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ABSTRACT

A new algorithm is described for quadratic programming which is based on
a Cholesky factorization that uses a diagonal pivoting strategy and that
allows to compute null or negative curvature directions. The algorithm is
numerically stable and has shown efficiency solving positive-definite and
indefinite problems. It is specially interesting in indefinite cases because
the initial point does not need to be a vertex of the feasible set. So we
avoid introducing artificial constraints in the problem, which turns out to be
very efficient in parametric programming. At the same time techniques for

updating matrix factorizations are used.

RESUME

Nous présentons dans ce rapport un nouveau algorithme de programmation
quadratique qui repose sur une factorisation de Cholesky avec une stratégie
de pivotation diagonale et qui permet de calculer directions de curvature
nulle ou negative. L’algorithme est numeriquement stable et il a montré
efficacité pour résoudre des problémes définis positives et indéfinis. Il est
notamment intéressant dans les cas indefinis parge que le point initial n’a
pas besoin d’étre un extréme de la région de points admissibles. Donc nous
évitons d’introduire des contraintes artificielles dans le probléme, ce qui
revient trés agissant dans la programmation paramétrique. Au méme temp-s nous

utilisons des téchniques pour adapter les factorizations des matrices.

Une partie de ce travail a été effectuée lors d’un séjour des auteurs dans le
projet PROMATH en Octobre 1989.



1. INTRODUCTION

The aim of this paper is to present a new algorithm for solving the

following quadratic problem

Minimize F(x) = %xTHx + pTx
(QP) T
Subject to ch = bJ 1=sj= m_
c™x = b m +1=<j=m +m
J J e e i
l = x = u l1si=n

where H is a n x n symmetric matrix, p and cJ are n-vectors, bJ are real
numbers and ll and u are elements of [-o,+®] satisfying: ll = u. In the

sequel we will denote by C the n x (me+ml) matrix that collects the column

vectors cj and b will be the vector (bJ)T ’ with m = m_ + m.
Although a code of quadratic programming must consider bound constraints
separately from more general inequality constraints c:x = bj, in order to

simplify the exposition we are going to formulate the problem in the way

Minimize F(x) = %XTHx + pTx
(QP) T
Subject to cjx = bJ 1 =)= m_
cTx=b m +1=<j=m +m
J J e e i

The most of codes solving this problem for indefinite matrices H follow a

strategy for choosing certain subset of active constraints (the working set)



that ensures that the reduced Hessian respect to the working set never has
more than one nonpositive eigenvalue. These methods need to start from a
feasible point x° which is a vertex of the feasible point region or in other
case it is necessary to add artificial constraints to the problem so that the
initial point is at a vertex. These constraints are deleted from the working
set as soon as possible which means that the algorithm must perform at least
so iterations as number of artificial constraints have been added, see R.
Fletcher [3], [4] and P.E. Gill et al. [7), [8]l. This can retard the
resolution of problem, particularly in parametric programming when the active

constraints are close to be identified.

Our method allows any number of nonpositive eigenvalues in the reduced
Hessian and therefore it does not need to start from a vertex of the feasible
point region. Other advantage of our strategy is that if the objective
function is bounded below in the feasible region and the feasible region
contains no degenerate stationary points, the algorithm converges in a finite
number of iterations to a local (or global) minimum. In contrast, with the
strategy above mentioned we can only ensure the convergence to a Kuhn-Tucker

point.

Other method allowing any number of nonpositive eigenvalues in the
reduced Hessian is dued to Bunch and Kaufman [1]. Their method is based on the
decomposition Q = MDMT of a symmetric matrix Q, where D is block diagonal with
blocks of order 1 or 2, and M is the product of permutations and block
elementary transformations. Our algorithm is based on the Cholesky

decomposition.



In this paper we will see that it is possible to get feasible descent
directions of negative, null or positive curvature from the Cholesky
factorization of the reduced Hessian which allows us to deal with any
degenerated case of quadratic programming. This is performed without
introducing any artificial restrictions and starting the algorithm at any
feasible point x°. Obviously numerical stability requires to stop the
factorization when indefiniteness of matrix is detected, in this case we
compute a negative curvature direction from the partial factorization. When
the matrix is positive semi-definite it is possible to carry out the complete
factorization and to derive a null or positive curvature descent direction. We
will also show that it is possible to update the Cholesky factors in all cases

in a similar form to that used by P.E. Gill and W. Murray in [6].

