archives-ouvertes

Programming a digital watch in Esterel v3
Gérard Berry

» To cite this version:

Gérard Berry. Programming a digital watch in Esterel v3. [Research Report] RR-1032, INRIA. 1989.
inria-00075526

HAL Id: inria-00075526
https://hal.inria.fr /inria-00075526
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inria.fr/inria-00075526
https://hal.archives-ouvertes.fr

S

T T S

o 0T

Ay

=

AL

T

SERTEEY:

Y

T

5)

7 e

e

AT T

YA R

el

L G iR

o ety Y Db

N° 1032

Programme 1

PROGRAMMING A DIGITAL
WATCH IN ESTEREL v3

Gérard BERRY

Mai 1989

R
R 1 82 *

Programming a Digital Watch In ESTEREL v3

Programmation d’une Montre Digitale en ESTEREL v3

Gérard Berry

Ecole Nationale Supérieure des Mines de Paris Place Sophie Laffitte

(ENSMP) Sophia-Antipolis

Centre de Mathématiques Appliquées 06565 Valbonne — France
Institut National de Recherche Route des Lucioles’

en Informatique et Automatique Sophia-Antipolis
(INRIA) 06565 Valbonne — France

Electronic mail : berry@mirsa.inria.fr

Résumé

Notre but est d’étudier compldtement la programmation en ESTEREL d’une montre digitale assez com-
plexe, d’étudier la simulation du programme 3 Paide du systéme ESTEREL V3, et d’étudier Vinterfagage
du code C généré pour une simulation vidéo de la montre sous UNIX. Notre but n’est pas de faire une
recherche sur les montres, mais de donner un exemple relativement complexe de programme ESTEREL ou
beaucoup de détails (intéressants) doivent &tre pris en compte. Nous mettons un accent particulier sur
les problémes d’architecture et de modularité et sur le style de programmation synchrone auquel conduit
ESTEREL. Au lieu de construire un programme unique aussi petit que possible, nous construisons la montre
a partir de composants autonomes et réutilisables. Bien que relativement gros, le programme obtenu est
facile 3 maintenir et & modifier. Nous étudions plusieurs variantes de la montre.

mots-clef: parallélisme, temps-réel, automates, langages synchrones, Esterel.

Abstract

We study how to program a reasonably complex digital wristwatch in ESTEREL, how to simulate the
ESTEREL program under the ESTEREL V3 system, and how to execute the generated C code in a fullscreen
simulation of the wristwatch under UNIX. This is not intended to be a research on wristwatchs, but a
good example of a medium-size ESTEREL program where many non-trivial and interesting details have to
be taken care of. We put a particular emphasis on architectural questions, on modularity considerations,
and on the new synchronous programming style introduced by ESTEREL. We do not try to write a small
compact program. Instead, we build our watch from reusable components, making the ESTEREL program
bigger but easier to maintain and to modify. We study some possible variants of the wristwatch.

keywords: concurrent programming, real-time, automata, Esterel.

—1-

Programming a Digital Watch In ESTEREL v3

Gérard Berry

Ecole Nationale Supérieure des Mines de Paris Place Sophie Lafitte

(ENSMP) Sophia-Antipolis

Centre de Mathématiques Appliquées 06565 Valbonne — France
Institut National de Recherche Route des Lucioles

en Informatique et Automatique Sophia-Antipolis
(INRIA) 06565 Valbonne — France

Electronic mail : berry@mirsa.inria.fr

1. Introduction

We study in detail how to program a digital wristwatch in ESTEREL [1], how to simulate its behavior
using the ESTEREL V3 simulator, and finally how to execute the C code produced by the ESTEREL V3
compiler in a fullscreen simulation of the wristwatch under UNIX. The final code can be implemented either
as a single automaton or as a set of five communicating automata, using the -cascade ESTEREL V3 compiling
option. The full code of the wristwatch example is delivered with the ESTEREL v3 distribution tape.

As already pointed out by D. Harel [4], a digital watch is a typical example of reactive system. Such a
system reacts to input signals coming from its environment by sending itself signals to this environment. The
ESTEREL language is especially tailored for programming reactive systems. The watch example is particularly
interesting because of its non-trivial modularity and its relative complexity. Numerous commands are folded
into a few buttons using command modes and numerous informations are shown on the displays using display
modes. Moreover, there is a full range of digital watches, from simple timekeepers to sophisticated devices
that include stopwatches, alarms, backtimers, or even more complex features. The one we consider here has
a timekeeper, a stopwatch, and an alarm*. Its display and command modes are shown on figures 1-6 below.

Once we have programmed it, we program several variants to show how easy it is to modify the ESTEREL
code.

Describing correctly the behavior of a watch is by no way an easy task. In the next two sections, we
give an informal but precise description. We shall not try to give a formal description different from our
ESTEREL program. This program is actually quite close to what one should call a “specification”, being
made of rather high-level code. But that code has two advantages over a specification: we can simulate it
under the ESTEREL V3 system, which makes debugging easy**, and we can compile it into a small and fast

* It was inspired by the author’s CASIO watch, but has some improvements described later on
** One should have some doubts about specifications that cannot be executed nor simulated

—2-

Programming a Digital Watch in Esterel v3 -

sequential C code that can be connected with any peripheral handling system. We present a UNIX fullscreen
interface (with the drawback that UNIX does not know very much about time interrupts).

To treat a problem of this sort, we can take two different attitudes. We can try to write a compact and
clever program, or we can try to build reusable standard components and use them to construct the final
program. It is now well-understood that the second approach is better, even if the code is longer and may
look heavier. Our ESTEREL program is 16 pages long, half for declarations and half for executable code. It
uses as much as 8 submodules and 29 internal signals for inter-module communication. A compact program
could be 4 pages long and use much less internal signals, say 5 to 10. However we do not pay much for
the additional complexity: only the compiling time is increased. The generated code is basically the same
as for a compact program. This essential advantage of ESTEREL is due to its synchronous nature and to
the way the compiler translates a parallel ESTEREL program into an equivalent sequential automaton. The
inter-process communication is actually done at compile time, without run-time overhead (see [1] for details).
Therefore we can use as many modules and as many local signals as needed for elegance, with no loss of
efficiency. Such a phenomenon doesn’t exist in classical parallel language, in which increasing the number of
processes and of inter-process communication always increases the execution overhead.

We put a special emphasis on an ESTEREL programming style that we try to develop. To our opinion,
the main difficulty when programming in ESTEREL is to build a neat architecture of which the code should
follow in a quite straightforward way. We build reusable components that communicate by internal signals;
we make a systematic use of signal broadcasting, which is the primary tool for communication in ESTEREL.
Broadcasting has obvious advantages: a receiver doesn’t need to know where a signal comes from, an emitter
doesn’t need to know who is listening to the signal it emits. Broadcasting is done entirely at run time, with
no loss of efficiency. To handle the wristwatch’s beeper we use the ESTEREL combined signal facility: a
signal can have several simultaneous emitters.

Altogether, we hope to convince the reader that one can write elegant ESTEREL program producing
surprisingly good code.

After giving an informal specification of the wristwatch device, we discuss our program architecture.
We introduce five submodules: a regular watch, a stopwatch, an alarm, a button interpreter, and a display
handler. The first three modules are built so as to be easily reusable in different devices. The other modules
are easy to modify if needed. We carefully discuss the interfaces and the global behavior. We then study
each module individually. We discuss the quality of the generated code. We finally show that modifying our
wristwatch is really easy. We discuss several possible modifications and their impact on the behavior and on
the generated code. '

We present in annex the ESTEREL programs and a simulation session under ESTEREL V3. The C
auxiliary programs for actual simulation and execution of the generated code are given in the ESTEREL v3
distribution tape. They are not listed here.

A previous version of this paper dealt with the ESTEREL v2.2 implementation of the wristwatch [2].
The ESTEREL and C codes are basically unchanged, except for some minor modifications of C interfaces
described in the ESTEREL V3 documentation. The compiling speed of ESTEREL V3 is far superior to that
of ESTEREL v2.2, and the compiler needs much less memory. The Le_Lisp simulation code that was needed
to simulate the wristwatch under the ESTEREL v2.2 system is not any more necessary: the simulation now
uses the generated automaton and is performed in C.

Programming a Digital Watch tn Esterel v8

upper left button ‘ upper right button
(UL) - (UR)

N

MO 9-11

24H o

11:01 43

O

Ko

S

Aot

[]

[

lower left button lower right button

(LL) (LR)
O internal quartz (HS,S)
Fig. 1 : wrist watch commands

day of week —— ,— date

enter set __
watch mode

24H mode —

toggle
enter —
stopwatch mode Z24H mode

hour minute second

Fig. 2. watch mode

Programming a Digital Watch in Esterel v8

current position (blinking)

exit set-

watch mode L] []
PM time —
(WOR)!
next [}— set position
position
Fig. 3 : set-watch mode
lap and run status
stopwatch mode time
[1—1tap

exit stopwatch

mode —] — start/stop

minute second 1/100 second

Fig. 4 : stopwatch mode

Programming a Digital Watch in Esterel v8

alarm mode —— . — time
enter set-
—_— — toggle chime
alarm mode D D 88
. alarm status
24H mode — .
chime status
enter watch —[[— toggle alarm
mode
hours minutes
Fig. 4 : alarm mode
exit set- O TR —
alarm mode L] gx
|p)
next position —[] ' []—set position

current position (blinking)

Fig. 5 : set-alarm mode

Programming a Digital Watch in Esterel v8

2. Rough Description

We start with a rough description of the features of our wristwatch, meant to be understandable by
anybody who possesses such a device. In the next section we give a more precise description, including
details of the displays, beepers, and user commands. Figures 1-6 should help the reader in understanding
the intended behavior.

