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Résumé

Nous étudions I'influence des langages sur la programmation des systémes temps-réel.
Nous analysons deux types de langages: les lengages généraux de type ADA et les
langages synchrones de types ESTEREL. Les langages généraux sont essentiellement
asynchrones et non déterministes, ce qui peut conduire a des difficultés sérieuses dans
les applications temps réel. Les langages synchrones sont spécifiquement adaptés
au traitement d’interruptions et concilient parallélisme et déterminisme. Ils sont
tout indiqués pour programmer les noyaux réactifs des applications. Les applications
complexes requierent la coopération des deux types de langages.

Abstract

We discuss real-time programming in two kinds of high-level programming languages:
general purpose languages such as ADA and special purpose synchronous languages
such as ESTEREL. General purpose languages are inherently asynchronous and non-
deterministic; this yields severe difficulties in real-time applications. Synchronous
languages specifically deal with real-time reaction to interrupts; they are better to
program compact real-time applications or application parts. Complex applications
require the cooperation of both kinds of languages.
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1 Introduction

Real-time programming is an essential industrial activity. Factories, planes, cars, and
a wide variety of everyday life objects are or will be computer controlled. Real-time
programs receive external interrupts or read sensors connected to the physical world
and build commands as output for it. When doing so, they have to react to their
inputs within externally fixed timing constraints. Safety is a crucial concern for most
real-time programs. In this area, a single bug can have extreme consequences.

Historically, real-time applications evolved from the use of analog machines and
relay circuits to the use of microprocessors and computers. The programming tools
are still often low-level and specific (e.g., assembly programming or hand-coding of
automa.ta) However, the situation is changing rapidly. Low-level programming tech-
niques will not remain acceptable for large safety-critical programs. Real-time pro-
gramming will follow the modern tendency to make systems hardware independent:
software has a longer lifetime than hardware.

We informally discuss which kind of high-level programming language is suited to
program real-time systems. We insist on the following specific requirements: concur-
rency, interrupt handling, and respect of timing constraints.

Modern programming languages provide high-level data, control, a.nd program
structuring constructs. Operating systems realize basic functions such as interrupt
handling, process and communication management, and resource allocation. Lan-
guages, systems, and language-system interactions are compromises between different



objectives: human readability and maintainability of programs, portability, and effi-
ciency.

A common compromise is to use classical sequential languages like C or PASCAL
to program sequential tasks that are run concurrently by operating systems. The
sequential tasks call system services to create tasks, kill them, and communicate with
each other. This trade-off relies on widely available tools. But it sacrifices clarity
since concurrency and communication are somewhat hidden from the programmer.
Program analysis and verification are hard.

Language designers have therefore developed a different compromise: they have
introduced concurrency and communication inside the languages as first class con-
cepts. The underlying operating system becomes hidden; it realizes basic interrupt
handling, converts physical signals into logical programming language communica-
tions, and handles tasks as specified by the language compilers. The languages and
compilers become more complex, but the programs become clearer and easier to an-
alyze.

Most present concurrent languages are general purpose languages, GPLs for short.
They intend to be usable in all kinds of computer applications on all kinds of hard-
ware configurations and operating systems. At least in theory, they permit the same
program to run equivalently on a single processor or on a network of processors. This
is very useful for portability. However, we shall argue that there is a severe drawback:
because of their generality, GPLs are somewhat inadequate for real-time programming.

We shall develop two arguments to support this rather strong claim, which has
already been made by other authors [7,8]. First, fully portable communication must
be asynchronous to deal with hardware distribution. This forbids proper interrupt
handling, accurate time manipulation, and proper exception handling. Second, GPL
concurrent programs must be non-deterministic, while most real-time applications
should be driven by deterministic programs. Testing and verifying non-deterministic
programs are at least one order of magnitude harder than testing and verifying de-
terministic ones.

One needs other compromises. Some authors propose to put fine-grain system
primitives at the language level [7,8]. This can give much more control over program
execution. Here, we shall follow others who propose to ease the programmer’s task
by giving him “ideal” real-time programming primitives that permit him to reason
as if the device he programs had tnstantaneous reactions. This requires putting much
more effort into the compilers. The special purpose synchronous languages ESTEREL
[2,3], LUSTRE [6], SIGNAL (9], and STATECHARTS [10] take this approach. Their
program units behave conceptually as people in a room when they treat problems “in
real time”: they instantly broadcast information to each other, instantly interrupt
each other, instantly provoke exceptions.

