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Abstract

In the field of telerobotics, an important part of the control of
teleoperated systems and robots is in the hands of a human oper-
ator, who interacts through a global human-machine interface. An
important component of this interface is a high-level representation
of the system, enabling the operator to express what he wants it to
do, and on which various kinds of treatments and reasoning can be
carried out. One of these is the simulation at task-level of the plans
of actions conceived by the operator, in order for him to evaluate the
correspondence of their effects to his expectations.

We propose constructs for alanguage, allowing the writing of plans,
provided with a clear, explicit control structure, disposing actions in
time. The control operators are defined, as well as the actions and
the environment on which they work, in terms of an unified formal-
ism, where the temporal dimension, most important in a world fea-
turing simultaneity and parallelism, is taken explicitely into account:
an interval-based temporal logic. A simulation method, based on this
model of the execution of plans of actions, takes advantage of the in-
ferential and expressive power of the underlying logical formalism, and
is illustrated by an example in space telerobotics. !

1This report is the text of a communication at the IJCAI Workshop on Integrated
Human-Machine Intelligence in Aerospace Systems, held in Detroit, U.S.A., August 21
1989, augmented with an example, in the appendix.
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SIMULATION DE PLANS ‘
PAR LA LOGIQUE TEMPORELLE

Résumé

Dans le domaine de la téléopération, une part importante do contrdle

des systémes et robots téléopérés est dans les mains d’un opérateur
humain, qui intéragit au travers d’une interface homme-machine glob-

ale. Un composant important de cette interface est une représentation

de haut niveau d’abstraction du systéme, permettant i ’opérateur

d’exprimer ce qu’il veut le voir effectuer, et surlequel diverses sortes

de traitements et raisonnements peuvent étre menés. Un de ceux-

ci est la simulation, au niveau tache, des plans d’actions congus par

Popérateur, pour lui permettre d’évaluer la correspondance de leurs

effets & ce qu'il en attend.

Nous proposons un langage permettant I’écriture de plans munis d’une
structure de contrdle claire et explicite, diposant les actions dans le
temps. Les opérateurs sont définis, ainsi que les actions et I’environne-
ment sur lequel elles travaillent, en termes d’un formalisme unifié, oi la
dimension temporelle, des plus importantes dans un monde montrant
de la simultanéité et du parallélisme, est prise en compte explicite-
ment: une logique temporelle d’intervalles. Une méthode de simula-
tion, fondée sur ce modele de I’exécution de plans d’actions, tire avan-
tage de la puissance d’inférence et d’expression du formalisme logique
sous-jacent, et est illustrée par in exemple en téléopération spatiale. 2

2Ce rapport reprend une communication au Workshop on Integrated Human-Machine
Intelligence in Aerospace Systems, tenu a Detroit, U.S.A., le 21 Aodt 1989, dans le cadre
de I’ IJCAI’89, auquel un exemple a été ajouté en annexe.
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1 Introduction

We propose a model for the representation of the execution of plans. They are
composed of actions, linked together by control operators, and are performed
on an environment, that changes as an effect of their execution.

The motivation of this work, and its general frame, is operator assis-
tance in telerobotics (section 2.) Telerobotics are characterized by the
presence of a human operator, who commands the system in control modes
ranging from manual to automatic. The interfacing between the human and
the machine must feature a language in which to express what is to be exe-
cuted. Decision assistance treatments, such as the simulation of their effects,
are applied on plans specified in this language. This entails the need of a
representation of the system and its environment, based on an underlying
formalism, on which these treatments can be made.

For that, we have chosen a particular type of logic: Allen’s interval-
based temporal logic (section 3.) It brings us the basic features of our
representation, including an explicit treatment of the temporal dimension
of the modeled world. This is particularly useful, as we are interested in a
changing environment, where events can take place parallely, have a duration,
and other temporal characteristics.

On the basis of this formalism, we define plans and actions in terms
of the temporal logic (section 4.) Actions are seen as the basic changes in
the world situation, and plans consist in linking actions together in a control
structure. The structure is determined by control operators, that specify how
actions are placed in time. This language enables the writing of complex, yet
clearly structured plans.

The simulation of such plans consists in determining the effects of the
actions they are composed of, and the way they take place in time (section
5.) It gives information from which the operator can examine the previs-
ible effects of his plan, and their correspondence to his expectations. The
simulation process is illustrated by the example of a space station.

An overview of related work shows that other formalisms of plans and
actions, and other approaches to operator assistance exist (section 6.) The
perspectives of this work can be found in several directions (section 7), and
concern the model of time and that of action, the extension of the control
structures, as well as the application of the plan execution model to other
situations, or the use of the simulation method.



2 Operator Assistance in Telerobotics

Telerobotics Telerobotics are an example of system for which there is a
human intervention, at each stage of the perception-decision-action control
loop. The motivation of the presence of a human operator relies on his natural
intelligence and skills, which provide more flexibility in the system operation,
than what can be achieved through complete automation, in its present state
of the art. The telerobotics approach constitutes not only an alternative to
the autonomous agent one, but an intermediary stage on the way to it, where
concepts can be experimented and refined. This means that the control is
shared between the human operator and the machine in a variable proportion:
a variety of control modes must be available to him, ranging from manual to
automatic, and enabling him to make his interventions at any level, but only
when it’s needed.