Our wristwatch has three components:

* A regular timekeeper—called simply “the watch” throughout this paper— showing the time (hours,
minutes, seconds), the date (month, day), and the day of the week. There are two time display modes:
a 24-hour clock mode (24H) and an AM/PM mode (12H). A chime beeps on demand every full hour.
The watch can be set by executing an appropriate setting sequence.

¢ A stopwatch (minutes, seconds, 1/100 seconds), with lap time measurement and “1st-2nd place” time
measurement. The chime sounds when the stopwatch is started, stopped, and every 10 minutes when
running.

* A daily alarm, which may be set to the minute. The alarm time is shown in 24H or 12K mode, depending
on the mode used for the regular time. The alarm may be enabled and disabled. The alarm beeps for
30 seconds and may be stopped by depressing a button.

The wristwatch has five modes: watch mode, set-watch mode, stopwatch mode, alarm mode, and set-alarm
mode. They correspond to five different display modes, shown in figs. 2-6. The date is shown only in watch
and set-watch mode. The regular time is shown in stopwatch, alarm, and set-alarm mode (in a secondary
display); it is therefore always available. Six on/off indicators display the status of five options (24H option,
chime option, alarm option, stopwatch-run option, stopwatch-lap option) and the PM status when in 12H
mode. In set-watch mode and in set-alarm mode, the position currently being set blinks (hour, minute etc).

The wristwatch beeps in three different ways: two beeps per second for the watch chime, one beep per
second for the stopwatch, four beeps per second for the alarm. It may actually happen that these beep
numbers are added. For example if the watch and alarm beep simultaneously, then the beeper beeps six
times per second.

The user controls the wristwatch by four buttons, which as usual have different meanings in different
modes. Here we use a standard watch terminology. The upper left button is used for entering and exiting set-
watch mode and set-alarm mode. The lower left button is used for circling between watch mode, stopwatch
mode, and alarm mode. It is also used when setting times for changing the position being set (hours, minutes,
etc.). The upper right button is used for toggling the alarm option in alarm mode and is the LAP button
in stopwatch mode. The lower right button toggles the 24 option in watch mode, toggles the chime option
in alarm mode, applies a setting command in set-watch or set-alarm mode, and is the start/stop button in
stopwatch mode.

3. Detailed informal specification

We shall denote the four user buttons by UL, UR, LL, LR, for upper left, upper right, lower left, and lower
right *.

The wristwatch has quite a complex display unit. It includes two numeric displays, containing time and
date values. We call them the main display and the mini display (see fig. 1). There is an alphabetic display
showing the day of the week or the current mode, and six on/off indicators that show some appropriate
symbol when a corresponding option is on (and nothing when off). They show respectively the time display
option (‘24H’ when on, nothing when off), the PM status (only ‘PM is shown and only when not in 245 mode),

* This is the only place where we shall use short identifiers. Later we use long explicit identifiers. Since
the input signal identifiers are typed on the keyboard during simulation sessions, it is better to use short
names for them.

—7—

Programming a Digital Watch in Esterel v3

the alarm status, the chime status, the stopwatch run status (‘RUN’ when the stopwatch is running) and the
stopwatch lap status (‘LAP’ when in LAP mode).

8.1. Details of the five modes

3.1.1. Watch mode (fig. 2)

This mode corresponds to normal timekeeping. The time (hours, minutes, seconds) is shown on the
main display. The date (month, day) is shown on the mini display. The day of the week is shown on the
alphabetic display. The six on/off indicators show their current status.

The time is incremented every second, with the usual carry from second to minute, to hour, to day (and
day of the week), to month.

LR switches from 24H to 12H mode. LL exits watch mode and enters stopwatch mode. UL exits watch
mode and enters set-watch mode. UR is ignored.

8.1.2. Set-watch mode (fig. 3)

This mode is entered by depressing UL in regular watch mode. The display only differs by the fact that
the current position of the time being set blinks.

The time is incremented every second, but the carry is propagated only to the current position being
set. For example if the 10-minute position is currently being set then the displays goes from 49mn 59s to
40mn 00s (not to 50mn 00s), to avoid interfering with the user setting.

LL goes to the next setting position; the order is as follows: second, hour, 10-minute, minute, month,
day, day in week, and back to second. LR applies a setting command, that increments the current position
value by 1, except for the second position which is reset to 00. UL exits set-watch mode and returns to watch
mode. UR has no effect.

3.1.3. Stopwatch mode (fig. 4)

This mode is entered by depressing LL when in watch mode. The main display shows the stopwatch time
(minutes, seconds, 1/100 seconds). The mini display shows the regular time (hours, minutes) in 24H mode.
The alphanumeric display shows the letters ‘sT’. The 24H and PM indicators are off. The other on/off
indicators show their current status.

The stopwatch maintains two time values, its internal time and its displayed time. The RUN mode,
toggled by the LR (START/STOP) button, determines whether the internal time is incremented every 1/100
second. The RUN indicator shows ‘RUN’ in RUN mode, nothing otherwise. The role of the UR (LAP) button is a
bit more complex since it is used both to control the LAP mode and to reset the stopwatch. The LAP mode
is entered by depressing UR while in RUN mode. The stopwatch is reset by depressing UR when neither in
RUN mode nor in LAP mode. The display doesn’t change in LAP mode, whether the stopwatch is running or
not (LR still toggles RUN mode while in LAP mode). LAP mode is exited by depressing UR; the displayed time is
reset to the internal time and then incremented every 1 /100 second if in RUN-mode. The LAP indicator shows
‘LAP’ while in LAP-mode, nothing otherwise.

Using LAP mode, we can get “Ist-2nd place time”. The stopwatch is started at the beginning of a race.
When the first person finishes the race, UR (LAP) is depressed. The display then stops, but not the stopwatch
itself. When the second person finishes, LR (START/STOP) is depressed. One can then record the time of the
first person, which is still on the display. Depressing UR again shows the time of the second person (time
doesn’t change since the stopwatch has been stopped, but the internal time replaces LAP time). Depressing
UR a last time resets the stopwatch.

In stopwatch mode, UL is ignored, and LL exits the mode and enters alarm mode.

3.1.4. Alarm mode (fig. 5)

Alarm mode is entered by depressing LL in stopwatch mode. The main display shows the alarm time
(hours, minutes). The alarm time is shown in 24% mode if and only if the regular time was shown in 24H mode

-8~

Programming a Digital Watch in Esterel v8

(there is no specific command for toggling the 244 mode in alarm time). The mini display shows the regular
time (hours, minutes) in 24H mode. The alphabetic display shows the letters ‘AL’. The 24H indicator is
on when in 24H mode, and in 12H mode the PM indicator is on if the alarm time is a PM time; The other
indicators show their current status.

UR toggles the alarm status (and accordingly the alarm status indicator). LR toggles the chime status
(and accordingly the chime status indicator). LL exits alarm mode and enters watch mode. UL exits alarm
mode and enters set-alarm mode.

3.1.5. Set-alarm mode

Set alarm mode is entered by depressing UL in alarm mode. The display is as in alarm mode, except
that the position currently set blinks.

LL goes to the next setting position, the setting order being hour, minute, second. LR applies a setting
command that increments by one the current setting position value. UL exits set-alarm mode and returns to
alarm mode, setting the alarm status to true and turning on the alarm indicator. UR has no effect.

3.2. The beeper

The beeper can be activated by the regular watch, the stopwatch and the alarm. The watch beeps twice
a second, the stopwatch beeps once a second, the alarm beeps four times a second. The units may very well
beep at the same time. The actual number of beeps per second is then the sum of the individual numbers.
For example if the watch and alarm beep simultaneously, the global effect is six beeps per second.

The watch chime beeps at every full hour when the chime status is on (toggled by button LR is alarm
mode), in all modes except in set-watch mode.

The stopwatch beeps each time START/STOP (that is LR) is depressed when in stopwatch mode, and also
every 10 mn reached by the stopwatch time when the stopwatch is running (in any mode).

The alarm beeps when the alarm status is on and when the regular time hits the alarm time, in all
modes except set-watch and set-alarm modes. The alarm beeps for 30 seconds, and may be stopped by
depressing UR. More precisely a beeping sequence is started that can be terminated only by a 30s delay or
by depressing the UR button. It is not terminated by setting the time or alarm to a new value.

3.8. Global behavior
The time shown on the main display in watch or set-watch modes and in the mini display in all other
modes is incremented every second for the main display and every minute for the mini display.

When a mode is exited and later re-entered, the numeric and alphanumeric displays are exactly in the
same states as they were when exited, with one exception: an alarm time displayed in 24H mode (resp.
12H mode) is now displayed in 12H mode (resp. 24H mode) if the 24H mode was toggled in watch mode. The
indicators always show their current status, except that the 24H and PM indicators are off in stopwatch mode.

3.4. Initializations

The wristwatch starts in watch mode, the watch shows time 0:00:00 , Sunday 1-1 1900, 24K mode. The
chime is off. The alarm time is 0:00 and the alarm is off. The stopwatch time is 0:00:00, RUN and LAP modes
off. .