The plan of this paper is the following. In the next section we study the
Cholesky factorization of a symmetric matrix A and show the way of getting
negative or null curvature directions. In Section 3 the proposed quadratic
programming model algorithm 1is stated. Updating of matrix factors is

considered in Section 4 and two numerical examples are studied in section 5.

2. SOME QUESTIONS ABOUT CHOLESKY DECOMPOSITION

Given a n x n matrix A that is symmetric but not necessarily positive
definite, we are going to propose an algorithm that supplies the Cholesky

decomposition of PAP' (where P is a permutation matrix) and a basis of its



kernel when A is positive semi-definite and that realizes an incomplete
factorization and furnishes a negative curvature direction when A s

indefinite. We first establish the following theorem:

THEOREM 1. Matrix A is positive semi-definite if and only if there exists a
permutation matrix P such that
L 0 L' B”

PAPT =
B 0 00

where L is a m x m lower-triangular matrix with strictly positive diagonal
elements and B is a (n-m) x m matrix. m is the rank of A and a basis of its

kernel is formed by the vectors (PTUJ)';:T defined by the formula

where € ej is the (m+j)-th column of the n x n identity matrix and u is the

m-vector solution of the system LTuJ = B}, BJ being the j-th row of B.

PROOF. It is easy to verify that (PTuj}';:T is a basis of the kernel of A. On
the other hand it is well known that A is positive semi-definite if and only

if the above factorization is possible, see for example [2].

Now we propose an algorithm that finds out if A is positive semi-definite

or indefinite and performs the Cholesky decomposition in the first case:



ALGORITHM

(k) k
) (

i ) = Identity and

D set k=1, A% = ") =a ,p

B = 1.2-[rnax { Ianl, j=1...,n )]1/2

2) Find q such that

k K
a“=max{a()
aq

,» J = k,...,
¥ Jj n}

If a;:) < 0 = Indefinite matrix. STOP.

(k

If aqq) = 0 » Find t such that

(k) . (k)
a = min { a

et " ji=k,...,n}

If ai:) < 0 » Indefinite matrix. STOP.
(k)

If att = 0 » Find r and s, with r > s, such that
Ia(k)l = max { Ia(k)l, nzi>jzk}
rs i)
If Ia::)l > 0 =» Indefinite matrix. STOP.
If a::) = 0 = End of factorization. STOP.
If a;:) > 0 » Interchange the rows and columns q and k of A(k), the new

matrix being denoted again by A(k). Perform the same interchange of rows

in P(k) and denote the new matrix by P(km.



3) Apply the following formulas:

From j = 1 to k-1

a(k+1) = a.(k)

¥ ¥ i=j...,n

a(l(+l) = /a(k)
kk kk

If Kk = n = End of factorization. STOP.

If kK < n 2 Continue

From i = k+l to n

(k)

a
(k+1) _ ik
1k (k+1)
a
kk

If max { |a::ﬂ)|, i= k+l,...,n } > B = Indefinite matrix. STOP.

From j = k+l to n

(k+1) ) [ (k+l)]2
a =a -|a

o %y Ik

Geet) _ 00 _ JGeD 6D o tn

1) i) ik Jk

4) Go to Step 2).

REMARKS. (1) In practice the determination of A as a positive

semi-definite



matrix is based on the choice of a parameter TOL, which depends on size of A

and machine precision. We have taken

TOL = n- , j= L...,n }-¢
max { Ia”I Jj } "

where €, is the computer rounding unit.

(2) We must observe that pivoting permits the factorization to progress until
all remaining diagonal elements are null or negative. This will be useful for
our algorithm of quadratic programming, but in order to prevent numerical
instability it is necessary to control the growth of the Cholesky factors. So
we have incorporated a parameter B to our decomposition algorithm which
controls the growth of these factors. Indeed it is easy to verify that the

realized choice of B implies that if

1 .
Ia::’ ’I >B for some i from k+l to n

(k+1)

then the diagonal element a, would be negative if it were computed.