Synchronous languages allow the programmer to focus on the logic of reactions.
They make deterministic concurrent programming possible. Their mathematical se-
mantics has been finely tuned [3,6,9,11]; it is the basis of their implementations.
Synchronous languages can be very efficiently implemented, either by hardware or by
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translation to finite automata that have predictable performance. In this translation ,
concurrency and communication are completely compiled away. Correctness proofs
can be performed using existing automata verification systems. There are of course
drawbacks to this picture. Efficient implementation is, as of yet, only possible for “fi-
nite state” programs, having a fixed pattern of process creation and communication.
The object code cannot be easily distributed. Controlling the size of the resulting
automata needs some skill.

We shall finally argue that a practical solution is to combine the respective skills
of GPLs, synchronous languages, and operating systems, which are complementary
rather than antagonistic.

2 Reactive and Real-Time Programs.

It is convenient to distinguish roughly between three kinds of computer programs.
Transformational programs compute results from a given set of inputs; typical exam-
ples are compilers or numerical computation programs. Interactive programs interact
at their own speed with users or with other programs; from a user point of view,
a time-sharing system is interactive. Reactive programs also maintain a continuous
interaction with their environment, but at a speed which is determined by the envi-
ronment, not by the program itself. Interactive programs work at their own pace and
mostly deal with communication, while reactive programs only work in respond to
external demands and mostly deal with accurate interrupt handling.

Real-time programs are usually reactive. However, there are reactive programs
that are not usually considered as being real-time, such as protocols, system drivers,
or man-machine interface handlers. All reactive programs require a common pro-
gramming style.

Complex applications usually require establishing cooperation between the three
kinds of programs. For example, a programmer uses a man-machine interface involv-
ing menus, scrollbars or other reactive devices. The reactive interface permits him to

tell the interactive operating system to start transformational computations such as

program compilations.

Real-Time Constraints

In man-machine interface, fast response time constraints are merely for the user’s
convenience. In most real-time applications, timing constraints are more essential. In
some cases (e.g., slow physical processes), programs written without special care just
happen to work fast enough to be real-time. In other cases, timing constraints are
hard to fulfill and require caring about all details of the executed code. In all cases,
real-time constraints ask for performance predictability.



Concurrency

From an architectural point of view, most interactive and reactive systems decompose
into concurrent communicating subunits. Programs should follow the architectural
decomposition to be readable, maintainable, and built of reusable components. This
requires concurrency within programming languages An architectural concurrent
component will be called an agent. - ~ '

From an implementation point of view, programs are often implemented as sets
of tasks communicating by operating system or hardware devices. The tasks can sit
on a single processor or be distributed in networks.

The actual task implementation need not follow the architectural agent descrip-
tion. Run-time concurrency is not always a good way of increasing run-time per-
formance, since task and communication handling can cause important overhead. A
set of logically concurrent agents can often be advantageously implemented as an
equivalent sequential task, see Section 5.

Determinism

We say that an interactive or reactive program is deterministic if its behavior only
depends on its (timed) inputs. This is an observational point of view: the user
wants to reason about a deterministic system as if it makes no internal choice; he
wants the system’s behavior to be fully reproducible. Most real-time programs are
deterministic in this sense. On the contrary, most interactive programs are non-
deterministic: an operating system can make arbitrary choices between executable
processes. Determinism should be preserved whenever possible.

Termination and Abortion of Activities

There are two well-known difficulties in concurrent programming: determining when
a distributed activity is completed and canceling concurrent agents. The cancellation
problem is central in real-time programming. If some event requires to cancel agents
that act on the outside world, these agents should usually stop doing side-effects and
die as fast as possible, ideally at once. In real-time operating systems, killing a task
should be a very fast operation. In programming languages, killing an agent must at
least be allowed.