3.5. Additional features

A light is turned on each time UR is depressed. If LL and LR are both hold depressed then the beeper

beeps s:ven Simes per second (beeper test).

3.8. Remarks

In the above specification, we have made everything explicit, so that we shall not introduce undescribed
features when programming. We must admit that the specification was written after the program and that
we had many choices to make that were not easy to detect at start. Should the alarm beep when the alarm

..

Programming a Digital Watch in Esterel v8

time is reached within a watch or alarm setting sequence? Should the alarm keep beeping if we change the
time while it is beeping? Should the stopwatch remember its full state when exiting stopwatch mode? The
actual watches one can buy have different behaviors, and ours is probably not available on the market! An
important point is that all the possible behaviors are equally easy to program in ESTEREL (but yield quite
different automata). Moreover, modifying the program to change a feature is generally very easy, unlike
modifying the automaton. We shall program several variants in a further section.

3.7. What we program and what we leave out

In the ESTEREL program, we shall leave out three features of our wristwatch:
(i) The light, which is trivially handled by an electrical contact.

(ii) The blinking mechanism of setting positions. Making a position blink is just a way of enhancing it. In
some other device the position could be set in another color, or shown by some sign — as we shall do in
the UNIX interface. Therefore it is unwise to program a blinking mechanism at the level of the source
ESTEREL code.

(iii) The beeper test, that has no interaction with the rest of the watch. There is no problem in programming
it, but the resulting automaton would be much bigger. A better idea is to write a separate (trivial)
ESTEREL program for the beeper test.

4. Architecture of the ESTEREL program
4.1. Principles

We construct our wristwatch as a set of five cooperating modules: a watch, a stopwatch, an alarm, a
button interpreter, and a display handler. They communicate by exchanging local signals carrying possibly
values in appropriate data types. We use as many local signals as needed for convenient programming,
remembering that emission and reception of local signals is done mostly at compile-time and produces
almost no overhead at run-time. In particular, the WATCH, STOPWATCH and ALARM modules have their own set of
commands (say START_STOP_COMMAND and LAP.COMMAND for the stopwatch); they ignore the four actual buttons
UL, UR, LL, and LR. The role of the button interpreter is to transform button commands into actual watch,
stopwatch, and alarm commands, according to the current mode. Therefore our modules will be reusable
in other contexts. For example, we can easily construct a wristwatch with five buttons by changing the
button interpreter, or a watch without alarm by removing the alarm module and the alarm mode parts of
the button interpreter and display modules *.

We make an extensive use of two important ESTEREL features: signal broadcasting and instantaneous
control transmission. We avoid using if-then-else statements that produce run-time code. For example,
the watch always “beeps”, sending a BEEP signal with value either NO_BEEP VALUE or WATCH.BEEP_.VALUE. The

test for actual beeping is then done in the user-defined output routine of the BEEP signal, not in automata
transitions.

4.2. Overall architecture

The WATCH module takes care of the regular time that belongs to a type WATCH-TIMETYPE. Its functions
are: incrementing the time, setting the time, toggling the 24K and 12H mode in time representation, and
handling the chime. It broadcasts the time value whenever that value is modified. The corresponding signal
is called WATCH.TIME. Synchronously with the time value, WATCH broadcasts a pure signal WATCH_BEING_SET when
the watch is in set mode. It broadcasts the chime status whenever it changes, the chime beep value every
second (either WATCH.BEEP_VALUE or NO_BEEP VALUE). It broadcasts two signals for enhancing time positions,
which belong to a type WATCH.TIME_POSITION. These signals are called START_ENHANCING and STOP_ENHANCING.

The STOPWATCH module handles the stopwatch time that belongs to a type STOPWATCH.TIME.TYPE It
handles the RUN and LAP modes. It broadcasts the (visible) stopwatch time value whenever that value is

* We shall see that this is not completely possible, because of some misfeatures in the wristwatch speci-
fication that do exist in actual watches.

~10-

Programming a Digital Watch in Esterel v8

modified. The corresponding signal is called STOPWATCH.TIME. STOPWATCH broadcasts the RUN and LAP status
whenever they change. It also broadcasts a beep value (either STOPWATCH BEEP.VALUE or NO_BEEP_VALUE).

The ALARM module takes care of the alarm time that belongs to a type ALARM.TIME.TYPE, of the alarm time
setting, and of the alarm beep sequence. It assumes the existence of an external watch that broadcasts a
VATCH.TIME signal carrying the regular time value, possibly synchronously with a pure signal WATCHBEING SET
telling that the external watch is currently in set-watch mode. It broadcasts the alarm time and the alarm
status whenever modified, by emitting signals ALARM_TIME and ALARMSTATUS. The ALARM module broadcasts
two signals for enhancing alarm time positions, which belong to a type ALARM.TIME POSITION. These signals
are called START_ENHANCING and STOP_ENHANCING. It finally broadcasts the beep value ALARM_BEEP_VALUE when
the alarm beeps.

The BUTTON module handles the command modes. It broadcasts the mode changes by appropriate signals
(WATCHMODE_COMMAND, STOPWATCH MODE_COMMAND, and ALARM MODE_COMMAND). In each mode, it renames the signals
UL, UR, LL, and LR into adequate watch, stopwatch or alarm commands; for example, any reception of LR
provokes an immediate emission of START_STOP_COMMAND when in stopwatch mode.

The DISPLAY module handles the main display and the mini display. It receives mode switching com-
mands from the button interpreter, time values from the watch, stopwatch, and alarm modules, and time
positions to be enhanced from the WATCH and ALARM modules. In each mode, it converts time values and
positions to display values and positions and updates the display.

The main module consists basically in putting the five modules in parallel. However some signal re-
naming has to be done. For example both the WATCH and ALARM modules emit the signals START.ENHANCING
and STOP_ENHANCING, but with values of distinct types WATCH.TIME_POSITION and ALARM_TIME POSITION. These
signals are renamed into WATCH_START_ENHANCING etc.

Notice that the five modes described in the specification make sense only for the button interpreter and
the display. The watch, stopwatch, and alarm ignore them.

5. Input-output interface

The input-output interface must be known precisely before starting the programming process; it deter-
mines how to insert our ESTEREL program into other programs receiving the actual physical input events,
updating the actual physical display, and activating the physical beeper.

The ESTEREL style undoubtedly induces some choices that we shall try to make explicit, and we do not
claim that we are making the design top-down (although we use a top-down presentation here}. In any real
application, one has to consider several event levels, from the electrical level (e.g. pure interrupts or electrical
signals) to a logical level (double click on a mouse button, or “second” signal). The role of a real-time system
is to convert the electrical level into a logical level. For ESTEREL programs, we think that the right way is
to start at a rather high logical level, leaving most of the trivial tasks to the operating system level.

5.1. Input interface

The input signals are:

e UL, UR, LL, LR : the four control buttons
e H5 : the 1/100 second
e 5: the second, always synchronous with Hs

Notice that no “physical time” is built-in in ESTEREL; we have to describe the interface with an external
quartz. We assume here that the quartz handler delivers two distinct signals HS and s. We could of course
produce internally s from HS, but we prefer to do it externally, that is at the level of real-time operating
system: the resulting automaton is simpler, since the question of knowing whether a HS generates a S is asked
before calling the automaton and not in each of its states.

Besides HS and S, we shall assume that all input signals are pairwise incompatible. We did not specify
what to do when receiving simultaneously two button signals, and this is certainly not easy. At the operating

~11-

Programming o Digital Watch in Esterel v8

system (or interrupt handling) level, we just assume that the UL, UR, LL, LR, and HS signals are serialized in
some way*. Hence the input relations are

UL # UR # LL # LR # HS
S => HS

5.2. Output interface

For the output interface, we need to introduce some signals carrying values in appropriate data types.
We associate a type MAIN.DISPLAY.TYPE with the main display and a type MINI_DISPLAY.TYPE with the mini
display. For enhancing positions, we introduce a type DISPLAYPOSITION. The alphabetic display is handled
by using the predefined string type. The 24H and PM on/off indicators are related to the way a time is shown
on the main display. Hence they will be handled as part of the main display, and their status will be included
in the type MAIN.DISPLAY.TYPE (as two boolean fields, see the C interface). For the remaining four on/off
indicators, we have two possibilities. We can either use two signals ON and OFF per display, or a single signal
conveying a boolean value (say true for on). We choose here the second solution. Finally we introduce a type
BEEP.TYPE for the beeper. A BEEP.TYPE value tells how to beep, and could be implemented as an integer telling
how much physical beeps should be produced in the next second. Elements of BEEP.TYPE can be combined
by a function COMBINEBEEPS; it is very convenient to introduce a special dummy value NO_BEEP.VALUE that is
ignored by the actual beeper and acts as an identity element for COMBINE BEEPS.

The output signals are:

MAIN.DISPLAY (MAINDISPLAY.TYPE) : towards the main display

MINIDISPLAY (MINIDISPLAY.TYPE) : towards the mini display
ALPHABETICDISPLAY (string) : towards the alphabetic display

START ENHANCING (DISPLAY_POSITION) : for enhancing a display position
STOP_ENHANCING (DISPLAY_POSITION) : for stopping enhancing a display position
CHIME_STATUS (boolean) : towards the chime status indicator
STOPWATCH.RUN_STATUS (boolean) : towards the stopwatch run status indicator
STOPWATCH.LAP_STATUS (boolean) : towards the stopwatch lap status indicator
ALARM_STATUS (boolean) : towards the alarm status indicator

BEEP (combine BEEP_TYPE with COMBINE_BEEPS) : towards the beeper

Notice that the types mentioned here are “abstract” or “private” types. Their exact implementation is not
known at the ESTEREL level. An output signal such as START_ENHANCING should tell the external system
to start enhancing the specified DISPLAY_POSITION, but no detail is given on how do do it. This of course
improves portability.