(3) If the algorithm is stopped in the iteration k with an indication of
indefiniteness, then we have got a permutation matrix P = p and the

following factorization of PAP’

where m = k-1, L is a m x m non singular lower-triangular matrix, B is (n-m) x



m and C is a (n-m).x (n-m) negative semi-definite symmetric matrix having some

strictly negative curvature directions. These matrices are defined by the

equalities

(k)

= s i=
llJ alJ lsjsi=m
=a"‘) 1=j=1i=snm
i} i+m,j+m
- (K S .
l.l-am+l.) l1=i=n-m, Isj=m

From this factorization we can obtain some negative curvature directions.

k)

Firstly let us suppose that a_n < 0 for some index j = k, then the n-vector

PTu. with u defined by the equality

_fu
we(8) s,
where LTu = —BT_ and Bj_m is the (j-m)-th row of B, is a negative curvature
direction of A:
T T
~ T(L O I 0 L B ~
(PTu)TA(PTu)= [3] + e m [3] +e| =
. B I 0 C 0o 1 .
n-m n-m

10



(k) (k)l

Now we assume that a” = 0 for j = k,...,_n and Iars > 0 t_‘or some

r,s, with k = s < r = n. In this case we take the n-vector

_(u) _ .w
u = [ 0 ] a_e +e
where L'u = -+ a'®pT | So P'u is a negative curvature vector of A:
r-m rs s-m
(PTw) AP )=
- \ T T “
u x) THLo Im 0 LB u (k)
0] -arses+er 0 '—arses+er
B I 0 C| 0 1
n-m n-m
I 0)
=(-a¥ +e) " -al¥e +e) =
rs r 0 C ) rs s r
(a™)2c . - 23, -
rs s~-m,s-m r-m,r-m rs r-m,s-m

2_(k k k),2
(a19)200 , R0 _ 5 0y
rs 8,8 r,r rs

<0

In any case, we have seen that it is not numerically difficult to get
negative curvature directions of A from the partial Cholesky factorization
furnished by the above algorithm. If the matrix A is‘ positive semi-definite
Theorem 1 supplies a procedure for obtaining a basis of the kernel of A. In
both cases the method is based on the resolution of a system of linear

equations with a coefficient matrix LT that is upper-triangular.

11



3. THE MODEL ALGORITHM FOR QUADRATIC PROGRAMMING

As usual we consider an iterative procedure that follows the active set
strategy for solving quadratic programming problems. So in each iteration we
have a feasible point xk, anx mk matrix Ck whose i-th column contains the
coefficients of the i-th active constraint, m being the number of active

constraints in iteration k. We will denote by Ik the index set corresponding

to the active constrains.

Following Gill and Murray [6], we factorize the matrix Ck into the
product QkRk, where Qk is an orthogonal matrix and Rk is an upper-triangular

matrix. In Qk and Rk we distinguish the submatrices:

Qk = [Yk Sk] and R =

where Y isnxm, S isnx (n-m ) and R is m x m . The columns of Y form
k kK Tk k k k " k

an orthonormal basis for the range space of Ck and those of Sk form an

orthonormal basis of the null space of Cz. Finally we get the reduced Hessian

Hk and compute its Cholesky decomposition in the way described in the previous

section (remark that Hk is symmetric).

The reduced Hessian could be computed by the formula Hk = S:HSk, but we
prefer to define Hk = ZzHZk by reasons that we will explain in Section 4,
where Zk is the matrix obtained from Sk by setting its columns in reverse

order , that is to say Zk = SkT, T being the matrix of order n-m :

12



It is well known that there are other ways to get a basis of the null
space of CI, mainly based on the use of LU factorization, see Fletcher [4].
Here we prefer the QR factorization because of its good properties of
numerical stability, see Wilkinson [9), and because we are assuming that the
matrices H and C are not sparse and they can be stored explicitly in the main
memory of the computer. For large sparse matrices the LU factorization might

be preferable.
Our quadratic programming algorithm performs the following steps:

1) Compute a feasible initial point x° and set k = O.
Compute the factorization QR of the matrix Ck of active constraints, get
Zk and the reduced Hessian Hk.

Apply the Cholesky decomposition algorithm to Hk as above indicated.

2) If Hk is not positive semi-definite or ZzVF(xk) # 05 go to 3.

Otherwise compute the Lagrange multipliers Ak through the equation

R A = -Y'VF(x¥)
k k

If all Lagrange multipliers associated to the active inequality
constraints are positive then we have found a local solution of the

problem. STOP. Otherwise we remove the inequality constraint

13



corresponding to the smallest negative Lagrange multiplier and modify the
QR factors of the active constraint matrix and the Cholesky decomposition

of the reduced Hessian. Go to Step 3).