3 Human Communication

As human beings, we have a considerable experience in concurrency and communica-
tion; the notions of transformational, interactive, and reactive activities make perfect
sense for us. Efficiently organizing concurrent human activities is still a hard prob-
lem. We see no definite reason for this problem to become simpler on computers. We
therefore spend some time studying the communication media we use in everyday life.
This will be useful for later comparisons.

®



Communication Media

medium type | asyn/syn | address
mail 1—1 | asynchronous | physical
electronic mail | 1 —1 | asynchronous| logical

telephone 1—1| synchronous | physical

electronic talk | 1 —1 | synchronous | logical
bulletin board | 1 —n | asynchronous | physical
electronic b.b. | 1 —n | asynchronous| logical
cable broadcast | n — n | synchronous | physical
radio broadcast | n — n | synchronous | logical

Figure 1: Communication Media

We use a wide variety of communication media that combine different characteristics
in almost all possible ways, see Figure 1 (a synchronous medium has no delay be-
tween message emission and reception; in a physical addressing scheme, the receiver
is identified by a geographical position). Other characteristics could be added in a
finer analysis. For example, some devices memorize the message, some don’t: a fax
is a telephone with memory; a blackboard is a broadcasting device with memory.

Media Simulation

s
to simulate: | by: use device:
mail telephone | answering machine
mail broadcast | personal call
electronic mail | mail mail forwarding

electronic mail | telephone | answering machine
with remote call-in

telephone broadcast | walkie-talkie
talk telephone | call forwarding
bulletin board | mail mass mailing

electronic b.b. | broadcast | broadcast news

Figure 2: Media Simulation

We use a variety of devices to simulate one communication medium by another one,
see Figure 2 for examples. Some simulations are impossible: one cannot accurately
simulate a synchronous medium by an asynchronous one, e.g. telephone or radio
by mail. However, virtually all feasible simulations are of constant use. Devices
permitting to use logical addresses instead of physical ones become increasingly more
important.

A compound procedure such as an acknowledge mailing requires atomicity: the
procedure must be executed either completely or not at all. Accepting an acknowl-



edged letter automatically provokes sending the acknowledgement. This is guaranteed
by the postal system.

Choosing Media

The choice of a medium depends on various parameters: the nature of the task,
" the urgency and importance of the message, geographical constraints, and cost con-
straints. Interactive activities such as ordering parts to a company can be done by
mail. Reactive activities such as taking fast decisions require interrupting other peo-
ple using synchronous media such as telephone or broadcasting. We use broadcasting
(speech) in a room, with the major advantage that all the participants have the same
information at the same time.

Termination and Abortion of Activities

The way we decide that an activity is terminated and the way we operate to cancel
an activity strongly depend on the media we use. There is no problem when all
participants are in the same room. There are of course major problems if mail is the
only available medium.

4 General Purpose Languages

We first present the basic facilities offered by all GPLs; we then study their concur-
rency facilities.

Basic Facilities
Data structuring tools help in organizing and naming data. Static type checking for-
bids mixing up data of different kinds, which usually produces nasty errors. Control
structures help in writing understandable programs. The basic sequential control
structures are now well-understood (exception handling is unfortunately not always
available). Program organization primitives help in organizing and maintaining pro-
grams. They range from simple procedure constructs to fancy module or package
structures. They are essential for “programming in the large”. Implementation on a
wide variety of target machines is of course essential for a language to be usable. The
compilers must-be of high quality: in real-time programming, bugs in compilers are
unacceptable.

One must admit that very few actual languages are good with respect to these
four aspects [13]. Choosing a GPL to treat a big application is still a problem. Unfor-
tunately, the development of a GPL is a long and expensive task; even if knowledge

improves, one cannot expect many better widely used GPLs to be available in the
near future.

-
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Concurrency in GPLs

Concurrency in most GPLs is based on three assumptions:

e Agents and source-level communications are directly mapped to run-time tasks
and run-time communications.

e The behavior of a program should remain the same be it implemented on a
single processor or on distributed processors, independently of the technique
used to connect these processors. ’

o Interrupts are transformed into standard communications.

Notice that logical addressing is the rule. The connection between physical and
logical addresses is done by “pragmas” that do not formally belong to the languages.