6. Module interfaces

We have fixed the external interface. We now describe the interface of each module. Once this interface
is well-understood, the modules themselves are easy to program, see the next section.

6.1. The WATCH module interface

This module handles both the watch and set-watch modes. The types involved are WATCH_TIME.TYPE,

WATCH.TIME POSITION, and BEEP.TYPE. The input signals are:

e §: the second
TOGGLE-24H.MODE_COMMAND : go from 24H mode to 12H and conversely
TOGGLE CHIME COMMAND : toggle the chime from on to off and conversely
ENTER_SET_WATCH.MODE.COMMAND : start a setting sequence
SET_WATCH.COMMAND : apply a setting command
NEXT-WATCH.TIME POSITION.COMMAND : go to the next setting position
EXIT_SET.WATCH MODE_COMMAND : terminate the setting sequence

*

See the C interface section

-12-

Programming a Digital Watch in Esterel v8

All input signals are assumed to be pairwise incompatible.

The

output signals are:

WATCH.TIME (WATCH.TIME.TYPE): the current time

WATCHBEING.SET : a pure signal, always synchronous with WATCH_TIME, which tells that the watch is
currently in a setting sequence. .
START ENHANCING (WATCH.TIME_POSITION): emitted in setting sequences when a position becomes the cur-
rently set position

STOP.ENHANCING (WATCH-TIME.POSITION): emitted in setting sequences when a position stops being the
currently set position or when set-watch mode is exited

CHIME_STATUS (boolean): towards the chime status indicator

e BEEP (BEEP.TYPE): towards the beeper

6.2,

The STOPWATCH module interface

The STOPWATCH module handles the stopwatch time, that belongs to the type STOPWATCH.TIME.TYPE. Its-

input signals are:

Hs : the 1/100 second
START_STOP_COMMAND : toggles the RUN mode
LAP_COMMAND : toggles the LAP mode, also used to reset the stopwatch

All input signals are assumed to be paiiwise incompatible.

The

6.3.

output signals are:

STOPWATCH.TIME (STOPWATCH.TIME_TYPE): the current value of the visible stopwatch time
STOPWATCHRUN_STATUS (boolean): towards the RUN status indicator
STOPWATCH.LAP_STATUS (boolean): towards the LAP status indicator

BEEP (BEEP.TYPE): towards the beeper '

The ALARM module interface

The ALARM module is in charge of handling the alarm time, that belongs to the type ALARM.TIME_TYPE, of

setting that time, and of starting the alarm beep sequence when needed. Its input signals are;

TOGGLE 24H.MODE_COMMAND : switch between 24H and 12H mode

ENTER SET-ALARM.MODE_.COMMAND : start a setting sequence

SET-ALARM_COMMAND : apply a setting command

NEXT.ALARM.TIME_POSITION.COMMAND : go to the next setting position

EXITSET-ALARM MODE.COMMAND : terminate the setting sequence

WATCH-TIME (WATCH.TIME.TYPE): the regular time, broadcasted by an external watch

WATCHBEING.SET : a signal present synchronously with WATCH.TIME, if the external watch is currently in a
setting sequence {remember that the alarm should not beep in this case)

TOGGLE.ALARM_COMMAND : toggle the alarm

e 5 : the second, used in the beeping sequence
e STOP-ALARM.BEEP_COMMAND : stop the alarm beep sequence

We have the relation

The

WATCHBEING.SET => WATCH_TIME

signal STOP_ALARM BEEP_COMMAND can appear anytime. Otherwise all input signals are supposed to be

incompatible.

The

output signals are

ALARM.TIME (ALARM.TIME.TYPE): the current value of the alarm time
START_ENHANCING (ALARM_TIME.POSITION): used in setting sequences

~13-

6.4.
The

Programming a Digital Watch in Esterel v8

STOP_ENHANCING (ALARM.TIME POSITION): used in setting sequences
ALARM.STATUS (boolean): towards the alarm status indicator
BEEP (BEEP_TYPE): towards the beeper

The BUTTON module interface

button interpreter has four input signals UL, UR, LL, and LR, which are supposed to be incompatible.

It has many output signals. The first ones are related to the watch:

The

The

6.5.

WATCH.MODE.COMMAND : emitted when watch mode is entered
TOGGLE_24H_MODE_COMMAND

ENTER_SET_WATCHMODE_COMMAND

SET_WATCH_COMMAND

NEXT.WATCH_-TIME_POSITION.COMMAND
EXIT.SET.WATCH.MODE_COMMAND

TOGGLE_CHIME.COMMAND

next ones are related to the stopwatch:

STOPWATCHMODE_COMMAND : emitted when stopwatch mode is entered
START_STOP.COMMAND
LAP_COMMAND

last ones are related to the alarm:

ALARM MODE_COMMAND : emitted when alarm mode is entered
ENTER_SET_ALARM.MODE_COMMAND

SET_ALARM_COMMAND

NEXT_ALARM_.TIME POSITION_COMMAND
EXIT_SET_ALARM.MODE_COMMAND

TOGGLE_ALARM_COMMAND

STOP.ALARM BEEP.COMMAND

The DISPLAY module interface

The DISPLAY module receives mode commands from the button interpreter and signals from the WATCH,

STOPVATCH, and ALARM modules. These signals carry times or time positions. The module converts them into
output signals to be sent to a physical display unit.

The input signals are:

WATCH.MODE_COMMAND : tells that watch mode is entered

WATCH-TIME (WATCH.TIME.TYPE): the time broadcast by the watch

WATCH.START.ENHANCING (WATCH.TIME_POSITION): used in set-watch mode, to be converted to a display
position.

WATCH_STOP_ENHANCING (WATCH.TIMEPOSITION): used in set-watch mode, to be converted to a display
position.

STOPWATCH MODE.COMMAND : tells that stopwatch mode is entered

STOPWATCH.TIME (STOPWATCH.TIME.TYPE): the time broadcast by the stopwatch

ALARM.MODE_COMMAND : tells that alarm mode is entered

ALARM_TIME (ALARM.TIME.TYPE): the time broadcast by the alarm

ALARM_START.ENHANCING (ALARM.TIME.POSITION): used in set-watch mode, to be converted to a display
position.

ALARM_STOP_ENHANCING (ALARM_TIMEPOSITION): used in set-watch mode, to be converted to a display
position. .

-14—

Programming a Digital Watch in Esterel v$

For relations, we suppose that the three mode commands WATCH_MODE. _COMMAND, STOPWATCH.MODE.COMMAND,
and ALARMMODE.COMMAND are pairwise incompatible; There is no relation between signal pairs such as
WATCH_START ENHANCING and WATCH.STOP.ENHANCING that can either appear separately (at the beginning or end
of a setting sequence) or simultaneously (when going from one position to another one). A complete set of
relations is hard to give here.

The output signals are

MAIN DISPLAY (MAIN.DISPLAY.TYPE),
MINI DISPLAY (MINIDISPLAY.TYPE),
ALPHABETIC.DISPLAY (string)
START_ENHANCING (DISPLAY.POSITION)
STOP.ENHANCING (DISPLAYPOSITION)

7. Module codes

We now detail the code of the individual modules.

7.1. The WATCH module
7.1.1. Declarations of WATCH

There are three groups of declarations: the first group concerns the watch time handling, the second
group concerns the watch time position handling for setting sequences, and the third group concerns the
beeper interface. The input-output declarations were already described in the watch interface section and
are omitted here.

To handle the watch time:

o the type WATCH.TIME_TYPE is the type of time values

e the constant INITIALWATCH_TIME : VATCH.TIME.TYPE is the initial watch time, which is displayed when the
watch starts running

e the procedure INCREMENT.WATCH.TIME (WATCH.TIME.TYPE) () is the standard watch time increment proce-
dure

o the procedure TOGGLE 24H MODE.IN.WATCH.TIME (WATCH.TIME.TYPE) () toggles the 24H and 12H modes

To set the watch time:

e the type WATCH.TIME_POSITION is the type of watch time setting positions

o the constant INITIAL WATCH.TIME_POSITION : WATCH.TIME_POSITION denotes the starting position of setting
sequences :

o the function NEXT .WATCH_TIME_POSITION (WATCH_TIME_POSITION) : WATCH_TIME_POSITION yields back the next
setting position from a given position

e the procedure SETWATCH.TIME (WATCH.TIME.TYPE) (WATCH.TIME.POSITION) applies a setting command to a
watch time at the current position (for example resets the seconds to 00, or increments the day)

e the procedure INCREMENT WATCH.TIME.IN_SET MODE (WATCH.TIME_TYPE) (WATCH_TIME_POSITION) increments
the time as required in set-watch mode, that is up to the position being currently set

To beep:
o the type BEEP.TYPE is the type of beeper commands carried by the BEEP output signal
o the function WATCHBEEP (WATCH.TIME.TYPE, boolean) : BEEP_TYPE yields back the value WATCH.BEEP.VALUE

if the time is a full hour and if the boolean is true, the value NO_BEEP_VALUE otherwise; the boolean is of
course the chime status