Human-machine interface This variety of control modes entails the need
for a human-machine interface, assisting the human operator in his task of
supervision and control of the operated system. This assistance is usefull at
all stages of the perception-decision-action loop. Perception of the state of
the environment that is to be worked upon, can be asssisted by a convenient
treatment of the data acquired from it (e.g. through data fusion, synthetic vi-
sual feedback). The plans of actions to be performed, are controlled through
an execution monitoring system, that has to manage the interactions between
operator and machine at execution time, i.e. his interventions as well as the
information coming from the system.

Decision assistance can take several forms, one of them concerning the
preparation of the action stage. Indeed, the constraints imposed by the
environment can impose a careful behavior, e.g. in hostile environments .
like nuclear plants or space stations. In these cases, the irreversibility of
the execution of certain actions, and difficulty of recovering from a failed
execution, imply the need of thinking twice before acting, for the operator.
This second thinking of the operator is where an assistance is needed, that
can consist in a simulation tool, allowing to study previsible executions of a
plan before starting executing it.



Plan language The communication with the system requires a language,
with which the operator can specify, read and follow the control of plans
of actions. The plans control structure, indicating the flow of execution
of the actions, is what gives the language its expressive power. Particular
control operators enable the specification of particular temporal dispositions
of actions. Their readability, which is linked to the clarity of their definition,
is particularly important to the human operators, who need that complex
plans remain clear, so that they don’t loose the thread of their execution.
Most work on plans and actions representation has been made with plan
generation as its goal, and the question of knowing what the control struc-
tures of plans should be has not found an unanimous answer by now [12].
Although a plan for a robot is not just like programming a computer, we
place ourselves in an approach where a human operator has to decide of and
conceive the plan, and then to supervise its execution. The plans we are
talking about are written by hand, this is why we use the concept of control
structure here, as an explicit support to conception and supervision. We
therefore propose a set of control operators. Some simple ones express, in an
imperative way, the sequencing, parallelization and conditionality of actions
subplans. Others represent operators that are particularly needed for the
representation of realistic robots, and are more specific to the domain.

Simulation We are here particularly interested in the simulation of plans,
that gives as result a representation of what effects are entailed by the exe-
cution of the plan. This must be made in a form readable and exploitable by
the human operator, so that he gets help from it when deciding on the con-
struction of the plan. The way this simulation takes place, is by transcribing
the effects of the actions on the representation of the environment, in which
changes are happening along time. Their execution follows the control struc-
ture of the plan they compose. This supposes that the representations of the
plan structures, of the actions and their effects, and of the environment are
compatible.

This is achieved by using the same, unified underlying formalism as a
support for representing as well the characteristics of the environning world,
as the actions and the changes they entail, and the control structures and
the way they determine the temporal disposition of actions. This formalism
is mainly inspired by Allen’s interval-based temporal logic [1].



Temporal logics The advantage of using a logical formalism for such a
knowledge representation issue, is that it provides us with a formal language,
with which unequivocal specification can be made. It also provides us with
an explicitly expressed reasoning capacity, knowledge and its treatment being
expressed in the same natural way. The use of a temporal logic is justified
by the parallelism of the plans that we want to describe, and the possibility
of events happening in the world external to the robot’s control. Time is
a concept deeply linked to all that has to do with change and simultaneity.
Making this temporal information explicit, and providing us with tools to
manipulate it, is how temporal logics can achieve representation of time-
related knowledge.

Allen’s formalism presents a model of time that is natural, and rela-
tively close to human reasoning, as to the expression of relative placements
of events, temporal relations between them, truth of facts over time, ...
It also offers the possibility of introducing quantitative information, in the
form of dates and durations, which must be taken into account as well as
qualitative or symbolic information. It has been used, amongst others, for
plan generation purposes [2], and has motivated many studies on its vari-
ous aspects: theoretical foundations, implementation and complexity issues,
applications, ... [6, 13, 11].

3 Temporal Logics

The attempt to capture the notion of time into a logical frame has given
way to the building of many different formalisms, among which modal tense
logics, instant-based formalisms, interval-based ones, ...[14]. We are mostly
interested in interval logics of the type developped by Allen [1], because of
their expressivity concerning duration and parallelism. The way they can be
linked with the notion of instants also interests us [3]. A generalization of
some of their features proposed by Shoham [11] is useful to us.

Intervals We will adopt the notion of intervals being “chunks” of time,
between which relations have been determined by Allen, and are shown in
figure 1. These thirteen relations capture all the possible relative positions
for a pair of intervals. Moreover, a transitivity table has been built on these
bases, allowing to determine, knowing two relations r; and r, between three



intervals Iy, I and I3, i.e. I vy I and I, ry I5, a third relation r3 obtained
transitively: I r3 Is. These relations can be grouped in a disjunctive relation -
if the precise relation is not known; for example: ((I; r, L) V (I; r; I)) can
be written: ( I) (ry r2) I).

relation inverse | graphical exemple
i before (<)j | §>i —— L
. N J
tequals(=)j | =1
. N g J
t meets (m) j | jmit ' + —
. ——
¢ overlaps (o) j | joii J
L
iduring(d)j | jdi: ) J
—_
¢ starts (s) j Jsit 7
. —t
i finishes (f) j | j fis I

Figure 1: Allen’s 13 possible relations.