At first glance, the above assumptions seem excellent for execution control, hard-
ware independence, and portability. But they enforce non-determinism and asyn-
chronous communications, since communication should be feasible even for asyn-
chronously linked tasks!. Referring to Section 3, this is like having mail as the unique
communication medium. Interrupt handling, and therefore reactive programming,
cannot be properly handled. Let us use ADA [1] as a support language for a more
precise discussion. The arguments would be similar for other GPLs. Here are the
ADA communication tools. ‘

e Shared van’ables; the human analogue is a single checking account with several
checkbooks held by different people. The difficulties are well-known?.

® Rendezvous: If A wants to send a message to B, he goes to B’s waiting room
and queues for B to take him into consideration (A can possibly go back home
if B ignores him for too long). When B accepts the message, A watches him
read it, and only then goes back home to continue his own work. If B wants to
reply to A, he follows A to his place and queues in the same way in A’s waiting
room.

Of course, the comparison with human communication is a bit caricatural. Since
electronic processes are cheaper than human beings, the above tools can also be used
as primitives to implement more elaborate communication structures. For instance,
using rendezvous, one can easily improve upon shared memory by hiring bookkeepers,
called monitors in programming. One can also improve upon the basic rendezvous by
hiring a sufficient quantity of auxiliary messengers, e.g., buffers. But the cost can be
too high for real-time applications. Deriving communication procedures also calls for
atomicity, which cannot be ensured at low cost.

'Rendegvous ie often said to be “synchronous®; message passing is indeed synchronous, but the
establishment of the rendezvous is asynchronous, unlike for example in radio broadcasting.

3Shared variables violate the hardware-independence principle. Their inclusion in ADA is often
considered unfortunate [5]. However, shared memory is of course efficient and can be safely used
by some specific algorithms or by automatically generated programs.



Time and Interrupt Handling

Accurate time manipulation is of course essential in real-time programming. As many
concurrent GPLs, ADA gives access to a notion of absolute ttme. But consider the
trivial problem of running a task A that signals minutes to a task B by counting
seconds:

loop
delay 60.0;
B.MINUTE
end

where MINUTE is an entry of B. The intuitive meaning is not the actual meaning. For
B to receive MINUTE, we need the conjunction of three events: A must have counted
60 seconds; B must enter a state where it actively listens to A; the rendezvous must
be completed. The time taken by any of these steps is unpredictable. Furthermore,
MINUTE is sent by rendezvous and cannot be broadcast. If A also wants to send MINUTE
to a third process C, he must call and entry C.MINUTE. The only thing that is sure is
that B and C never receive MINUTE at the same time.

The same arguments apply to all interrupts. To reduce drifts with timing, some
languages provide priorities. Priorities are certainly compulsory for interrupt handling
at the operating systems level. In our opinion, their use in a language makes the
understanding of programs even more difficult.

Aborting Agents

Aborting a task in ADA can be done in principle. However, the “abort” ADA
statement has a hairy semantics, which even includes the case where the task continues
its execution forever. Exceptions cannot be used to abort groups of agents, since they
don’t propagate outside an agent. (See [5] for an extensive explanation of all the
related difficulties.)

To avoid these problems, some GPLs do not allow agent abortion. Instead of
being treated at the language level, even with difficulty, the real abortion problem is
then pushed back to each user with no tool to treat it.

5 Synchronous Languages

Synchronous languages choose to make a big step away from direct implementation.
They provide “ideal” real-time primitives on conceptually “infinitely fast” processors.
For any agent, output is then synchronous with input. We shall discuss ESTEREL,
which is an imperative language easy to compare with classical GPLs (LUSTRE and
SIGNAL are data-flow languages, STATECHARTS is a hierarchical description of au-
tomata).

/N4
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The Basic Concepts

ESTEREL has classical control statements: sequencing, conditional, loops, and excep-
tions (called traps). They transmit control in no time. The parallel statement

S Sehl el 11 Sy

instantaneously starts all its components as parallel agents. It terminates ezactly
when all the agents have terminated. The || operator can be used anywhere in
statements. .