7.1.2. Body of wATCH

We declare two variables WATCH_TIME and CHIME.STATUS, respectively initialized to INITIAL WATCH.TIME and
talse. We start by emitting the current time and the current chime status:

emit WATCH_TIME (WATCH_TIME);

~15-

Programming a Digital Watch in Esterel v$

emit CHIME_STATUS (CHIME_STATUS)

We then enter an infinite loop. The body of that loop is a sequence of the instruction corresponding to
watch mode and of the instruction corresponding to set-watch mode:
loop
do
<watch-mode>
upto ENTER_SET_WATCH_MODE_COMMAND;
do
<gset-watch-mode>
upto EXIT_SET_WATCH_MODE_COMMAND
end

The watch-mode instruction is simply an infinite loop having as body an await-case on three signals :

> §: increments the time by calling the INCREMENT WATCH.TIME procedure, and emits the new time; emits
the BEEP signal with the value obtained by calling the WATCHBEEP function

> TOGGLE-24H.MODE.COMMAND : calls the procedure that toggles the 24H and 12H modes and emits the modified
time

> TOGGLE-CHIME.COMMAND : toggles the boolean variable CHIME_STATUS and emits the signal CHIME_STATUS with
the new value

When entering set-watch mode, we declare a local variable WATCH_TIME_POSITION initialized to the constant
INITIALWATCH-TIMEPOSITION. We first emit the START_ENHANCING signal with value this position; we then enter
a loop over an await-case statement on three signals:

> § : increments the time by calling the INCREMENT WATCH.TIME_IN_SET MODE procedure with arguments the
current time and setting position; emits the new time, together with the signal WATCH_BEING_SET

> SET.WATCH.COMMAND : applies a setting command by calling the SET_WATCH.TIME procedure with arguments
the current time and setting position; the new time is emitted together with the signal WATCH BEING_SET

> NEXT-WATCH-TIME.POSITION.COMMAND : sends the STOP_ENHANCING signal with value WATCH_TIME_POSITION, sets
WATCH.TIME_POSITION to the next position by calling the NEXT_WATCH.TIME_POSITION function, and emits
the START_ENHANCING signal with value the new WATCH.TIME_POSITION value

When set-watch mode is exited (upon reception of EXIT_SET.WATCHMODE.COMMAND), we emit the STOP_ENHANCING
signal with argument WATCH_TIME_POSITION.

7.1.3. Remarks

The signals TOGGLE_24H_MODE_ COMMAND and TOGGLE.CHIME.COMMAND are taken into account only in watch
mode. There is no difficulty in treating them also in set-watch mode, by copying the two corresponding
cases of the first await into the second one. The obtained watch is certainly better. In a global wristwatch
the two new cases may never be used. It is essential to notice that adding theses two cases would then
slightly increase the compiling time but not the execution time. More precisely the generated code for the
global wristwatch would be exactly the same!

Notice finally that all signal must be incompatible, otherwise there would be some trouble with the

await-case statement.

7.2. The STOPWATCH module
7.2.1. Architecture of STOPWATCH

The stopwatch behavior is rather complex, because of the RUN and LAP modes, and also because of the
particular command used to reset the stopwatch : LAP.COMMAND when neither in RUN mode nor in LAP mode.
We break down the complexity by introducing submodules.

Firstly, we treat separately the reset command. Then we can program a more natural stopwatch with
three distinct buttons, start/stop, lap, and reset. Hence we have the structure

-16-

Programming a Digital Watch in Esterel v§ -

signal RESET_STOPWATCH_COMMAND in
THREE_BUTTON_STOPWATCH

I
STOPWATCH_RESET_HANDLER (produces RESET_STOPWATCH_COMMAND)

end

Now we notice that the reset command is very easy to handle in the three-button stopwatch. We just have
to introduce a simpler two-button stopwatch with only RUN and LAP modes, hence without resetting. Call it
NORESET.STOPWATCH. The above program becomes

signal RESET_STOPWATCH_COMMAND in
loop
NO_RESET_STOPWATCH
each RESET_STOPWATCH_COMMAND
' STOPWATCH_RESET_HANDLER (produces RESET_STOPWATCH_COMMAND)
end
We further simplify NO_RESET_STOPWATCH by dividing it into two submodules: a BASIC_STOPWATCH module that
only knows about RUN mode and a LAP_FILTER module that only knows about LAP mode. LAP_FILTER filters
the time broadcast by BASIC_STOPWATCH according to the current LAP mode in order to produce the visible
stopwatch time. Hence BASIC_STOPWATCH handles what we called the “internal stopwatch time” and LAP_FILTER
handles the “visible stopwatch time”.

7.2.2. The BASIC_STOPWATCH module

To handle the stopwatch time, we need:

¢ a type STOPWATCH.TIME_TYPE for stopwatch time values
® a constant ZERO_STOPWATCH.TIME : STOPWATCH.TIME_TYPE used to initialize the stopwatch
¢ a procedure INCREMENT STOPWATCH.TIME (STOPWATCH.TIME) () that increments a stopwatch time

To handle the beeper, we need:

e a type BEEP_TYPE

¢ a constant STOPWATCH BEEP.VALUE : BEEP_TYPE

* a function STOPWATCHBEEP (STOPWATCH.TIME) : BEEP.TYPE that takes a stopwatch time as argument and
returns either NO_BEEP.VALUE or STOPWATCH.BEEP_VALUE, the latter being returned when the stopwatch time
is a beeping time (say a multiple of 10 minutes — to be defined in the host language)

The input signals are HS and START_STOP_COMMAND. They are assumed to be pairwise incompatible.
We output three signals:

® STOPWATCH.TIME : broadcasts the current stopwatch time

® STOPWATCHRUN_STATUS : broadcasts a boolean value representing the current run status (to be used for
example by a display)

® BEEP : broadcasts the current beep value

The body of BASICSTOPWATCH is very simple. We declare a STOPWATCH.TIME variable initialized to
ZERDO_STOPVATCH.-TIME. We enter an infinite loop, that starts with the instantaneous emissions of the ini-
tial false RUN status and of the initial stopwatch time. Since we are not in RUN mode, we wait for
START.STOP_COMMAND. When START_STOP_.COMMAND occurs, we enter RUN mode. We emit the new true run status
and beep. Run mode lasts upto the next occurrence of START_STOP_COMMAND, and consists in incrementing the
time every HS.

7.2.3. The LAPFILTER module
We need to declare the STOPWATCH.TIME_TYPE type, but no constants, functions or procedures.
There are two input signals:

e LAP.COMMAND : toggles the LAP mode

® BASIC.STOPWATCH.TIME : a stopwatch time issued by some basic stopwatch

~17-

Programming o Digital Watch in Esterel v8

There are two output signals:

e STOPWATCH.TIME : broadcasts the visible stopwatch time
o STOPWATCHLAP-STATUS (boolean) : broadcasts the lap status, presumably to some display unit

The body of LAP_FILTER is an infinite loop, which starts by emitting the initial false lap status. Then we
are not in LAP mode upto the next occurrence of LAP.COMMAND. During that time, whenever we receive a time
value broadcast by BASIC.STOPWATCH.TIME, we re-emit it as the value of STOPWATCH.TIME (we use loop...each
and not every in order to catch the first value when the stopwatch is started and the current value when LAP
mode is exited).

When receiving LAP_COMMAND, we enter LAP mode. We emit the true lap status and wait for the next occurrence
of LAP_COMMAND that will exit LAP mode. See the code in annex.

7.2.4. The STOPWATCHRESET HANDLER module

We declare the two incompatible input signals, START_STOP_COMMAND and LAP.COMMAND, and the output
signal RESET_STOPWATCH_ COMMAND.

The body is an interesting example of “instantaneous dialogue”, a typical ESTEREL mechanism. We
enter an infinite loop of the form

loop
trap RESET in
<exit RESET when detecting the reset condition>
end;
emit RESET_STOPWATCH_COMMAND
end

To detect the reset condition, we run two loops in parallel, which respectively handle START_STOP.COMMAND
and LAP_COMMAND. Whenever LAP_.COMMAND is received when not in LAP mode, the second loop sends a local
signal ARE_YOU_IN_RUNMODE to the first loop. When not in RUN mode, the first loop replies by sending back
NO.I.AMNOT_IN_RUN.MODE. It does not reply when in RUN mode. The first loop tests for the presence of
NO.I_AM.NOT_IN_RUN.MODE by executing a “present” statement and exits if this signal is present.

Notice that the structure of each loop is similar to the structure of the bodjes of BASIC_STOPWATCH and
LAP FILTER, so that we could detect the reset condition in the same way in these modules. The resulting
automaton would be exactly the same, but the ESTEREL code would be much heavier.

7.2.5. The main STOPWATCH module

Its structure follows directly from what we said above.