Temporal facts As summarized by Shoham, facts represented in classical
first order logic by predicates, are here “reified” into temporal facts. Those
take the form: true( I, P ), meaning that the fact P holds on the interval
I. The rules of classical logic are assumed to hold, in the way established by
Shoham [11], stating that, for example, true(I,P, A P, ) is satisfied if and only -
if true(l,P;) and true(I,P;) are. The treatment of negation gives way to an -
alternative discussed by Shoham, and for this article, we will choose to say
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that true(l,~P) holds if and only if, for no subinterval I’ of I, we can have
true(I',P).

Classification by inheritance Shoham suggested another way of getting
new temporal information from known facts, by classifying temporal facts
according to the relation of their truth over one interval to their truth over
other intervals [11]. Exemples of classes are: downward-hereditary (e.g. “The
robot travelled less than two miles.”, when true over an interval, is true over
all its sub-intervals), upward-hereditary (e.g. “The robot travelled at the
speed of two miles per hour.”, when holding for all the proper sub-intervals
of a nonpoint interval, holds for the nonpoint interval itself), liqguid : both
upward-hereditary and downward-hereditary (e.g. “The robot’s arm was in
the GRASPING state”), solid (e.g. “The robot executed the NAVIGATE
procedure (from start to finish)” never holds over two properly overlapping
intervals), ... Other classes can be imagined and defined through the partic-
ular relations between intervals of truth. The temporal facts (true(I,Fact))
described in the previous paragraph are liquid. The solid class can be used
to describe the execution of an action or a plan (e.g. by ezec(I,plan).)

We thus are provided with a representation formalism allowing us to de-
scribe a world, especially as temporal information is concerned, and with
manipulating rules with which further information can be obtained from the
one already explicited, i.e. reasoning can be made. We will now see how we
intend to use this formalism in order to describe the temporal involvement,
as well as the logical behaviour, of plans provided with a control structure.

4 Plans and Actiqns

As in our approach, a human operator is involved in the decision process,
i.e. he writes himself the plans for the robot, we have to provide him with
a language in which to express the plans. This language must allow him -
to build complex, yet clear, control structures. Its basic elements are the
primitive actions, which are defined by the changes entailed by the execution.
These actions can be grouped into structures determined by control operators,
specifying in what way the actions they frame will take place in time.



Primitive Actions A classical representation for an action is that adopted
for STRIPS and its successors, where an action is represented through threce
sets: the facts that are needed to hold, for it to be executed (the precondition-
list), and the effects it entails in its environment, positive (the add-list, of
facts made true as a consequence of the action) as well as negative (the delete-
list, of facts made false.) We however want to add a temporal information
to this: we therefore associate, with each action occurence or execution, an
interval, the extent of which is given by the duration of the action. An action
is noted as shown in fig. 2, where an example is given, of the action of an
arm A, taking a piece Py, fized to a piece P;. A representation of the example
action of fig. 2 in time is given by fig. 3.

representation example
action( take(A, Py, P;),
action( name(parameters), 2mn, :
duration, [fizedto(Py, P,),
preconditions, available(A ),accessible(P, )],
negative effects, [fizedto(Py,P,), '
positive effects available(A ),accessible(P, )],
). [accessible(P;),held(Py, A)]
).

Figure 2: Actions representation.

As Vere did [15], we make the “changes on termination” assumption,
deciding that all the changes entailed by the action occur at the end of
its occurence. Nevertheless, the preconditions have to be holding on all the
interval of the action. The “changes on termination” assumption, however, is
not limitative: the definition of compound actions, presented further, allows
to define actions having effects in an other way.

It takes place in time in a way described by the following formula, where
lasts(i,d) makes the correspondence between an interval i and its extent d:



take(arm, a, b)

available(arm) - .
fized-to(a,b) - —
accessible(a) - ;
accessible(b) : —
held(a,arm) : —-

>t

Figure 3: Example of an action: take(arm,a,b) in time.

ezec(l,act) <= action(act, d, P, C, A)
A lasts(I,d)
A(Vp € P) true(l,p)
AVee C)( (3I)(true(Il;,c) => (I (b mosd ffi=)T))
AVa € A)3L,)(true(l,,a) AT (d s 0i m) 1,).

At the moment of simulating such an action, the deduction tools of the
temporal logics will be useful to find out wether the preconditions hold over
the interval, and how the effccts interact with other facts in the world repre-
sentation.

Plans A plan, as said earlicr, is considered here as a set of actions, provided
with a control structure. A plan is then composed of subplans, which are plans

themselves, recursively, down to the primitive actions. T'he basic constructs
of the language are:

sequence : noted seq(subplans list). For a subplans list [P|/’], where Py is
the first subplan of the list , and P the remainder of the sequence, this
control operator states that the subplans of the list are executed one
after the other, in the order if the sequence(fig 1.)

exec(l, seq([P\|P]) ) <= _
BL)31p)(Iy s T A cxee(ly, ) AL m )
A exec(lp, scq(P) ) Np 1 1).



P . :
seq(P) Lo :

seq([Pr|P]) ; -

Figufe 4: A sequence in time.

parallelism : noted par(subplans list), where the list of subplans contains
the plans constituting each a branch concurrent to the others. In this
construct, all branches B start together, and the parallelism ends when
all branches have ended, i.e. with the longest lasting branch, Bp (fig.
5.)

ezec(I, par(Branches) ) <
(3B, € Branches) ( ezec (I, B,)
A(VB € Branches —{B,})(3Ip) (ezec(Ig, B)AIg (s =) 1) ).