3) Compute a descent direction:

If Hk is positive definite, then solve the system

using the Cholesky factorization and take d = dez . Go to Step 4).

k
n-m

If Hk is positive semi-definite, then compute a basis (uj} 4= x

1

of
the null space of Hk from the formulas given in Theorem 1 and take
d* = -z U UTZ"WF(x5)
k kK k k
where Uk is the matrix whose columns are the vectors uj.
“k k “k
If d #0=>d =d and go to Step 5).
If d° = 0 = Solve the system
T, Kk
dez = —ZkVF (x)

k

and take d* = dez and go to Step 4).
k

If Hk is not positive semi-definite, then compute a descent

direction of negative curvature and continue at Step 5).

4)  Compute P, from the formula:

14



Take x*'! = xk + pkdk and k > k+l.

If P, = 1 then go to Step 2), otherwise continue at Step 6).

5) Compute P, from the formula:

bj - ch
T k T k

Jélk,cjd >0 ch

If the index set where we look for the minimum is empty, then

the quadratic problem is unbounded below in the feasible region,

so there is no solution. STOP.

Otherwise take x*'' = x* + pkdk and k » k+l. Go to Step 6).

6) If P, is the step corresponding to the constraint with index jk, add jk

to Ik and cj to the matrix Ck. Modify the QR factorization and Cholesky
k

decomposition of the new reduced Hessian. Go back to Step 2).

REMARKS. (1) First we must remark that neither the initial point x° need to be
a vertex nor we need to introduce any artificial constraint. The Cholesky
algorithm proposed in Section 2 allows us to compute a descent direction d* in
a stable way beginning with any symmetric matrix Hk. Among the possible
descent directions computed by our quadratic programming algorithm, we find

null, positive or negative curvature directions.

15



(2) In practice the determination of Z:VF (x*) and dk, in Step 2) and 3) of our
algorithm, as null vectors is based on the comparison of its norm with a small

parameter depending on machine precision.

(3) Our code deletes inequality constraints with zero Lagrangre multipliers.
In Step 2), if the smallest Lagrange multiplier associated with an active
inequality constraint is null then the corresponding constraint is removed
from the working set. If the new reduced Hessian has a negative eigenvalue,
then\ a descent direction of negative curvature is corﬁputed; else the new
reduced Hessian is positive semi-definite and the following null Lagrange

multiplier is studied. So we can infer the theorem

THEOREM 2. If the objective function is bounded below in the feasible region
and there exist no degenerated stationary points in this region, the previous

algorithm converges in a finite number of iterations to a local minimum x.

PROOF. Before removing an active constraint of the working set, the algorithm
has found the minimum of the current equality constrained problem. Therefore,
after a finite number of iterations the algorithm must find a point x and a
set of active constraints where the reduced Hessian associated is positive
semi-definite, the reduced gradient is null and the Lagrange multipliers
corresponding to the inequality constraints of the working set are strictly
positives. Under these conditions is well known that this point x is a local

minimum, see for example Fletcher [4].

16



It is important to remark here the necessity of the Lagrange multipliers
associated to inequality constraints to be strictly positive if we want to be
sure that x is a local minimum. Indeed, let us consider the following example:

Minimize F(x) = x: - 2xlx

2

Subject to 0= X + X, s 2
X - X s-2
1 2

Let be x = (-1,1,0)T and A = (O,Z)T, then (x,A) is a Kuhn-Tucker point

and the reduced Hessian

Z'HZ = (0,0,) | -2 0 © ol=2

is positive definite. However x is not a local minimum because F(xc) < F(x)

for each € # 0, where X, = (e-l,c+l,0)r: F(xe) = 2(1-€%) < 2 = F(x).

(4) In Step 3) of our algorithm, there are two diff erent. ways to compute the
descent direction in the case of a reduced Hessian that is positive
semi-definite. First the projection of the reduced gradient on the null space
of the reduced Hessian is computed. If this projection is null, it is not
possible to get a descent direction of null curvature, however, in this

situation, the system

Hd = -Z'WF(x)
k Zk k

17



has at least one solution (in fact it has many solutions) because of the
orthogonality of Z:VF (xk) on the null space of Hk. In this way we obtain a
descent direction of positive curvature, which allows us to solve the above
example. When Z:VF(xk) is not orthogonal to the kernel of Hk. then the above
system has not any solution, but fortunately we can compute a descent
direction of null curvature in this case such as it was pointed out in the

algorithm.

