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Résumé

L’allocation optimale d’un serveur unique & plusieurs files d’attente en paralléle est
étudiée dans cet article. La durée d’une visite du serveur  une file particuliére est
aléatoire et ne dépend pas de 1’état-de la file visitée. Deux variantes sont considérées:
la file visitée est vidée a la fin de chaque visite (variante I) ou seuls les clients présents
al’arrivée du serveur quittent le systéme 2 la fin de sa visite (variante IT). La politique
d’ordonnancement détermine la prochaine file d’attente que devra visiter le serveur.
Sous ’hypothése ol les processus des arrivées sont homogenes, les résultats suivants
sont obtenus: dans le cas ot 'ordonnanceur ne connait pas I’état du systéme, nous
montrons qu’une politique cyclique minimise, & chaque instant, le nombre moyen de
clients dans le systéme. Dans le cas ou 'ordonnanceur connait I’état de chaque file
d’attente, nous montrons que la politique qui alloue le serveur & la file la plus longue
minimise, & chaque instant et pour ’ordre stochastique fort, un vecteur ordonné du
nombre de clients. Ces résultats sont vrais pour les variantes I et I et sont établis sous
des hypothéses statistiques trés générales. Ce modele s’applique & certains protocoles

de communication multi-accés (e.g. TDMA) ainsi qu’au systéme videotez.

Mots-Clés: Files d’Attente en Paralléle; Ordonnancement Optimal; Ordre Stochas-
tique; Couplage; Service Cyclique; Protocoles Multi-Accés; TDMA; Systéeme Videotez.
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Optimal Scheduling in Some Multi-Queue
Single-Server Systems

Zhen LIU and Philippe NAIN
INRIA-Sophia Antipolis
2004, Route des Lucioles

06565 Valbonne Cedex
France

Abstract

In this pa,per. we address the problem of optimal scheduling in a Multi-Queue Single-Server
(MQSS) model. The server visits N queues in an arbitrary manner. Each queué is visited for a
‘random period of time whose duration is sampled in advance. At the end of a visit period, either
all customers of the attended queue leave the system (variant I), or only customers that were
present in the queue upon the arrival of the server leave the system ‘(variant IT). A scheduling
policy is a rule that selects the next queue to be visited by the server. When the controller has no,
information on the state of the system, it is shown, under homogeneous alffival assumptions, that
a cyclic policy minimizes the expected number of customers in the system. When the controller
knows the number of customers in each queue, it is shown that the so-called Most Customers
First (MCF) policy minimizes, in the sense of strong stochastic ordering, the vector of the
number of customers in each queue whose components are arranged in decreasing order. These:
results hold for variants I and II, and are obtained under fairly weak statistical assumptions.

This model has potential applications in videotex and time division multiple access systems.

Keywords: Multi-Queue Single-Server; Optimal Scheduling; Stochastic Ordering; Cou-
pling; Interchange Arguments; Cyclic Service; Most Customers First Policy; Broadcast

Service; Time Division Multiple Access; Videotex System.



1 Introduction

Consider the following Multi-Queue Single-Server (MQSS) model. There are N > 1 queues and a
single server. An arriving customer enters queue j with the probability ¢; > 0, ¢1 +--- + gnv = 1.
The server visits (serves) each queue in an arbitrary manner for a random period of time whose
duration is sampled in advance. Once a service has started, the server cannot leave the queue
before the visit time has expired (nonpreemptive service). At the end of a visit period, either all
customers in the visited queue leave the system (variant I), or only customers that were present in

the queue upon the arrival of the server leave the system (variant II).

Our objective is to determine optimal scheduling policies. A scheduling policy is a rule that the
controller uses for selecting the next queue to be visited by the server. Two different cases will be

investigated, depending upon the amount of information available to the controller.

In the first case, the controller has no information on the state of the system (i.e. number of
customers in each queue). In particular, this implies that the server may visit an empty queue even

if the system is nonempty. This model will be referred to as the Decentralized MQSS (D-MQSS)

system.

In the second case, the controller knows the number of customers in each queue at the decision
epochs. Here, the server is allocated to a queue if and only if that queue is nonempty. This implies
that only nonidling or work conserving policies will be considered. This model will be referred to
as the Centralized MQSS (C-MQSS) system.