Blongeat ¢ +
other branches ; - :
par(Branches) *

>t
Figure 5: Parallelism in time.

conditionality : noted cond(C,P;rye, Ptatse). The condition C is evaluated
on the beginning of the interval, and following the result, the corre-
sponding subplan is executed (fig. 6.)

exec(l, cond(C,Pirye, Palse)) <=
(AL ) ( (true(I.,C) A (I. s I A ezec(l, Peyye))
V (true(I.,~C)A (I s I A ezec(, Paise) ) ).



condition evaluation -
chosen plan: Piye or Pyolse

Cond(C,Ptrue,Pfalse) A ‘

>

Figure 6: Conditionality in time.

reactive operators The operators previously seen are adapted from the
classical computer programming style. In the robotics field, as well as
in real-time oriented problems, another kind of operators is necessary,
to express other temporal schemes. Generally, we need to express that
something can happen “as soon as” something else does. This can be
characterized in several ways. We have considered some of them, and
the similitudes between them.

reactivity : as-soon-as(Condition,Plan), where the starting of a plan
is linked to the satisfaction of a condition. The way it takes place
in time is illustrated in fig.7. This is the most basic form of re-
activity, and can be seen as the basis on which others can be

constructed.
Condition ——-
Plan : .

as-soon-as{Condition, Plan) *

Y

Figure T: Reactivity in time

continuous condition : c-cond( Condition, Plan, Paiernative ), where
the actions in the Plan are executed as long as the Condition holds.
The Plan can be interrupted at the failure of the Condition, and
the remainder of it, i.e. the part not executed at that time, is
withdrawn. A possibility is given, of specifying an alternative
plan: Piisernative, that is executed as a kind of recovery procedure.

10



ccond( C,P,P, ) . .
gzrt of P ? , — :
a. The plan is mterrupted ’
ccond( C,P,P,) ¢ - +
c " .
P 2

b. The plan is executed completely

ccond(C,P,P, ) : ',
C - false e~
P, ; : -

¢. The alternative plan is executed.
Figure 8: Continuous conditionality in time

This case is shown in fig.8a. If the Condition holds on an interval
containing that of the Plan, we are in the case of fig.86. When
the Condition does not hold, only the alternative plan is executed .
(fig.8¢c.) . .

elastic actions : as-long-as(Plan,Elastic-Action). In this construct,
we specify that the duration of the Elastic-Action is determined
by that of the Plan to which it is associated. This entails the
need of having a special type of actions, different from those seen "
before, in that no duration would be associated to them a priori.

as-long-as(Plan, Elastic- Action )+

¢
O

PRt N N B

an
FElastic-Action

Figure 9: An elastic action in time
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Examples of actions of that kind are: hold something, or move in
some direction.

similitudes All these operators are based on the same idea, that their
temporal definition is not always self-contained, i.e. that the dis-
position in time of the actions sometimes needs to be determined
by external circumstances. They obviously share some character-
istics in common, while expressing each a different structure.

The continuous conditional can be used to express something close
to the basic reactivity, by writing: ccond(—=Cond , wait, Plan),
where wait can be seen as: while( true, delay), delay being an
action having a duration, but no preconditions, nor effects. Elastic
actions could be interpreted as a kind of parallelism, where the
branches would all have the same duration. It also corresponds
to a continous conditional on the execution of the plan: when it
is not true any more that the plan is executed, i.e. at its end, the
elastic action is interrupted, the alternative plan being empty. An
elastic action having a precondition can be seen as a continuous
condition. '

These apparent similitudes need to be characterized, and could
lead to a classification on reactive behaviours (section 7.)

Compound Operators and Actions We have a set of basic constructs,
which are defined to be assembled in order to form plans. In this task, it
is helpful to be able to define new items from the basic ones, and to re-use
them. This can be done here in two ways.

compound operators From these operators, others, more customized, can
be constructed, like, for example, conditional iteration, defined recur-
sively as:

while( condition, iteration-body )

cond( condition,
seq([ iteration-body,
while( condition, iteration-body) |),
nothing ).

12



where nothing is a null action, taking no time, requiring no precondi-
tion, and entailing no effect.

compound actions In the same manner, more complex actions can be de-
fined, using a plan, in the following way:

compound-action( name(arguments) , plan ).

This allows to consider a sort of macro-actions, with effects dispatched
along their duration, or depending on the context where they are ex-
ecuted. For example, a way of defining an action a realizing effects
on an interval as in fig.10, is to decompose it in the following way:
compound-action( a , seq(fay,as]) ), where we have an action a; such

as: action( ay, dv, [p1,p2], [p2], [p3] ), and a3: action( a,, dy, ) [,
[p2))-

. . d
ay 4, d
. . . « 2 .
az : r——
. D -~ > = -
P2 B E— —-
b3 A

Figure 10: A compound action in time: compound-action(a , seq([ ay, a2 ])).

The total duration of action a is then d = d; + ds, as a; and a, are
in sequence: an action having its effects on beginning would be of this
form, with d; = 0.