The solution of the above system, when it exists, is computed in the
following way. Firstly we have computed the Cholesky factorization of the

reduced Hessian (see Theorem 1)

o) [u
Hk = Pk Pk
Bk 0o 0O O

Now we denote by v the vector formed by the m first components of the vector

—PkZIVF(xk) and compute w* as solution of the system

L Lka = vk
k k
Finally we take
k
k o

Let us verify that this vector is a solution of the above system:

18



pl b O [ Bl o w
dez = Pk Pk Pk -
k Bk 0 o 0 0]
T T T k Kk
ot Lk 0 Lk Bk [ wk ] _ LkLkw _ v
k k T k k T k
Bk 0 0 O 0 BkLkw BkLkW

Let us denote by b* the n-m last components of —Pk2:VF(xk) and for every
index j, with 1 = j = n-m, let P:;uj be the vector of null space of Hk defined

by (Theorem 1)

with L'u = (B)".
k) k')
Because ZlVF(xk) is orthogonal to each vector P:uJ we have
k
T T T k T T k | ¥
0=[Pu][-ZVF(x)]=—uPZVF(x)=u =uv -b
k J k J k k J

So u-;-vk = blj and therefore

Hence we conclude

19



- . _ - _pTp T Ky _ T Kk
Hd P =P PkPkaVF(x ) ZkVF(x )

4. MODIFICATION OF QR AND CHOLESKY FACTORS

It is well known that as changes are produced in the active set, the QR
and Cholesky factorizations can be modified rather than be computed ab initio,
see Gill et al. [S]. We must distinguish two cases because these changes are a

consequence of adding or removing a constraint from the active set.
4.1 DELETING A CONSTRAINT

Let C be the n x m active constraint matrix and C = QR, Q = (Y S) and

Let us assume that the l-th constraint is deleted from the working set and let
C be the new active constraint matrix. Let us denote by R the matrix obtained
from R removing the l-th column, then C = QR. In order to reduce R to the
triangular form it is enough to apply m-l1 orthogonal transformations (for
example Householder or Givens transformations) on the last columns of R and to
perform the corresponding modifications on Q. The modifications on Q do not
affect the last n-m columns, hence the new orthogonal matrix will be Q = (Y S)

with S being augmented in a column and therefore Z = (Z z).

If we denote by Hz = Z'HZ the reduced Hessian before removing the l-th

20



constraint, the new Hessian will be:

T

Z'Hz Z"Hz
z HZ zTHz

T
H—=2TH2=[§T]H(22)=[

Since we are deleting a constraint Hz must be positive semi-definite, so

we know its Cholesky decomposition:

From here it follows that

!

T
PO)T [Lo]{ Pz Hz
BO
H- =
z 01 T T

z HZP sz

Let a be the vector formed by the m first components of PZ'Hz and a, the

or

n-m vector formed by the last components. Now we take bl satisfying Lb1 =a

and we distinguish two cases:

First Case: zTHz - b:'b1 >0
= T T, a, = BY,
In this case we take b = \/ z Hz - blb1 and b2 = —————— and then we
b
have
T T
POTLOO ILO LBTEl P O
HE'—' B b2 I'3 01 o b2 b
01 b’ 5 0 00 -bb" | {01 o 0 1
1 22 B

21



where IB and IL denote the identity matrices of the same order than B and L

respectively. Now changing the order of the last row or column we get

T

L OO 1 0 LTblB
H-=P | b b 0 01 0 bb |P=
2 1 2
B b, I 00 -b 001
(Lo - 0 L' 87) _
P . P
B I- 0 -bb 0 I-
2 2

where P is the matrix obtained from
P O
o
pivoting the corresponding row.
If b2 # O then HE has a negative curvature direction that can be computed

as indicated in Section 2 from the above decomposition. When b2 = 0 then HE is

positive semidefinite and its Cholesky decomposition is

Second Case: zTHz - ble =0

In this case we take b = z Hz - bIb1 and u = a - Bb and so we get

22



where L = L and P = P. The matrix HE has a negative curvature direction if
b # 0 or u # 0, otherwise it would be positive semi-definite with a Cholesky

‘decomposition associated to the matrices L and B.