The MQSS model arises in some communication networks. An example is the Time Division
Multiple Access (TDMA) system where several stations share a single communication channel [6].
When the channel is allocated to a station, all the messages contained in this station are transmitted
(i.e., variant I). Within this context, the queues model the stations, and the server represents the
communication channel. In this system, the scheduling policy decides which station must be given
the right of transmission, or, equivalently stated, which station the channel is to be allocated to
at the beginning of each transmission period. In the case where the channel is slotted and each
station has a buffer of length one (a message is lost if the buffer is occupied upon its arrival),
Itai and Rosberg showed [5] that an optimal policy that maximizes the system throughput can be
found in the class of cyclic policies, provided the arrivals to each station in a slot form Bernoulli

independent random variables, and that the system is of decentralized type.

Another example arises in the videoter system, which is a retrieval and delivery system with

broadcast service (see [1], [3]). In such a system, there are, say, N pages of information and there is



a computer system maintaining the retrieval and the delivery service of those pages. Various user
terminals are connected to the service computer through a broadcast network. The computer system
delivers the pages by broadcasting information to all the user terminals via the network. When a
user requires a page, the user terminal senses the communication medium until the desired page is
detected. The page is then captured, stored and displayed. Here, again, the system can be modeled
by our MQSS model, where the queues represent the information pages, thé server represents the
service computer and the customers are the page requests sent by the user terminals. Scheduling
in such a model consists of deciding which page is to be retrieved and delivered at the beginning
of each transmission period. Under the assumptions that the -s'ystem is slotted (i.e., the time to
retrieve and deliver any page is exactly one slot) and that within a slot customers arrive at queue
J-according to a Poisson process with intensity A; > 0, Ammar and Wong [1] showed that a cyclic
policy minimizes the mean response time, provided the system is of decentralized type and that a
request for page j arriving af the computer system during a page j transmission has to wait until

the next transmission of page j, 7 = 1,2,..., N (i.e., the D-MQSS model with variant II).

For the variant I of the céntralized videotex sysfem with equal page requirement probabilities
(g1 = --- = gn), Dykeman, Ammar, and Wong (3] cohjectured that the Most Customers First
(MCF) policy that selects the page with the largestln}lmber of pending requests minimizes the
mean request response time. They applied Howard’s policy-iteration algorithm [4] to check their

conjecture for some special cases under Markovian assumptions.

In this paper we provide a unified model and show, in Section 3, that under fairly weak statis-
tical assumptions (i_n particular, no Markovian assumptions are needed) a cyclic policy minimizes
the mean nurﬁber of customers in the D-MQSS system. In Section 4 we show that the conjecture of
Dykeman, Ammar, and Wong for the C-MQSS model actually holds true in a more general frame-
work. More precisely, we prove that the MCF policy minimizes, in the sense of strong stochastic
ordering, the vector of the number of customers in each queue whose components are arranged in

decreasing order. These optimality results hold for both variants I and II.

2 Notation and Definitions

In this section, we introduce some notation and definitions that will be used throughout the paper.
All the random variables considered in this paper are defined on some fixed probability triple

(Q,F,P). The corresponding expectation operator is denoted by E.

We now describe the model under consideration. Customers arrive at random times {a,}$°,

with 0 <@y < a2 <--- < @y <---. At time ap, the n-th customer joins queue i, € {1,2,..., N}



with probability 1/N, i.e.,
. . 1
P(Zn :]) = —A?, (21)
foralln >1,7=1,2,...,N.

The n-th visit time of the server is modeled as a Random Variable (RV) o, > 0 a.s., n > 1.

The sequences {a,}{°, {ox}$° and {i,}{° satisfy the condition
(H) {ix}$° is independent of {a,, 0, }$°,

but are otherwise arbitrary sequences. Any realization of sequences {a,}{° and {0,}$° will be
denoted by A and S, respectively. In particular, if A = {a,}{° and S = {5,}$° we employ the

shorthand
Eas(e):=E(e|a;=ay,a2 = as,...;01 = 81,03 = s3,...).

We also define b, to be the time at which the n-th visit begins. We point out that under
the above assumptions concerning the server’s allocation, we always have b, + o, = bp4+1 for the
D-MQSS systems (both variants I and IT), whereas b, + 0, < b,4) for the C-MQSS systems, where
strict inequality holds if and only if the system is empty at time b, + o.