Example An example can be given in a space station environment, as
shown in fig. 11. The world is composed of two manipulation arms, arm!
and arm2, both available in the initial situation. There is a structure of
elements of a extension of the station body: they can be fized to each other,
the whole being fixed to the station body. Only the end element of the
structure is accessible to an arm. There is also a new element, that is also
accessible, fixed on a rack.

13



NS
next element 47\
A7 QB end element

station body

Figure 11: An example in a space station

The arms can execute two kinds of actions on the elements: to take an
element from another one, defined as seen before in fig. 2, or to place it on
another one, defined by:

action( place(Arm, Piecel, Piece2),
1.5 mn,
[accessible(Piece?), held(Piecel, Arm)] ,
[accessible(Piece?), held(Piecel, Arm)] ,
[available(Arm), fizedto(Piecel, Piece2),
accessible(Piecel)] ).

In order to insert a new element between the end element and the next
element in the chain, a possible plan that an operator can write is:

seq([ par([ take(arm1,endelement,nestelement),
take(arm2,newelement,rack)

D,

place(arm2,newelement,nestelement),
place(arm1,endelement,newelement)

-

14



The simulation of this plan, on the initial situation described above, gives
as result the trace shown in fig. 12. For further use in other plans in that
world featuring element insertions, this plan can be defined as a compound

action: ] ]
compound-action( insert(Newelement),

seq([ par([ take(arml,endelement,nextelement),
take(arm2 Newelement,rack)
D
place(arm2, Newelement,neztelement),
place(arm1,endelement, Newelement)

)

)
where the Newelement is the argument to this action.

The language presented enables the writing of structured plans, composed
of actions defined by their effects on the world they are executed in. The
temporal dimension of these actions and plans having been specified, we will
now see how simulation on these bases is achieved.

5 Simulation

Our approach is concerned with simulation. The difference to plan generation
is that the plan is a given data to the simulator, and the results that are
expected, are the state reached as a consequence of the execution of this plan.
Its use for the human operator, is to allow him to evaluate the correspondence
between the plans he wants to give to the robot, and the effects that he
expects from their execution on the environment. The simulation of a plan
then consists, given a representation of the world to which it is applied, in a
modification of this representation by transcribing onto it the effects of the
actions of the plan, taken following the control structure leading their flow.

The simulation process The world representation consists in a set of
temporal facts of the kind described earlier. A set of predefined actions
is at the disposal of the planner, who can build a plan, constructed with
control operators like those seen before. This plan is given as input to the
simulation process, that begins with decomposing it down, to find the set of
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the primitive actions that should be simulated first, because of their position
in the control structure (e.g. those beginning a branch, a sequence), the
rest of the plan being left in its original state. Then, primitive actions in
the set are simulated one after the other, in a succession determined by the
control structure of the plan. As the control flow advances in the structure,
other primitive actions are added to the set, while the plan is “unrolled”
progressively.

Plan

plan
par([take(arml,...), take(arm2,...)])

Actlons

take(arml, endelement, nextelement)

take(arm2, newelement, rack)

place(arm2, newelement, neztelement) .

place(arml, endelement, newelement) .

Temporal facts

accessible(endelement)

fizedto(endelement, newelement)

available(arm1l)
held(endelement, arm1)
accessible(newelement) -
fizedto(newelement, neztelement) .
available(arm2) .

held(newelement, arm2) .

accessible(nextelement) )

accessible(rack)
fizedto(newelement, rack)

fizedto(endelement, nextelement)

fizedto(neztelement, stationbody)

0 1 2 3 4 5 6 i(mn)
Figure 12: Actions, temporal facts, and associated intervals.
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Primitive Actions The simulation of each primitive action, on an inter-
val of which the extent is given by the duration, consists in: verifying the
preconditions; transcribing the effects in the world representation.

At this stage, the temporal logic can be used to check the coherence of
the new constraints introduced with the others, or to verify the compatibility
of the positive effects with the temporal facts according to rules specified in
the world representation. An incoherence is said to be encountered in the
simulation, if either a precondition fails to be satisfied, or a contradictory
constraint or an incompatibility of the effects is detected.

Plans The simulation of a plan then consists in the succession of simula-
tions of the primitive actions they contain, following the order specified by
the control structure. The task of simulating can be described as that of,
in a loop terminating when the plan is through, choosing the next primitive
action to be simulated, determining its associated interval, and treating its
preconditions and effects. This happens in a way guided by the definitions
of the control operators given in section 4. Compound operators and actions
are rewritten, following their definitions in terms of basic elements, from their
original form in an expanded form, down to basic plans, and simulated in
that state.

An interesting case is that of orderings between actions that are not de-
termined: their intervals have a relative position being a disjunctive relation.
In this case, the simulator will try each relation in the disjunction, "forc-
ing” the intervals into an order, and simulating further this possibility, until
reaching the end of that simulation. Then a backtracking takes place, back
to the last choice made, where, if another relation of the disjunction is left
untried, it is taken as a new choice, and the simulation is resumed from this
point.

Results In this way, the tree of possible executions of the plan, each one
related to a possible disposition of the actions in time, is explored completely.
The progression in a branch of this tree stops in two cases:

e either the end of the plan is reached: we then have the result that it
is executable, and that the consequent state of the world is the one
reached at this point;
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e either an incoherence is encountered, i.e. a precondition to an action
fails to be satisfied, or the effects of an action are incompatible with
some fact: the result then consists in the verdict of unexecutability of
the plan, with some information on the reasons of this failure, in order
to help modifying the plan so that it would give a success.