7.8. The ALARM module
7.8.1. Declarations of ALARM

To handle the alarm time, we need:

® a type ALARM.TIME_TYPE for the alarm time value

® a constant INITIAL ALARM.TIME : ALARM_TIME.TYPE that gives the initial value of the alarm time, displayed
when the module is started

¢ a procedure TOGGLE-24H_MODE_IN_ALARM_TIME (ALARM.TIME_TYPE) () that switches from 24H mode to 12H
mode and conversely
To handle the alarm time setting sequences, we need:

® a type ALARM.TIME.POSITION used in set-alarm mode for the currently set position

¢ a constant INITIAL.ALARM.TIME.POSITION : ALARM.TIME_POSITION that defines the starting alarm time po-
sition in setting sequences

¢ a function NEXT_ALARM.TIME_POSITION (ALARM.TIME_POSITION) : ALARM.TIME_POSITION that yields back the
next setting position from a given position

-18-

Programming a Digital Watch in Esterel v8

® a procedure SET-ALARM.TIME (ALARM_TIME_.TYPE) (ALARM.TIME.POSITION) that applies a setting command to
the time at the current position (for example increments the hours)

To communicate with the external watch, we need:
® a type WATCH.TIME.TYPE for the watch time value broadcast by the watch
To know when and how to beep, we need

¢ a type BEEP_TYPE
¢ a constant ALARM.BEEP_VALUE : BEEP.TYPE that gives the beep value of the alarm beeping sequence
¢ aconstant ALARMDURATION : integer that defines the maximal alarm beep sequence duration (in seconds)

e a function COMPARE_ALARM_TIME_TO.WATCH_TIME (ALARM_TIME.TYPE, WATCH.TIME.TYPE) : boolean that tests
whether the alarm should start beeping

The input and output declarations follow directly from the interface described in the previous section.

7.3.2. Body of ALARM

We declare a local signal START_BEEPING used to start a beeping sequence. We then enter two statement
in parallel. The first one handles the variables and determines when to start beeping, the second one handles
the beeping sequence.

In the first statement, we declare two variables: ALARM_TIME to hold the current alarm time (initially set
to INITIAL.ALARM.TIME) and ALARM.STATUS (initially set to false). We then enter an infinite loop, the body of
which is a sequence of the statement corresponding to alarm mode and of the statement corresponding to
set-alarm mode : '

loop

do

<alarm mode>
upto ENTER_SET_ALARM_MODE_COMMAND;
do

<set-alarm mode>

upto EXIT_SET_ALARM_MODE_COMMAND
end

The alarm mode instruction is simply an infinite loop having as body a aweit-case on three signals :

> TOGGLE_24H.MODE.COMMAND : provokes a call to the procedure that toggles the 24H and 12H modes and the
emission of the modified alarm time

> TOGGLE-ALARM COMMAND : toggles the boolean variable ALARM_STATUS. Emits the ALARM_STATUS signal with
the new value

> WATCH.-TIME: tests for the presence of the WATCH.BEING_SET signal, using a present statement. If this signal
is present, the watch is in a setting sequence and there is nothing to do. Otherwise one compares the

alarm and watch times. If they match, one emits the local signal STARTBEEPING that starts the beeping
sequence

Notice that the order of cases is important here. In a await-case statement, only the first case statement
is executed if several case occurrences occur simultaneously. Hence we must put WATCH.TIME in the last
case. Otherwise a command like TOGGLE 24K _MODE_COMMAND will not be taken into account, since it is certainly
synchronous with WATCH.TIME. The given ordering is easily checked to be safe: one should not start a beeping
sequence when receiving TOGGLE _24H MODE_COMMAND or TOGGLE_ALARM_COMMAND.

The set-watch mode statement is similar. We declare a local variable ALARM_TIME_POSITION initially set
to INITIAL-ALARM-TIME POSITION. We first emit a START ENHANCING signal carrying this position. We then enter
a loop over a avait-case on two signals :

> SET-ALARM.COMMAND : applies a setting command by calling the SET_ALARM.TIME procedure with arguments
the current time and setting position; emits the new alarm time

> NEXT-ALARM.TIME_POSITION.COMMAND : sets ALARM_TIMEPOSITION to the next position by calling the
HEXTALARM_TIME POSITION function '

~19-

Programming o Digital Watch in Esterel v$

The beeping sequence is simple. We beep every second upto the next occurrence of STOP_ALARM.BEEP COMMAND,
with a maximum of ALARM DURATION seconds. This is a nice simple nesting of temporal statements:

every START_BEEPING do
do
do
loop emit BEEP (ALARM_BEEP_VALUE) each §
upto STOP_ALARM_BEEP_COMMAND
watching ALARM_DURATION §
end

7.3.3. Remarks

We chose that the signals TOGGLE 24H.MODE.COMMAND and TOGGLEALARM.COMMAND are taken into account
only in alarm mode. There is no difficulty in treating them also in set-alarm mode, by copying the two
corresponding cases of the first await into the second one.

7.4. The BUTTON module

This module only handles pure signals, so that there are only input-output declarations (already de-
scribed in the previous section).

We do two things in parallel: handling the modes, and renaming permanently UR into
STOP.ALARM_BEEP.COMMAND using an every statement. The mode handling has the following structure:

emit WATCH_MODE_COMMAND;
loop
trap WATCH_MODE in
loop
do
<watch mode -- exit WATCH_MODE on LL>
upto UL;
do
<get-watch mode>
upto UL
end
end; N
end;
emit STOPWATCH_MODE_COMMAND;
do
<stopwatch mode>
upto LL;
emit ALARM_MODE_COMMAND;
loop
trap ALARM_MODE in
loop
do
<alarm mode -- exit ALARM_MODE on LL>
upto UL;
do
<set-alarm mode>
upto UL
end
end
end

The WATCHMODE and ALARM.MODE traps are necessary for exiting watch mode and alarm mode. Each individual
mode consists in simple button renamings, using every statements. For example, LR and UR are respectively

renamed into START_STOP.COMMAND and LAP_COMMAND when in stopwatch mode:

-20—

7.5.

Programming a Digital Watch in Esterel v8

every LR do emit START_STOP_COMMAND end

I
every UR do emit LAP_COMMAND end

The DISPLAY module

7.5.1. Declarations of DISPLAY

We declare the types related to the displays:

MAIN DISPLAY.TYPE for the main display
MINIDISPLAY.TYPE for the mini display
DISPLAY_POSITION for main, mini, or alphabetic display positions

To handle the watch, we declare:

the WATCH.TIME.TYPE type

a function VATCH.TIME_TOMAIN DISPLAY (WATCH.TIME-TYPE) : MAIN.DISPLAY.TYPE that converts a watch time
to MAIN DISPLAY.TYPE (normally the hours, minutes, and seconds should be displayed on the main display,
together with the current 24H or PM status)

a function WATCH.TIME_TOMINI_DISPLAY (WATCH.TIME_TYPE) : MINI DISPLAY.TYPE that converts a watch time
to MINI.DISPLAY.TYPE (used in stopwatch or alarm mode, where the hours and minutes should be displayed
on the mini display)

a function WATCH DATE.TO.MINI_DISPLAY (WATCH.TIME_TYPE) : MINI_DISPLAY_TYPE that converts the date in a
watch time to MINI_DISPLAY.TYPE (normally the month and day should be displayed on the mini display
when in watch mode)

a function WATCH DAY_TO_ALPHABETIC.DISPLAY (WATCH.TIME.TYPE) : string that converts the day of the week
in a watch time into a string to be displayed on the alphabetic display

the WATCHDISPLAY POSITION type

a function WATCH DISPLAY POSITION (WATCH.TIME_POSITION) : DISPLAY POSITION that converts a watch time
position into a display position, to enhance that position

To handle the stopwatch, we declare:

the STOPWATCH.TIME_TYPE type

a function STOPWATCH_TIME_TO_MAIN DISPLAY (STOPWATCH.TIME_TYPE) : MAIN DISPLAY.TYPE that converts a
stopwatch time to MAIN DISPLAY.TYPE (normally minutes, seconds, and 1/100 seconds should be displayed
on the main display)

To handle the alarm, we declare:

the ALARM_TIME.TYPE type

a function ALARM.TIME_TO.MAIN DISPLAY (ALARM_TIME.TYPE) : MAIN_DISPLAY.TYPE that converts an alarm
time to MAIN.DISPLAY.TYPE (normally hours and minutes should be displayed on the main display, together
with the current 24H or PM status)

the ALARM DISPLAY POSITION type

a function ALARM_DISPLAY_POSITION (ALARM.TIME_POSITION) : DISPLAYPOSITION that converts an alarm
time position into a display position, to enhance that position

The input-output interface is declared as specified in the previous section.

7.5.2. Body of DISPLAY

The structure of the body is as follows:

—21—

Programming a Digital Watch in Esterel v3

loop
do
<watch on display>
upto STOPWATCH_MODE_COMMAND;
do
(

1
do
<stopwatch on display>
upto ALARM_MODE_COMMAND;
do
<alarm on display>
upto WATCH_MODE_COMMAND

<watch time on mini displaey>

]
upto WATCH_MODE_COMMAND
end

Notice that the internal “do ... upto WATCH.MODE.COMMAND® is useless, since it is preempted by the external
one. It is there only for elegance and better extensibility (we can add more easily an other alarm or a
backtimer).

We only detail the <watch mode> statement, the other ones being similar. We have three independent
things to do, that correspond to three statements in parallel:

> displaying the watch time; we use a statement of the form “loop ... each WATCH.TIME® (we need
loop ... each and not every to display the watch time whenever entering watch mode); we emit
the values to be displayed in the three displays; they are computed by applying the suitable conversion
functions described above.