As people in a room use blackboards, ESTEREL agents communicate by snstanta-

~ neous broadcasting of, possibly valued, signals; all agents have the same exact infor-

mation at the same time. Here is a way to build exact minutes:

every 60 SECOND do
emit MINUTE
end

Physical time is a signal among others. One can use any signal to define a “time
unit”, as in

every 100 CENTIMETER do
emit METER
end

To wait selectively for events, one writes:

await
case 2 SECOND do ...
case 3 METER do ...
end

This statement is deterministic: the first event indicates the action to take. If
both events appear at the same time, only the first one in the list is selected.

Instantaneous agent abortion is a basic primitive. Here is an exact speed measure
statement that emits the speed every meter:

loop
var TIME := 0. : float in
do
every MILLISECOND do
TIME := TIME+1.
end
wdtching METER;
emit SPEED (1000./TIME)
end var
end loop



When it receives the control, the “do ... watching” watchdog construct in-
stantaneously starts its body as an agent. It instantaneously aborts the agent when
the mentioned event occurs. Any other agent can read the speed at any time by
evaluating the expression ?SPEED. .

Exception (trap) handling can also be used to abort agents. For example, in

. trap END in
Sy ISz li--- 118,
end

any of the S; can execute an “exit END” statement at any time; then all the S; are
instantaneously killed and the whole trap construct is terminated. The killed agents
can perform instantaneous “last will” operations as advocated for in [7].

We shall not go further into the description of ESTEREL, see [3,2] for more de-
tails. We just want to convince the reader that synchronous languages provide exact
temporal manipulation and make concurrent deterministic programming possible.

Mathematical Semantics and Implementation

ESTEREL is defined by a mathematical semantics that determines a unique reaction
to each input [3]. This only holds in the absence of race conditions, which closely
correspond to race conditions in circuits and to deadlocks in asynchronous languages;
all races are detected by the semantics.

The mathematical semantics is directly implemented in a simulator, which has
good but not real-time performance. Compiling consists in simulating all possible
behaviors of the program. The compiler transforms a concurrent program into a
sequential automaton® that acts on a shared memory. The only statements that
remain on automaton transitions are the indispensable run-time data-handling ones.

When actually run, the object code is of course not synchronous. However, assum-
ing synchrony for scheduling and agent synchronization makes perfect sense: these
operations generate no run-time code! The object code is highly efficient. Its reaction
time is predictable since all transitions are sequential. Automata verification systems
can perform various kinds of correctness proofs (obeying the WYPIWYE principle,
“What You Prove Is What You Execute” — the proofs are done on the actual object
code, not on a more or less accurate model).

For pure synchronization programs that manipulate no data, one can also inple-
ment an ESTEREL program on a circuit in such a way that a reaction takes exactly
one clock cycle. This is of course the best possible approximation to pure synchrony.

To summarize, even if it is not fully reachable in practice, synchrony is a good
paradigm: it permits better programming, better code generation, and better program
verification.

*Translation to automata is presently implemented for ESTEREL and LUSTRE; it could also be used
for other synchronous languages.
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6 Making SPL and GPL Cooperate

Synchronous languages don’t solve all problems. They cannot yet deal with arbitrary
distribution nor with recursive process creation. We think that a good solution is
to use synchronous and asynchronous languages as complementary tools, just as we
use broadcast and mail. Synchronous languages are better to write the well-identified
reactive parts of an application. These reactive parts can be asynchronously connected
using GPLs and operating systems. Our solution can be called “Communicating
Reactive Processes”.

In practice, the ESTEREL (and LUSTRE) compilers can produce code in various
GPLs. Code production relies on the basic GPL facilities presented in Section 4.
ESTEREL has no built-in data structuring facility. Except for the very basic ones,
types and operations are abstractly known by name; they are implemented in the
target GPL. This simplifies the compiler and makes programs fully portable from one
target GPL to another.

At run-time, the compiled automata act as services to be called by GPL programs
using a simple procedural run-time interface. The only restriction is that each au-
tomaton call must be guaranteed to be atomic. Synchrony can indeed be viewed as
an elaborate form of atomicity.

7 Conclusion

Our compromise is applicable now to existing problems. It has already given excellent
practical results. More fundamental solutions would require a better understanding
of the relation between synchrony and asynchrony. Process calculi and theories of
atomicity seem a good mathematical tool for such a study [4,12].
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