To summarize, a plan built as seen before can be simulated with regard to
its effects on the environment being worked upon, and also to the internal
coherence of the dependencies between its actions, along its control structure.
By exploring the possible consequences of that plan, it provides an operator
with an assistance for the evaluation of the correspondence between the plan
and what is expected of its execution.

6 Reléted Work

As we are working at the meeting of several domains, aspects of our work
can be compared to other works in different fields. From the point of view
of the temporal formalism and action representation, related works can be
found in the field of knowledge representation using logics. These works cover
the theoretical and general issues of temporal reasoning and planning. On
the robotics side, works exist on the specification of control structures for
task-level plans. They try to identify what kinds of behaviours are expected
from a robot, and how to express commands to obtain them. Operator
assistance studies, which are a basic motivation of our work, have given way
-to approaches corresponding to ours, while using different techniques.

Time and actions representations The representation of time that we
have chosen, Allen’s temporal logic, has been the object or starting point
of many studies, by T. Dean, R. Pelavin, J. Koomen, E. Tsang, and oth-
ers. Amongst them are Ghallab e.a. [6], who have developed algorithms for -
consistency maintenance in a time points lattice, in a system called IxTeT.
They use it as a support for planning and execution control. Their model of
actions is declarative, in the sense that preconditions and effects are specified
as predicates associated with interval relations, situating them with regard
to the action. A task is a set of such actions, and conditions on the environ-
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ment, linked together with interval relations as well. The difference with our
approach is that they don’t use imperative control structures.

Another model for time and action is that of Sandewall e.a. [10]. It
takes parallelism and lasting effects into account, in the frame of the Explicit
Temporal Logic. Actions are seen as preconditions (true until the beginning
of the action), postconditions (true starting from the end of the action),
and prevail conditions (true on the duration of the action.) A plan is an
action structure, consisting in a partial order between begin and end points
of actions it contains.The prevail condition concept can be linked to our
model by using the compound-actions. As for Ghallab e.a., but in a different
way, the control structure of the plans is of a declarative kind.

Control structures and language In computer science, programming
languages rely traditionally on seq, par, and cond,with also iteration in di-
verse forms (the star *, while and repeat, do, ...) An application in command
of robots, using natural language, has lead Michalowski e.a. [8] to define a
set of seven control structures: the sequence (seq) , parallelism (par) , con-
dition (if ...then ...else ...), and iteration (repeat ... until ... ), and three
others, much more particular to robotics: do ... (until ... ), comparable to
our elastic actions, when(Condition, Plan), and whenever(Condition, Plan),
corresponding to reactivity, when meaningas-soon-as, and whenever being an
endless iteration of when.

Operator assistance Guy Boy e.a. chose to give this assistance “on line”,
by a system following the operator step by step, and looking round at the
changes of the environment at the same time [5]. Such a system provides
advices or warnings, guiding the operator and avoiding his overlooking sit-
uations requiring his attention. In this case, the work provided consists in
reasoning about a changing world, making assumptions on the base of incom-
plete information about it, and so forth. Formalisms on which to establish
such reasoning are non-monotonic logics, that can be used in the frame of
a blackboard architecture. Our approach consists in providing the operator
with an assistance tool for the preparation of a mission or part of it, before
its actual execution.
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Artificial intelligence The most commonly allegated perspective, in the
field of artificial intelligencein general, is that of providing an agent with total
autonomy. An automatic reasoning capacity is essential to that purpose, and
that is an essential motivation for the research in logical formalisms applied
to artificial intelligence.

We chose to keep a place for the human operator’s natural intelligence in
the loop. A reason for that is not only that it allows to make things that
are not possible automatically, by now. Another reason is also that, even if
autonomous robots can operate alone, at the stage of their conception, an
interface has to exist between it and its conceptors.

7 Conclusions and Perspectives

Starting from basic concepts, in different disciplines, that we linked together
[9], we have proceeded to the present state, where several directions of ex-
tension interest us, concerning the different aspects of our approach.

Present state This article presents a represention of the execution of ac-
tions of robots, at an abstract level, along time. These actions are organized
into plans, built with the help of control operators allowing the construc-
tion of complex, yet clear, structures. The world is represented, using a
temporal logic enabling us to deal with situations involving duration and
parallelism. The motivation of the application of logical formalisms to this
kind of problems lies in their providing us with a clear knowledge representa-
tion frame, as well as tools for manipulating this knowledge, i.e. reasoning.
Our approach consists in applying these formalisms to simulation, as a hope-
fully profitable alternative to the more classical, yet difficult, plan generation
paradigm. This leads us to make the link between the temporal logics and
a structured language featuring control operators. In the process of defining
such operators, in a clear and unambiguous way, advantage can be taken
from a formal model, as a support for the study of their characteristics. We
confront our formalism to an experimental situation, that inspired the simple
example of this article: an arm servicer on a space station. It is provided to
us by MATRA-Espace, where studies are made, in the frame of a teleoperated
arm system project [4], for the European Space Agency.
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Language The model used is extendable with control operators more spe-
cific to the robotics world, and not derivable from the basic ones (synchro-
nization on the satisfaction of a condition, ...), other kinds of actions (non-
deterministic in their consequences, ....) Other operators, as we have seen
in section 4, are more than useful to describe or specify plans of actions,
dealing with a realistic view of robots. Those are mainly concerned with the
reactive aspect of a robot programming. Several ways exist, to describe a
reactive behaviour, but it not obvious wether they are not redundant in some
way. Trying to classify them would be a good thing, in which the underlying
temporal formalism could help. In order to take the presence of a human
operator in telerobotics into account, an operator representing an alternative,
that will give place to a choice by the operator at execution time, should be
present also [7].