At the n-th decision epoch, an admissible policy ™ generates a (possibly randomized) action
7n € {1,2,..., N} on the basis of the available information IH,, n > 1. We shall say that =, is the
n-th decision made by policy 7, or equivalently stated, 7, denotes the n-th queue that is visited.
The information sets {IH,}7° associated with the D-MQSS and with the C-MQSS models will be

introduced in Section 3 and Section 4, respectively.

For 1 < m < o0 and m < n < o0, denote by Tm,n the set of decisions that policy # makes

between the m-th and the n-th decision epochs (including those epochs), with the convention that

Tpp += Mg

Finally, let Q;(x) := (Q}(w), ...,Q{V(w)), t > 0, where Q{(n) is the number of customers in

queue j at time ¢ under policy 7, and define Qg := (Q}), .. .,Q{,V) to be the state of the system at

time 0.



3 Optimality of Cyclic Policy in the Dec_entrali.z,ed‘ Multi-Queue
Single-Server Model

_In this section, we consider the optimal scheduling problem in the decentralized multi-queue single-
server system. We first discuss the variant of the D-MQSS model where the server only processes

customers that are present in the queue upon its arrival (variant II).

We want to find a policy that minimizes

N _ , , -
Toa(7) = ;E [Qitn)], (3.1)

the expected number of customers in the system at time ¢ > 0, where

:B::Q(l)A:Q%:—_...—_—QéV, - _ (3.2)

Le., all queues start with the same number of customers. We assume in this section that z is fixed
in IN, where IN := {0,1,2,...}.

Additional notation and definitions are now introduced.

Statistical Assumptions. We assume that (2.1) and (H) are satisfied. Note that assumption (H)

trivially holds if {i,}{°, {a,}$° and {0,}$° are mutua,lly‘indepe'ndent sequences.

Admissible Policy. For the D-MQSS model, a policy 7 is a deterministic sequence {7, }{°, where
7 € {1,2,..., N} indicates the index of the n-th queue to be visited by the server, n > 1. Formally,
this means that the set IH, mentioned in Section 2 simply contains the control actions prior to the

n-th decision epoch, i.e., H, = {my,m2...,m_1} for n > 2, and H,, = 0 for n = 1.

We assume that &; = 0 and we recall that b,y = by, + 05, n > 1 (cf. Section 2). The following
assumption will avoid heavy notation: assume that at time b,, n > 1, the server is allocated to
a queue that has not yet been visited. Then, we assume without loss of generality because of

assumptions (2.1) and (3.2), that
T, = the smallest queue index among the queues that have not yet been visited. - (3.3)

Any deterministic policy satisfying (3.3) is called an admissible policy. In particular, m; = 1 for all

admissible policies.
Cyclic Policy. For any admissible policy 7, define

Ij(7r)~ 0, ifm;#jforalli=1,2,...,n—1;
"7 max{1<i<n—1:m=j}, otherwise,



for n > 2, and I{(7r) =0 for 1 < j < N. Ii(r) is the most recent (decision) epoch at which the

server visited queue j. Note that IJ(r) = 1 and Ié(w) = 0 for 2 < j < N because of (3.3).

Fix n > 1 and let 7 = {7,,}{° be an arbitrary admissible policy. The policy « is called a cyclic
policy of order n if and only if forallm > n, j=1,2,...,N,

Tm=j =>Vk€{1,2,...,N} - {j}, IL(r)< I%(x). (3.4)

In other words, if 7 is a cyclic policy of order n then 7, = 7 implies that all other queues were

visited more recently than queue j, for all m > n.

A cyclic policy of order 1 is called a cyclic policy and denoted by 7°. Note that necessarily
r° =(1,2,...,N,1,2,...,N,...) from assumption (3.3).

Finally, let » > 1 and let = be any admissible policy. We denote by (™) the unique cyclic policy

of order n that follows = in the first n steps (the uniqueness of 7(" is ensured by assumption (3.3)).

To illustrate the definition of 7(™ consider the following example: take N = 5 and assume that
(1,2,1,3) are the first decisions made by policy 7. Then, cf. (3.3),

(5)

me = (1,2,1,3)
= (4,5,2,1,3,4,5,2,1,3,...). (3.5)

We now state the main result of this section.

Theorem 3.1 The cyclic policy ©° is optimal: For allz > 0, t > 0 and for any admissible policy
T, ,

N N
Y E Qi) < X B ei)].
t=1 =1

In order to establish this result, we need the following lemma.