> starting enhancing the display positions; we use an every statement and the appropriate conversion
function from watch time positions to display positions

> stopping enhancing display positions, in the same way

Notice that we use three statements in parallel, not a await-case statement: the three operations are really
independent and share no variable, so that three parallel statements are more natural than an await-case.
Moreover, the signals WATCH.START ENHANCING and WATCH.STOP_ENHANCING are quite often simultaneous (when-
ever we go to the next setting position), so that an await-case wouldn’t work properly — remember that
the cases are taken sequentially and up to the first success only.

7.6. The main WRISTWATCK module

Since they appear as types of internal signals. we declare all the types related with times, positions,
and displays. We also delare the BEEP_TYPE type used for the beeper.

The input-output interface was described in the previous section. The only remark we make here
concerns the BEEP signal, that is declared to be a combined signal (with COMBINE BEEPS as combination
function). This signal can be emitted by the WATCH, STOPWATCH, and ALARM modules; it can be emitted
simultaneously by them, Therefore, BEEP must be a combined signal in the main WRISTWATCH module, although
if it is a single signal in each submodule.

We declare all the required local signals and copy the five submodules in parallel. To avoid name clashes,
we rename the signals related to watch and alarm positions enhancing.

8. Compiling the wristwatch with the ESTEREL V3 system
8.1. Compiling

Using the ESTEREL V3 system, we compile the full WRISTWATCH module and also the individual sub-
modules VATCH, STOPWATCH, ALARM, BUTTON, and DISPLAY. This is useful to check that they have no internal
causality problems and to see their sizes. We give statistics in table 1. For each module, we list the number

—29-

Programming a Digital Watch in Esterel v8

of states, the number of actions and bytes in the automaton final table (as given by the occ processor of the
ESTEREL V3 compiler (3]), and the compiling time measured on a SUN 3/60 computer. The parsing time
is ignored here, although parsing is more expensive than compiling for small modules. .

Module States Actions Bytes Time
WATCH 3 36 73 0.02 s
STOPWATCH 5 20 106 0.16 s
ALARM 5 38 242 0.16 s
BUTTON 6 22 110 0.12 s
DISPLAY 4 28 244 0.18 s
WRISTWATCH 41 84 2472 4.64 s

Table 1.

Notice the following facts:

e The individual module are small. Since modules are tightly coupled, the number of states of the
wristwatch is much less than the product of the number of states of its components*. For example, the
display handler is completely driven by the button interpreter and the number of states of their parallel
product is no more than the number of states of the button interpreter-itself.

o The resulting code is small and fast. It only contains actions that are inevitable at run-time. There is no

process handling and communication overhead. In practice, a transition takes about 500 microseconds
on a SUN 3/60.

8.2. The C data-handling code

To simulate or execute the C resulting automaton, we must write the C code that defines the types,
constants, functions, and procedures referenced to by the ESTEREL program, following the interface conven-
tions described in the ESTEREL V3 documentation [3]. This is an easy but tedious task. The reader will
find this auxiliary code in the distribution tape**.

8.3. Simulation

To debug a reactive program, it is always useful to run interactive simulations. The ESTEREL V3 C
code generator has a -simul option that generates code suited to such simulations, see [3]; the wristwatch
simulator is included in the distribution tape; it is called sww. When running this program, one enters signal
in a symbolic way at the terminal; one can set various tracing options to print out states, local signals, and
variable values. A simulation session of the wristwatch is presented in annex.

8.4. Executing the generated C code

To actually run the wristwatch, we choose to write a terminal-independent fullscreen simulation under
UNIX. In UNIX v7 or System V, the smallest available time unit is the second. We must then abandon the
1/100 second for the stopwatch and beat the second. In Bsd UNIX 4.2 or 4.3, we have access to the 1/50 or
1/60 second; we can then program a more interesting stopwatch. This is controlled by makefile variables. -

To input signals, we use a fairly standard technique to multiplex the keyboard and the time (using the
UNIX signal primitive). Four keys of the keyboard are taken into account to simulate the four buttons (in

* For each component, one should substract 1 to the indicated number of states — the extra state
corresponding to initializations
** Unlike in the previous version ESTEREL v2.2, it is not necessary to write one C code for simulation and
one Le_Lisp code for actual execution.

~23—

Programming a Digital Watch in Esterel v8

standard the “4”, “5”, “1” and “2” keys of the numeric pad correspond to the UL, UR, LL, and LR signals —
these keys are however redefinable when calling the wristwatch). An input process reads the keyboard and
waits for time signals. It sends a character to a pipe whenever a significant input event occurs (a stroke
on one of the four selected keys or a time signal). The actual wristwatch process reads from the pipe and
calls the corresponding input routine and the wristwatch automaton. It respects the interfaces described in
the C interface section of the ESTEREL V3 documentation. Notice that the input key and time signals are
serialized (except of course HS and §): the input relations are satisfied. The fullscreen output is done using
termcap in order to be terminal-independent. The effect of the C simulation is of course best understood by
running the resulting program, which is distributed in the ESTEREL V3 tape.

8.5. Implementing the wristwatch as a cascade of automata

We can also separately compile our five submodules and make the five resulting automata communicate
at run-time. This amounts to a time-space exchange: we save some space, since the sum of the sizes of the
individual automata is less than the size of the global automaton; we loose some speed, since inter-automata
communication has to be done at run-time.

In our case, separate compilation is done in a fully automatic way by the ESTEREL V3 compiler when
it is given the -cascade option. The compiler detects that the wristwatch is made of five communicating
submodules that can be called in a fixed order for each reaction (first BUTTON, then WATCH, then STOPWATCH,
then ALARM, then DISPLAY is a correct order). The compiler compiles each module separately and produces
some code to link the modules at run-time. The automaton size is now the sum of the sizes of the individual
modules, that is 775 bytes in the resulting C code.

9. Variants of the wristwatch

Since our architecture is modular, it is very easy to make several variants of the wristwatch.” For example,
we can remove the alarm or the stopwatch by removing or slightly modifying the corresponding lines of the
BUTTON, DISPLAY, and WRISTWATCH modules.

There is a problem to remove the alarm, because of an anomaly in the wristwatch specification. The
TOGGLE.CHIME COMMAND signal is issued by BUTTON in ALARM mode and not in WATCH mode. This feature actually
appears in the author’s watch, and we kept it to show an example of non-modular specification. A simple

way to solve the problem is to modify BuTTON by emitting TOGGLE.CHIME_COMMAND when receiving UR in WATCH
mode.

These variants are rather trivial and will not be discussed further. Table 1. shows the effect on the
resulting automaton and on the compiling time. The auxiliary C code written for the full wristwatch needs
not be modified for the smaller ones.

A more interesting variant concerns the stopwatch. In the author’s wristwatch, the stopwatch does
not remember its LAP mode when exited. Let us give and example: enter the stopwatch, start it, and then
depress the LAP button to enter LAP mode; exit the stopwatch by depressing LL; re-enter the stopwatch by
depressing LL twice. Then the stopwatch is not any more in LAP mode and its display keeps running. In fact,
LAP mode is exited as soon as stopwatch mode is exited, with LAP indicator turned off at that moment.

To obtain this behavior, we introduce a new signal EXIT_SET_WATCH.MODE_COMMAND, declared as output in
BUTTON, as input in STOPWATCH, STOPWATCH.RESET, and as local in WRISTWATCH. We emit it in BUTTON when exiting
stopwatch mode. In STOPWATCH, we replace :

copymodule LAP FILTER
by

loop
copymodule LAP_FILTER
each next EXIT_STOPWATCH_MODE_COMMAND

In STOPWATCHRESET, we enclose the second branch of the parallel in

—24—

Programming a Digital Watch in Esterel v8

loop

each EXIT_STOPWATCH_MODE_COMMAND

Call our original stopwatch stopwatch, and the new one stopwatch,. Table 2. shows that the obtained
automata are much smaller than the original ones. This is the (only) interest of the modification.

Device States Actions Bytes Time

watch stopwatch; alarm 41 84 2472 4.64 s

watch stopwatchy alarm 25 84 1530 8.04 s

watch stopwatch; 13 57 642 0.94 s

watch stopwatch, 9 57 443 0.7 s

watch alarm 9 67 468 0.76 s
Table 2.

10. Conclusion

We have completely programmed a quite complex ESTEREL application together with its simulation and
execution interfaces. We hope that the present paper will help the reader to understand the programming
style we try to promote; this style is actually quite close to the “object programming” style, but uses parallel

composition of synchronous processes instead of sequential message passing. We tried to follow the following
rules:

¢ Put the main effort on architecture. Programming is quite easy once the modules and their interfaces

are well-understood. More precisely programming should be easy. If it is not the case, the architecture
is probably not good enough.

o Never hesitate to introduce additional modules or signals. A small clever program does not produce a
better object code than a longer but more understandable one. The compiling algorithm performs very

deep optimizations and many source instructions do not produce code: they just give more work to the
compiler.

¢ Use signals to handle the control, not booleans and if-then-else-?i statements. These statements
generate code, unlike pure signal handling; they should be avoided or kept only if the test generates
really different temporal behaviors. There is only one test in our watch, the test for alarm beeping. The
stopwatch reset procedure could be done with booleans, but is much better done with signals as in the
text. When a signal is pure output, it is also wise to emit dummy values instead of testing whether a
value should be emitted or not, leaving the test to the external output routine and thus factorizing it
(as for the BEEP signal here).