Knowledge representation The model of time is to be extended so as to
take into account a certain imprecision on instants. We represent these in-
stants with (min, maz) couples, that we generalize to ordered lists of possible
values. A further generalization would be to consider tolerance intervals, in
which instants would be known to be, but with no further information than
their boundaries. With the definition, on these tolerances, of an order rela-
tion and a sufficient algebra, we then can have multiple possible orderings,
corresponding to the disjunctive temporal relations between intervals.

At each uncertainty as to the order between two instants, time can branch,
following the possible time lines. To have access on these different branches,
and to express oneself about the relations between them (e.g. the truth of a
property on all future branches), modal temporal logics can be of help, and
introduce a stronger expressivity. The branching between possible evolutions
could also come from the actions: considering actions with non-deterministic
effects, or of flexible durations (e.g. keeping doing something.)

Operator assistance The simulation method presented here should be
applicable to domains other than robotics, where situations, involving time
and parallelism, could be represented in the chosen formalism. The logical
nature of the temporal formalism makes that the simulator produces more
than a trace of the plan execution: it produces a factual knowledge base,
which can be questioned in various ways. The interest of simulation can be
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seen from different points of view:

e given a configuration of a system, and a reached state of its charac-
teristics, it allows to test and refine a plan in order to make its effects
correspond to the goal aimed at;

e given a configuration of a system, and a plan, the effect of which is
known to achieve a certain goal, it allows to check for needed charac-
terics in the state of the world, and to add preparation operations to
the standard plan, if necessary, in order to make it applicable;

e given a state of the world, and a plan to be executed by a system, it can
help checking what its configuration should be like, in order to execute
the plan so that the state of the world would evolve in the intended
way.

These three ways of considering simulation are very general, and a closer
study of the use of simulation, its techniques, and the way the information
it provides is used would be of interest.

Embedding the simulator in a more general and global operator assistance
system links it to the other works in our team, which deal with formalisms for
execution control, interactive geometric model acquisition, and sensor data
fusion for visual feedback.
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A The Space Station Example

In this section, we treat an example inspired by studies on a bi-arm servicer,
made at MATRA-ESPACE, in the frame of the space shuttle project of the
European space station.

A.1 Architecture and Environment

We will describe only the features interesting us, with regard to the mission
that we ascribe to the arms.
The components of the world are as follows:

e two arms, arm! and arm2, initially each at its home position, available
for the execution of a task;

¢ two cable ends:

— one with a male connector, located at initposmale,
— one with a female connector, located at initposfemale,

These two connectors are cylindrical, and made to be mated (i.e. they
have the property of being matable.)

A.2 The Task: Mating Connectors

We want to use the two arms to mate the connectors, and then place the
connected cable in a clip, where it will be fastened.
In order to achieve this :

e arml moves towards female’s position, grasps it, and moves to the
position posRVD.

¢ arm2 moves towards male’s position, grasps it, and moves to the posi-
tion posRVD2, that is near posRVD.

These two subtasks, being independent of each other, are made parallely.
Then, we proceed to the mating of the connectors, itself: these two must

first be aligned, in order to correct their relative position, then inserted, one

into the other, then turned, so that they are correctly oriented, then pushed,;
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finally, the mate is checked to be fully obtained. As our goal is not, in a first
stage, to represent quantitative information, various properties that rely on
angles (e.g. oriented) or other geometric dimensions (insertion, alignment)
are represented here only by a proposition.

After the mating is completed, the connected cable must be fastened, in
a cable clip. For that, arm2, which is holding the male part of the connector,
will ungrasp it, and then grasp the cable, while arm 1 keeps holding the female
part of the connector.

B Model

At the moment of modeling all of this, we will have to find an expression for
the characteristics of the initial state, in terms of temporal facts. A set of
simple actions is defined in the formalism of primitive actions, corresponding
to the actions of the arms, alone or coordinated. Other actions examplify
the use of compound actions, to define actions having effects dispatched in
time, or depending on the context they are executed in. An elastic action is
used to express the action of keeping doing something.

On these bases, the complete plan for the realization of this task is com-
posed.

B.1 Temporal Facts
B.1.1 Facts

We consider here the initial state, from which the world will evolve under
the modifications entailed by the plan.

position(arm1,home(arml))

position(arm2,home(arm2))
available(arm1)
available(arm2)

position(male,posinitmale)
position(female,posinitfemale)
position(cableclip,poscableclip)
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accessible(male)
accessible(female)
accessible(cable)

matable(male,female)
matable(female,male)
matable(cable,cableclip)
near(posRVD,posRVD2)
near(posRVD2,posRVD)
near(poscableclip,connplace)
near(connplace,poscableclip)

near(X,X)

arm(arml)
arm(arm2)