Lemma 3.1 Let 7 be an arbitrary admissible policy. Then for allt >0,n>1,z >0,

5 Bas [0} ()] € 3B fof (o).

i=1



Proof of the lemma Let 7 be an arbitrary admissible policy. Fix n > 1 and let 7, = k for some
1<k < N. Assume that both Sequences A and S are given. Let j;,72,...,jn be the queue indices
such that Vi € {1,2,..., N}, either |

L (m) < I+ (m),
or

Fi(r)=F*(r)=0 and  J; < jis1,

according to our convention (3.3) (in (3.5), I}(7) = 3, I3(n) = 2, I3(r) = 4, I#(x) = 0, I¥(x) = 0;
therefore, j1 =4, j2=5,j3=2,js=1and j5 =3). Let k =j,, 1< ¢ < N.

From the definition of policy #(¥), k > 1, it is readily seen that

W =gt =72 forl<m<n-1, (3.6)

and
T = (ad2ree s Jam10 Ky Jat s oo JNs F1s 025+ s am15 By oty - »JNs <+ -); (3.7)
T0AD = (kd1s ey dam2sJamtdabt - o2 GNs Ky F1y e v o s Gqm2sdactsdgtle o erdise-s).  (3.8)

From (3.6), we immediately deduce that
N ) N . ,
> Eas[Qi(z™)] =X Eas [of ()], (3.9)
=1 i=1
for all t € [0,bn41).
Let us now show that
N . N 3
> Eas Qi (x™)] <X Eas[Qi («)], (3.10)
1=1 =1
for all £ > bs41, which will conclude the proof.
In order to prove (3.10), define Mi's(a,b) to be the expected number of customers that join

queue j in the time interval (a,b), given the sequences A and S, j = 1,2,...,N. Let us prove that

AM};’S(a,b) does not depend on j. We have:

M} g(a,b) = Eus D 1(an € (a,b),4n = 5)| ,
n>1



I

| i 1(an € (a,b))E 4,5 [1(in = 7)],

i 1(an € (a,0))E [1(in = J)], (3.11)

where the last equality follows from the fact that {i,}$° is independent of {a,,0,}5°. Now, using
(2.1) and (3.11), we get

MA s(a,b) = Z 1(a, € (a,b)), (3.12)

which shows that Mj,s(a,b) does not depend on j. In the following, the superscript j will be

omitted.
Define now

§(x) = max{b <t:m,=j}, ifqueue jis visited in [0,?);
1o, otherwise.

If queue j is visited in [0,t), then 6{ (r) is a RV that simply gives the beginning time of the last

visit of the server to queue j.

We next show that

ZEAS @4, (V)] - ZEAS (@i, (7)] = Ma s (8.(x), 88 (7)) , (3.13)

i=1 1=1

for1 <1< q-1,and

S Eas (@, (x+1)] - S Eas @3, (=®)] =0, | (3.14)
i=1

=1

forl > q.

Let us first establish (3.13). For I = 1 we have, cf. (3.7)~(3.9) and (3.12),

iEA,S [Qf,,,ﬂ (7r("+1))] - iv:EA,S [Q;;n+l (ﬂ,(n))]

i=1 =1
= Eus [QZ‘" (,r(n)) ~-Qk (,,(m))] :
= Mas (ag;(w),bn) — Mas (8,(7),b,) , (3.15)

Ma,s (& (m), 6,’:"(71')) :

D}



Assume that (3.13) holds for 1 <1 < m — 1 with m < ¢ — 1. Then,

N
S Bas @ (F9)] - S EBas[of.,.. (+)
=1

i=1

= 5B s Gy (1)) - 3B as [0, ()]

“Easleli, () - el ()],
= Mas (677 (r),6},(m) —Eus [@ir2_, () - Qir,.._, ()] , (induction hypothesis)
= Mas (6777 (x), 85 (1)) — Mas (67 (x), 6im(m)) (3.16)
= Mas (67 (x), 6, (m) .

Therefore, by induction, (3.13) holds forall 1 << ¢ - 1.

Let us now proceed with the proof of (3.14). We have

3B [Ghs, (<0*7)] - 3B o, (+0)
i=1

=1

o iv:EA,S [} - (,;(nﬂ))]_f:E A5 (e (7™)]

= =
“Bas [, (7)) - @k, (7))

= Mas (87 (m), 8, (7)) - Mas (857 (m),6,(m)) (3.17)

= 0.

