x). This contradicts the assumed violation so the

claim follows. ®

We have shown that , is a valid policy, so the theorem is proved. ®



-23.-

Since the root-embedding property is preserved at each decision point of a policy
scheduling an r-uniform forest, we have the following immediate consequence of

‘Theorem 2.
Corollary 1. If F is an r-uniform forest, then for all K =2,
Y(F) =4 w(F)

for all policies . Moreover, the inequality is strict if = ever makes a non-greedy decision,

i.e., if m is optimal, it differs from vy only in the resolution of ties.

5. Final Remarks

-

The results of this paper are easily extended to the number-in-system objective
function. In particular, under the assumptions of Theorems 1 and 2, y stochastically
minimizes the number of unfinished jobs in the system at any time ¢. It can also be shown

~ that this optimality is retained in a system with stochastic arrivals of forests that preserve
thé required uniform property; the arguments needed are just those in [1] trivially adapted

to the out-forest model.

The complexity of out-forest stochastic scheduling was the point of departure for this
paper. Obviously, the general problem remains open; however, there are other interesting
open problems that may be more tractable. For example, it would be useful to know
whether results similar to Theorems 1 and 2 are possible within the class of
non-preemptive policies. Also, while greedy rules are not always optimal, it may be.
possible to demonstrate that, within a general probability model of forest structure, their

expected performance is close to optimal.




(1]

(2]

(3]

(4]

(5]

(6]

(7]

-2 -

References

F. Baccelli, J. Walrand, *‘Optimal Processing of a Stream of Trees on Two Parallel

Processors,’” Systems and Control Letters, to appear.

J. Bruno, “On Scheduling Tasks with Exponential Service Times and In-Tree

Precedence Constraints,” Acta Informatica, 22 (1985), 139-148.

K. M. Chandy, P.F. Reynolds, “Scheduling Partially Ordered Tasks with

Probabilistic Execution Times,” Operating System Review, 9 (1977), 169-177.

E. Frostig, **A Stochastic Scheduling Problem with Intree Precedence Constraints,"”

Oper. Res. 36 (1988), 937-943.

C. H. Papadimitriou, J. N. Tsitsiklis, ““On Stochastic Scheduling with In-Tree

Precedence Constraints,” SIAM J. Comput., 16 (1987), 1-6.

M. Pinedo, G. Weiss, *Scheduling Jobs with Exponentially Distributed Processing

Times and Intree Precedence Constraints on Two Parallel Machines,”” Oper. Res.,

33 (1985), 1381-1388.

V. Strassen, ‘“The Existence of Probability Measures with Given Marginals,’”” Ann.

Math. Stat., 36 (1965), 423-439.

Imprimé en France
N . par . .
I’ Institut National de Recherche en Informatique et en Automatique

Q



&