B.1.2 Rules

We give ourselves some rules, stating that :

e an arm grasping an object Obj! mated with another 0bj2, holds the
whole connector(Obj1,0b52) :

grasping(Arm,connector(0Obj1,0b;52)) is true if
mated(Obj1,0bj2,connector(Objl,0bj2)) is, and either
grasping(Arm,0bj1) or grasping(Arm,0bj2) is;

o the cable attached to the female connector is always placed near to it :

position(cable, P) is true if
position(female, Posfemale) and near(Posfemale, P) are.

e the position of a whole connector, is that of its constituents:

position(connector(Obj1,0bj2),P) is true if
position(Obj1,P) or position(Obj2,P) is.
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B.2 Actions
B.2.1 Primitive and compound actions

Mating and Unmating :
action( align(Obj1,0b52),
1,
[position(Obj1,PosObj1) , position(0bj2,PosObj2)
near(PosObj1, PosObj2)] ,

{7,
[aligned(Obj1,00b52)] ).

action( insert(Obj1,0b52),
1,
[matable(Obj1,0052)] ,
[, |
[inserted(Obj1,0b;52)] ).

action( turn(Obj1,0b52),
1,
[aligned(Obj1,0b52)] ,

[oriented(Obj1,0052)] ).

action( push(Obj1,0b;52),
1,
[matable(Obj1,0b;52),aligned(Obj1,0b52),
inserted(Obj1,0bj2), oriented(Obj1,0b52)] ,
[inserted(Obj1,00;2)] ,
[pushed(Obj1,0b52)] ).

action( checkmate(Obj1,0b;2),
1,
[pushed(Obj1,0b52),aligned (0b;1,0b52),
oriented(Obj1,0b52)] ,
[pushed(Obj1,0b;52), aligned(0bj1,00b52),
oriented(0Obj1,0b;52)] ,
[mated(Obj1,0b52,conn(Obj1,0b52))] ).
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action( unmate(Obj1,0bj2),

1

[mated(Obj1,0b52,conn(0bj1,0b52))] ,
[mated(Obj1,0b32,conn(0bj1,0b52))] ,

).

Grasping and Moving :

¢ Grasping/Ungrasping :

— Primitive actions :

action(

action(

startgrasp(Arm,Obj),

0,

[available(Arm), accessible(Obj),
position(Arm, PosArm), position(Obj,PosObj),
near(PosArm,PosObj)] ,

[available(Arm), accessible(Obj)] ,

[busygrasping(Arm,0bj)] ).

dograsp (Arm,0bj),

1,

[position(Arm,PosArm), position(Obj,PosObj)
near(PosArm,PosObj),
busygrasping(Arm,0bj)] ,

[busygrasping(Arm,0bj)] ,

[grasping(Arm,0bj)] ).

— Dispatched effects (fig. 13) :

compound-action( grasp(Arm,0bj),

seq([startgrasp(Arm,Obj),
dograsp(Arm,0bj) ])

).
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ras . .
stdqrtgr[(,zsp . :
dogras :
available(Arm i
available(Obj -4
busygrasping(Arm,Obj) ¢

grasping(Arm, Obj) :

Figure 13: The action grasp in time.

— Conditions on the environment :

compound-action( ungrasp(Arm,Obj),
cond( mated(Obj1,0b52,0bj) ,
par([ ungraspobj(Arm,Obj),
cond(grasping(Arm,0bj1),
ungraspobj(Arm,Obj1),
ungraspobj(Arm,0b52) ) |),
ungraspobj(Arm,0bj) )

).

with:
action( ungraspobj(Arm,Obj),
1,
[grasping(Arm,0bj)] ,
[grasping(Arm,0bj)] ,

[available(Arm),accessible(Obj) |
).

— Another way of putting a piece somewhere :

action( place(Arm,Obj, Place),
1,
[grasping(Arm, Obj), position(Obj,Place)] ,

[placed(Obj, Place)] ).
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¢ Moving :
— Primitive actions :

action( startmove(Obj,Place),
0,
[position(Obj,Oldplace)] ,
[position(Obj,Oldplace)] ,
[moving(Obj,Oldplace, Place)] ).
action( domove(Obj, Place),
1,
[moving(Obj, Oldplace, Place)] ,
[moving(Obj, Oldplace, Place)] ,
[position(Obj,Place)] ).

— Dispatched effects :

compound—action( moveobj(Obj, Place),
seq([ startmove(Obj, Place),
domove(Obj,Place) ])

).

move ;
startmove .
domove .

position(Obj,Oldplace) __,
moving(Obj, Oldplace,Place) + ;
position (Obj, Place) : $--

Figure 14: The action move in time.
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— Conditions on the environment :

compound-action( move(Obj,Place),
cond( arm(Obj) ,
movearm (Obj, Place),
cond( mated(Obj1,0b352,0bj) ,
par([moveobj(Obj1, Place),
moveobj(Obj2, Place)]),
moveobj(Obj, Place) )
)
).
compound-action( movearm(Arm,Place),
cond( grasping(Arm,0bj) ,
par([moveobj(Arm,Place),
move(Obj, Place)]),
moveobj(Arm,Place) )

).
Mating, as a compound action :

compound-action( mate(Objl1,0b52),
seq([insert(Obj1,0b52),turn(0bj1,0b;2),
push(0bj1,0b52),checkmate(Obj1,0b52)])
)- |

B.2.2 Elastic action

elastic-action( hold(Arm,0bj),
[grasping(Arm,0bj)] ,

)
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