If u=0or b= 0 we can get a negative curvature direction for HE in the

following way

u
Lu=—bl+BTu and d=[—u]

Now it is easy to verify that (l_’TdE)THEF_’TdE =-2u"u+ b <o
4.2 ADDING A CONSTRAINT

Let C, Q = (Y S), R and Z be as in previous section_ and assume that the
constraint associated to the coefficient vector ¢ is to be added to the active
set. So we define the new matrix of constraints active C = (C c) and we have
the equality C = Q(R QTc). Hence in order to derive the QR factorization of C

it is enough to find an orthogonal transformation that vanish the n-m-1 last



components of QTc. This transformation can be a Housholder matrix or a product
of Givens rotations. Since we have to compute the new Cholesky factors of Hz,
it is preferable to apply Givens rotations in a'certain order as we are going
to see. For the moment let M be a product of n-m-l1 Givens matrices of plane
rotation that turn (R QTc) into an upper-triangular matrix. M affects only the

last n-m rows of (R QTC) and its form is

I ©
M=| ™
0 M

where u represents the m first components of QTc and v the n-m last, Mv having

null all its components, except the first.

Take now Z = SM'T = (Z 2). It is immediate to verify that Z is a matrix
whose columns are orthogonal and form a basis of the null space of c’. We want
to obtain the Cholesky factors of HE = ZTHZ. For it we use the Cholesky

decomposition of HZ (see Section 2):

where D is the null matrix if Hz is positive semi-definite and D is negative

semi-definite if H2 is indefinite. If Hz is positive definite the previous

24



factorization is reduced to Hz = P'LL'P. T e

‘o .
%

Let us define H = Z"HZ. Then, from equality Z = S, it follows

H, = Z'HZ = TMsTHSM'T = TMiZ'HZIM'T = T{AY-HZTMTT =

wae o [L O I o) (LT B ..
IMIP PIM'I
B I o0 D 0 1
If P = Identity and the Givens rotations are applied in the planes

(n,n-1), (n-1,n-2),..., (m+2,m+1), then the matrix

wae o [L O
X = TMIP!
B

B 1

3

is lower-Hessenberg of the form (see Gill and Murray [6])

r N Nll 0 r,

X = T with N = and r=.
c s N N ’ ' r
22 2

21

When P is a pivoting matrix different of the identity we can reach the

same result by performing the Givens rotations in a different order. This

~

order is the following: M = Ml J---Ml ) where k = n-m-1 and Ml is a

Kk 1’1 : q’’q
rotation in the plane (n+1—iq,n+l-—jq), q = 1,..,k. The pairs (n+1—il,n+1-jl),
--.,(n+1—ik,n+l—jk) are formed from the vector JPVT that indicates the

pivotations realized for the Cholesky factorization, in other words it is a

vector associated to the matrix P. P is a permutation matrix obtained from the



identity matrix permuting its rows and JPVT(q), q = l,...,n-m, contains the
index of the row of the identity matrix that was moved into the q-th position.

Now we form the pairs (iq,jq) in the following way:

If JPVT(1) > JPVT(2) » il = JPVT(1) and j1 = JPVT(2)

Else i1 = JPVT(2) and jl = JPVT(1).

From q = 2 to n-m

£i > Jp ¢ s ¢
I i VT(q) » 3 1o and Jq JPVT(q)

Else i = JPVT dj =i
se i (q) an g =i,

End

So we have

2

. 1, o) . rr’ + NDNT  or + NDs
H, =X X = T T, T T
or +s DN o¢“ + s Ds

On the other hand

H,=2Z'HZ = (Z 2)'H (Z 2)

Z'HZ Z'Hz H— ZHz
zTH2 zTHz zTHi zTHz
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Finally we get

T T
I O O Nn 21
T . | 11 0 rl 1 T
H-=rr + NDN = 0O D C 0 =
z N r 22
21 22 2 0 0 1 T
r r.
1 2
T T
1 0 O Nu N21
i 1'l 0 1 T
o 1 0 r r
r N 1 2
21 2 22 0O 0D 0 NT
22

where Iu is the identity matrix of the same order than Nu' Using again

Givens transformations we obtain an orthogonal matrix G-such that

11

—
A4
=1 O

N
Nrer———

i

r——
zZ 2

S
-3 -3

N -
[

Q
-

21

and

with I22 equal to identity matrix that has the same order than sz. From the
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factorization above obtained for HE we deduce