Assume that (3.14) holds for I = ¢,...,m — 1. Then,
N . N o
Y Eas [anm (,r(n+1))] ~S Eas [Q;’"m (w(“))]
i=1 i=1

) o)
- B [Qbffff—‘f () - api (r‘"“’)] ,
= 0’
where we have used the properties (cf. (3.7), (3.8)) that for g+1<I<N,

(n) _ _{n+1).
7rn+l—1 - 7rn+l—l’



and that for [ > N,

5:5."3:_1 (ﬂ,(n)) _ 5:}1‘;1)1 (ﬂ_(n+1)).

Again, by induction, (3.14) holds for ! > q.
Combining (3.13) and (3.14) we get (3.10), which completes the proof.

Proof of Theorem 3.1 Fix t > 0. Let 7 be an arbitrary admissible policy. From Lemma 3.1, we

obtain
S s [0ir)] < S Bas o («)] (.19)
i=1 =1

foralln > 1.

Now, by the construction of 7(") we know that there exists a finite integer ny, s such that for

alln>mny s

f: Eas [ (#)] = %E as [Qim)] - (3.19)
i=1

=1

Combining (3.18) and (3.19) yields

iv:EA,s [Q; (Wo)] < iv:EA,s [Qi(”)] . (3.20)

The proof is now completed by removing the conditioning on A and $ in (3.20). g

The variant of the D-MQSS model when the server empties the visited queue at departure
epochs can be analyzed in a similar way and the same result can be obtained (variant I). The only

difference appears in the right-hand side of (3.13) that must now be equal to the mean number of

customers that join any queue in the time interval (7{1(%),7& (7r)), 1< 1< qg—-1, where

j(vr) _ J) max{d, <t :m, =3}, if queue j is visited in [0,t);
T = 0, otherwise,

fort>o0y,1<j5<N.

Remark 3.1 In the proof of (3.13) and (3.14), assumption (3.2) is used to ensure that, cf. (3.16),
(3.17),

Eas [QZ:::._I (Tr(""'l)) - ng (W("))} >0,

ntm-—1

10

L)



v

n

when 65;"“(1r) = 6;""‘(%) =0, for 2 <1 < ¢, and that, cf. (3.15),
E4s [Q{,:, (ﬂ'(")) - QF, (7’("+1))] >0,

when 6{,:'(#) = 6f (r)=0.

4 Optimality of the MCF Policy in the Centralized Multi-Queue
Single-Server Model

In this section we address the problem of determining an optimal scheduling policy for the central-
ized multi-queue single-server system. The discussion will first focus on the variant of the C-MQSS
model where the server only processes the customers that are present in the queue upon its arrival

(variant IT). The objective is to find a policy that minimizes
Gix(m) == E [f (RQu())], (4.1)

forall t > 0, Qo = x € NN and any nondecreasing mapping f : INN — IN, where R
INN — INV is the nonincreasing permutation operator (for instance, if N = 2 then R(zy,z2) =

(max(z1,z2), min(zy,z2))).

Alternatively stated, a policy is optimal if it minimizes the N-dimensional vector RQ:(r) in

the sense of strong stochastic ordering (denoted as usual by “<,;”), for all ¢ > 0, x € INN (see [8],
pp. 256-257).

From now on, x is an arbitrary vector fixed in INN. We introduce the assumptions and notation

that will be needed for the analysis.

Statistical Assumptions. We assume that both (2.1) and condition (H) are satisfied. We further
assume that

P(in, =21,... 00, =2,) =P (in, = Yserin, = Up), (4.2)

for all z;,y; € {1,2,...,N},p>1,n <np < --- < Np, ¢ = 1,'2,...,p.

Note that (4.2) necessarily implies that the i,’s are uniformly distributed and that (4.2) is
satisfied if the 7,,’s are i.i.d. RV’s.

Admissible Policy. For the C-MQSS model, the assignment of the n queue to be visited n > 1,

will be based on the knowledge of past and present queue length vectors x, Qy, (7), ..., Qs,.(7), and

11



past control values. Consequently (cf. Section 2),

]Hn = {X,le(ﬂ'),...,an(ﬂ”),ﬂ'],ﬂ'2,.. .,7Tn_1},

for n > 2, and

H, = {X, Qs, (W)} .

We shall restrict ourselves to.nonpreemptive policies as well as to policies that keep the.server idles
if and only if the system is empty. This implies that only nonidling or work conserving policies
will be considered. In the following, an admissible policy will be any policy that satisfies the above

conditions.

The Most Customers First (MCF) rule will denote the policy in which the server always visits

the queue with the largest number of customers and breaks ties in an arbitrary manner.

The MCF policy will be denoted by the symbol #™CF_ In accordance with the previous notation,
W%CF Tnt1,00 Will denote a policy that follows the MCF rule in the first n steps, and then switches

to some policy 7 afterwards. .

We start with the following lemma.

Lemma 4.1 Fizn > 1andp, ¢ € {1,2,...,N}. From the sequences {an}$°, {0 )52, {im}$°, we

generate a new switching sequence {1, }3° as follows:

tyn = im, for allm such that a,, < by; (4.3)

!
m

S{

tm = tm 1(m # Dyim # Q)+ P13 = @) + q1(im = p), for all m such that a,, > b,. (4.4)

Then, {in}1° and {i;,}3° are identical in law, and moreover, {i,}§° is independent of {am,om }3°.

Proof Let us first show that the sequences {i,,}$° and {il,}$° are identical in law. Consider the

case where z1 = p, 2 # p, T3 # q, n1 < ny. We have, cf. (4.3), (4.4),

P(l,’nl = *’El’i:;? = 1132)

= P(in, = 1,1, = 22,by < an,) + P (i, = 21,4, = 22,80, < by < any)
+ P(Z;u = -’B],Z.:u = 22,8y, < bn)’

= P(tn, = q,in, = 29,b, < ny) + P (tn, = 21,0n, = T, a5, < by < ap,)
+ P(inl = zl’ing = Z2,0y, < bn)a

A = P(inl :xlainz = .’1:2),

12



where we used the independen'ce assumption between {i,, }$° and {am;om }$°, together with (4.2).

The general proof is similar and is omitted for sake of conciseness.

It remains to establish that {i;,}7° is independent of {a;,0.,}7°. For z; = p, z2 # p, 22 # ¢,

ny < mg, it is readily seen that, cf. (4.3), (4.4),

P (i}, = z1,i, = 22| A, S)
= P(in, = qyin, = T2,bp <ty | A,8) + P (6n, = 21,0, = T2,bn > an, | 4,5),
= P(in, = q,tn, = T2, |bp < @y,, 4,5)P (by < @y, | 4,5)
+ P(in, = Z1,1n, = 22| bn > @y, 4,5)P (bn > an, | A, 5),

= P(inl = z17in2 = -'32), - (45)

where we used (4.2) and the fact that {i,,}{° is independent of {a,,0m }3°. Next, using the property

that {i,,}$° and {i],}{° are identical in law, we get from (4.5),

P (i, = 21,1, = 22| A,5) = P (i7,, = 21,7, = 22).

1

Again, the general proof is omitted for sake of conciseness. g

Lemma 4.2 Let 7 be an admissible policy such that 7 = r{"’,f’_'_q Tn,eoy fOr some n > 1. Then, there

exists a policy 7' := TMCF ] such that
y 1,n n+1,00

Eas [f (RQu(r")] < Eas[f (RQu(m))), (4.6)

forallt >0, x € NN, and for any nondecreasing mapping f : INN — IN such that the expectations
in (4.6) ezist.

Proof Assume that the sequences A and S are fixed. Let p = 7, and let q be the queue index such
that

Q3,(m) = max @ ().

1<i<N

In other words, ¢ is the index of the largest queue at time bn,.under policy .

We construct a new policy n’ as follows:

M = mieF; (4.7)

e

Mo 2= 7o) Tm 1(Tm # Py Tm # @) +p1(Tm = @) + ¢1(7m = p), (4.8)
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for all m > n + 1. In words, the policy 7’ follows 7, except that it serves queue p (resp. queue q)

when 7 serves queue g (resp. p) after the first n steps.

The policy 7’ operates on the sequences {2, }{°, A and S, where i/, was defined in Lemma 4.1,

whereas the policy m operates on the sequences {i,}{°, A and S. The following results hold:

Qi(n") = Qi(x), for 0 <t < by, 1< i< N, (4.9)
and
Q") = Qi(r), forie {1,2,...,N} - {p,q}; (4.10)
Q¥(r") < Qi(x); | (4.11)
Qi(r) < Qi) (4.12)
forall t > b,.