NT
[ N“ O o0 ] _ ,e0 . 11 f;

H- = G|O0O 1 0| G 0 r =
z = r N 2
21 l"2 22 0 O D 0 =T
22

Finally we obtain a Cholesky factorization for H—z- similar to that of HZ
by performing the decomposition of the matrix rzr: + szDsz. In this way we

arrive to the final descomposition

oot
NI
i
el
[ ]
—,
-~/ I |
— o
I
——
——
C T
[} BN =)
[ —
—
o
=
— v}
| -3
N———
"ol

where the order of matrix D is the same or one unity lower to that of D.
In practice in order to prevent numerical instability, r‘zr: + szDN;z is

not computed and the factorization of this matrix is obtained from the

corresponding submatrix of Z'HZ following the algorithm described in Section

2.

5. NUMERICAL EXAMPLES

Our algorithm has been implemented in a FORTRAN 77 program and applied to
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several examples. Many of these examples were generated by using the random
function of the machine, but forcing sometimes the matrix H to be singular or
positive definite. Our code finished successfully in all cases detecting a
function not bounded from below or finding a local minimum. Here we present
two examples. In the first example the matrix H is singular and positive
semi-definite. This is a difficult problem as shown by the fact that the
routine EO4NAF of the NAG Library failed to get the solution. The second
example was constructed by J.R. Bunch and L. Kaufman [1]. In this case the

matrix H has two negative eigenvalues.

EXAMPLE 1

4 -2 2 2 x1 xl
e e 1 -2 2 2 1 X X
Minimize 5 (xl,xz,xs,x4) > 2 107 xz + (2,-2,-2,-1) X:Z;
2 1 7 5 X X
4 4

Subject to X +3x_+2x =0

2 3 a

2X - X_+ X +XxX =50
1 2 3 4

The set of solutions of this problem is the following:

-4 2 3
-5 3 4
1| Y% -1 | Y8 o
1 0 -2

where «,8 are any real numbers. Our algorithm found a solution in two

iterations.

EXAMPLE 2.
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Minimize F(x) = %xTHx + pTX

where

and p = (1,6,...,0)

{ li-jl if i#j,
h
ij

1.69 if i=j, |
subject to the bound constraints:
~i-(i-1)x0.1 = X = i, i=12..8
and the inequality constraints:
X -x = 1 + (i-1)x0.05, i=12,...,7
The problem has a local minimum of F=-621.487825 at‘the point
x" = (-1,-2,-3.05,-4.15,-5.3,6,7,8)
one of -642.643525 at
x' = (-1,-2.1,-3,15,-4.25,-5.4,6,7,8)

and one of -131.774167868... at

x' = (1,2,1.880144,0.780144,-0.369856,-1.569856,-2. 819856, -4.119856 )

Begining at x = -i, the routine reached the second local minimum at 7
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iterations. The course of the algorithm was the following:
ITERATION 1: |
Active Constraints: -~1,9
A descent direction of negative curvature was computed.
Added Constraint: 10
ITERATION 2:
Active Constraints: -1,9,10
A descent direction of negative curvature was computed.
Added Constraint: 11
ITERATION 3:
Active constraints: -1,9,10,11
A descent direction of negative curvature was computed.
Added Constraint: 12
ITERATION 4:
Active constraints: -1,9,10,11,12
A descent direction of negative curvature was computed.
Added Constraint: 13
ITERATION 5:
Active constraints: -1,9,10,11,12,13
A descent direction of positive curvature was computed.
Added Constraint: 8
ITERATION 6:
Active constraints: -1,9,10,11,12,13,8
A descent direction of positive curvature was computed.
Added Constraint: 7

ITERATION 7:
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Active constraints: -1,9,10,11,12,13,8,7

Deleted Constraint: 13

A descent direction of positive curvature was computed.
Added Constraint: 6

End of Routine: A local minimum was founded.

The convention for numbering the consttraints is the following:
i<0O : lower bound -i.
Isi=n : upper bound i.

i>’n : inequality constraint i-n.
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