Note first that (4.9) follows from the fact that policies = and n’ are identical in [0, b,). Property
(4.10) follows from the fact that under policies 7 and 7’ queue 7 has the same behavior for ¢ # p,
i # q (see (4.3), (44), (4.7) and (4.8)).

By construction of 7/, the jump times of processes PP(x) := {Q}(x),t > b,} and PI(x’) :=
{Q{(n"),t > b} are the same, and similarly for p and ¢ interchanged. It is worth noting, how-
ever, that the magnitude of simultaneous downward jumps (departures) in both processes is not
necessarily the same, whereas the magnitude of all upward jumps (arrivals) is always 1. Let
bn =1t < t1 <tz < ... < < --- denote the consecutive jump epochs after b, of the process
resulting from the superposition of P?() and P9(x). Clearly, inequalities (4.11) and (4.12) need

only be proved for these particular values of t.

We use an induction argument for proving (4.11) and (4.12). We know that (4.11) and (4.12)
hold for ¢ = t9. Assume they hold for to <t < t;_;, and let us show they still hold for t = ¢.

From the above comments concerning the upward jumps, it is clear that (4.11) and (4.12) hold

at time ¢ if this time corresponds to an arrival in either P?(r) or P4(r).

Consider now the case where ¢ is a downward jump epoch, and assume, without loss of gener-
ality, that ¢4 is a jump epoch of P?(w). Hence, #; is a downward Jjump point of P(n’). If the N
queues are empty in both systems at time tj, then (4.11) and (4.12) trivially hold at time t. If
not, there exists an 7 > n such that

br_1+ 0,1 = by,

! —
r—-1 —

with b, =tg, m,_y =pand =
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L3

Define M7(a,b) to be the number of customers that join queue j in the time interval (a,b),

given A and S. From the very definition of 7 and 7', we obtain

b (T) = MP(b;_1,b,); - (4.13)
Qi (m) = Qf _ (m)+ MI(b._1,b), (4.14)
and
() = Qb _ (") + M(b,_1,b,); (4.15)
QL) = MP(b,1,b,). (4.16)

Since @} _ (7') < Qf _ (r) from the induction hypothesis, we get, from relations (4.13)(4.16)

() < Qf (n);
Q. (v) = @ .(m),
which shows, by induction, that (4.11) and (4.12) are satisfied for all ¢ > b,.
Therefore, for all ¢t > 0, cf. (4.9)-(4.12),
RQu(r") < RQ(r). (4.17)

Owing to Lemma 4.1, it is seen that RQ¢ (") has the same law under the input sequences {ay, oy, in }$°

and {an,0on,%,}7°, which implies, using (4.17), that for all ¢ >0,
| RQu(7") <st RQu(m), given A and S,

or equjva.lently, that
E s [f (RQi(7")] < Eas[f(RQ:(m))], (4.18)

for any nondecreasing mapping f : INN — IN such that the expectations in (4.18) exist. g

We are now ready to prove the main result of this section.

Theorem 4.1 The MCF policy is optimal: For allx € INN, t > 0 and for any admissible policy ,

RQ(7MCF) <, RQq().

Proof Let m be an arbitrary admissible policy such that = = W%CLI;W”,OO for some 1 < n < oo.

If the MCF rule is not applied at time b;, then 7 simply writes 7 = T1,0- Applying Lemma 4.2.

recursively with the same sequences A and S yields

Eas [f (RQe («MF xf), )] < Easf (RQuUm), (4.19) |
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forallt > 0,1 > n, and for all nondecreasing mappings f : INN — IN such that the expectations
in (4.19) exist.

From inequality (4.19) we deduce that

Eas [f (RQ: (xM°F))] <E as(f (RQUM), (4.20)

for all £ > 0 (see the proof of Theorem 3.1 where the same argument is used). The proof is

completed by removing the conditioning on A and S in (4.20). g

The same result can be proved for the variant of the C-MQSS model where the server empties
the visited queue (variant I). The only differences appear in the right-hand sides of equations (4.13)
and (4.16), which must now be equal to 0 (cf. the proof of Lemma 4.2).

MCF

- oo
Remark 4.1 It is easily seen that the successive policies {71’11” " - generated in Lemma

n+1,00 n
4.2 are all admissible policies. However, Theorem 4.1 would still hold if these intermediate policies
were not admissible (i.e., if they were anticipative) since the policy 7™CF shown to be optimal is

an admissible policy (see [2] and [7] where this argument was used).
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