¢ Use parallel statements as much as possible. Reserve the await-case statement to situations where it is
really necessary, that is to situations where the different cases read or update the same set of variables.

The simulation and execution interfaces raised no particular difficulties. In real situations where the host
system is not UNIX but a some real-time system and where speed is required, much more effort should be
put in system interfaces. ESTEREL gives no specific tool at that level.

Acknowledgements: I want to thank Georges Gonthier, who made many improvements on the original
watch, and the other co-authors of the ESTEREL V2 and ESTEREL V3 systems: R. Bernhard, F. Boussinot,
P. Couronné, J-P. Rigault, A. Ressouche, J-B. Saint, and J-M. Tanzi.

—25—

Programming a Digital Watch tn Esterel v8

References

[1] G. Berry, G. Gonthier, The ESTEREL Synchronous Programming Language: Design, Semantics, Imple-
mentation, INRIA Report 842, 1988, to appear in Science of Computer Programming.

[2] G. Berry, P. Couronné, G. Gonthier, ESTEREL v2 System Manuals, Ecole des Mines, Centre de Mathé-
matiques Appliquées, Sophia-Antipolis, 1986.

[3] R. Bernhard, G. Berry, F. Boussinot, P. Couronné, G. Gonthier, A. Ressouche, J-P Rigault, J-M.
Tanzi, ESTEREL V3 System Manuals, Ecole des Mines, Centre de Mathématiques Appliquées, Sophia-
Antipolis, 1988.

(4] D. Harel, Statecharts, A Visual Approach to Complex Systems, Dept. of Applied Math. Weizmann
Institute of Science, Rehovot, Israel, 1984.

—26-

ESTEREL v3 code for the wristwatch

Here is the complete ESTEREL code for the wristwatch, divided into six modules :

The WATCH module, which handles the regular watch (file “watch /watch.strl”).

The sTOPVATCH module, which handles the stopwatch (file “stopwatch/stopwatch.strl”). It is itself made
of three submodules.

The ALARM module, which handles the alarm (file “alarm/ alarm.strl”).

The BUTTON module, which performs mode handling and dynamic button renaming (file “but-
ton/button.strl”).

The DISPLAY module, which handles the wristwatch display unit (file “display/display.strl”).

The WRISTWATCH module, which essentially consists in putting the above modules in parallel, with suitable
renamings (file “wristwach.strl”).

The WATCH, STOPWATCH, and ALARM modules are easily reusable elsewhere.

27—

Esterel v8 Code for the WATCH Module

11, The WATCH module

This is file “watch.str]l”.
module WATCH :

11.1, Declarations of WATCH

To handle the watch time:

type WATCH_TIME_TYPE;

constant INITIAL_WATCH_TIME : WATCH_TIME_TYPE;

procedure INCREMENT_WATCH_TIME (WATCH_TIME_TYPE) (),
TOGGLE_24H_MODE_IN_WATCH_TIME (WATCH_TIME_TYPE) () :

input 8§,
TOGGLE_24H_MODE_COMMAND;

output WATCH_TIME (WATCH_TIME_TYPE) ;

To set the watch time:

type WATCH_TIME_POSITION;
constant INITIAL_WATCH_TIME_POSITION : WATCH_TIME_POSITION:

function NEXT_WATCH_TIME_POSITION (WATCH_TIME_POSITION) : WATCH_TIME_POSITION;
% say from seconds to hours to 10 minutes to minutes to month to
% day to day in week and circularly ! (not relevant for ESTEREL)

procedure SET_WATCH_TIME (WATCH_TIME_TYPE) (WATCH_TIME_POSITION),
% applies a setting command to the current time and position
INCREMENT_WATCH_TIME_IN_SET_MODE (WATCH_TIME_TYPE)
(WATCH_TIME_POSITION);
% increments the time only to the position being currently set
input ENTER_SET_WATCH_MODE_COMMAND,
SET_WATCH_COMMAND,
NEXT_WATCH_TIME_POSITION_COMMAND,
EXIT_SET_WATCH_MODE_COMMAND;

output WATCH_BEING_SET,
% Synchronous with WATCH_TIME when the watch is set
START_ENHANCING (WATCH_TIME_POSITION),
STOP_ENHANCING (WATCH_TIME_POSITION);

To beep:

type BEEP_TYPE;

function WATCH_BEEP (WATCH_TIME_TYPE, boolean) : BEEP_TYPE;
% returns either the value VATCH_BEEP_VALUE if the watch has to beep
% and the boolean (CHIME_STATUS) is true,
% or the value NO_BEEP_VALUE otherwise

input TOGGLE_CHIME_COMMAND;

output CHIME_STATUS (boolean),
BEEP (BEEP_TYPE);

Input relations:

relation §
TOGGLE_24H_MODE_COMMAND
TOGGLE_CHIME_COMMAND
ENTER_SET_WATCH_MODE_COMMAND
SET_WATCH_COMMAND
NEXT_WATCH_TIME_POSITIDN_COMMAND
EXIT_SET_WATCH_MODE_COMMAND;

~28-

Esterel v8 Code for the WATCH Module

11.2. Body of WATCH

var WATCH_TIME := INITIAL_WATCH_TIME : WATCH_TIME_TYPE,
CHIME_STATUS := false : boolean in

% initializations
emit WATCH_TIME (WATCH_TIME):
emit CHIME_STATUS (CHIME_STATUS);
% main loop
loop
% normal mode
do % upto ENTER_SET_WATCH_MODE_COMMAND
loop
awvait
case S do
call INCREMENT_WATCH_TIME (WATCH_TIME) ();
emit WATCH_TIME (WATCH_TIME);
emit BEEP (WATCH_BEEP (WATCH_TIME, CHIME_STATUS))
cagse TOGGLE_24H_MODE_COMMAND do

call TOGGLE_24H_MODE_IN_WATCH_TIME (WATCH_TIME) 0;
emit WATCH_TIME (WATCH_TIME)

case TOGGLE_CHIME_COMMAND do
CHIME_STATUS := not CHIME_STATUS:
emit CHIME_STATUS (CHIME_STATUS)
end
end
upto ENTER_SET_WATCH_MODE_COMMAND;

% set-watch mode
%4 (in set-watch mode one might as well accept the commands
% TOGGLE_24H_MODE_COMMAND and TOGGLE_CHIME_COMMAND; for
% this one just could copy the corresponding cases above into
% the select!)
var WATCH_TIME_POSITION : WATCH_TIME_POSITION in
do % upto EXIT_SET_WATCH_MODE_COMMAND

WATCH_TIME_POSITION := INITIAL_WATCH_TIME_POSITION;

emit START_ENHANCING (WATCH_TIME_POSITION);

loop

avait
case § do
call INCREMENT_WATCH_TIME_IN_SET_MODE

(WATCH_TIME) (WATCH_TIME_POSITION);
emit WATCH_TIME (WATCH_TIME);
emit WATCH_BEING_SET

case SET_WATCH_COMMAND do

call SET_WATCH_TIME (WATCH_TIME) (WATCH_TIME_POSITION);
emit WATCH_TIME (WATCH_TIME):
emit WATCH_BEING_SET

case NEXT_WATCH_TIME_POSITION_COMMAND do
emit STOP_ENHANCING (WATCH_TIME_POSITION);
WATCH_TIME_POSITION := NEXT_WATCH_TIME_POSITION

(WATCH_TIME_POSITION) ;
emit START_ENHANCING (WATCH_TIME_POSITION)

end
end
upto EXIT_SET_WATCH_MODE_COMMAND;
emit STOP_ENHANCING (WATCH_TIME_POSITION)
end
end
end.

-99—

Esterel v8 Code for the STOPWATCH Module

12. The STOPWATCH module

This is file “stopwatch.strl”.

There are three submodules : a basic stopwatch that only treats the start/stop command, a lap filter
that treats the lap command, and a reset handler that determines when to reset the stopwatch. They are
put in parallel in the main STOPWATCH module, with suitable renamings.

12,1, The BASIC.STOPWATCH module

module BASIC_STOPWATCH :

12.1.1. Declarations of BASIC_STOPWATCH

To handle the stopwatch time:

type STOPWATCH_TIME_TYPE;
constant ZERO_STOPWATCH_TIME : STOPWATCH_TIME_TYPE;
procedure INCREMENT_STOPWATCH_TIME (STOPWATCH_TIME_TYPE) ();

input HS,
START_STOP_COMMAND;

relation HS
START_STOP_COMMAND;

output STOPWATCH_TIME (STOPVATCH_TIME_TYPE),
STOPWATCH_RUN_STATUS (boolean);

To beep:

type BEEP_TYPE;
constant STOPWATCH_BEEP_VALUE : BEEP_TYPE;

function STOPWATCH_BEEP (STOPWATCH_TIME_TYPE) : BEEP_TYPE;
% returns either the value STOPWATCH_BEEP_VALUE if the stopwatch has
% to beep or the value NO_BEEP_VALUE othervise

output BEEP (BEEP_TYPE);

12.1.2. Body of BASIC.STOPWATCH

var STOPWATCH_TIME := ZERO_STOPWATCH_TIME : STOPWATCH_TIME_TYPE in
loop
emit STOPWATCH_RUN_STATUS (false);
emit STOPWATCH_TIME (STOPWATCH_TIME):
% stopwatch not running
await START_STOP_COMMAND;
% starting the stopwatch

emit STOPWATCH_RUN_STATUS (true):
emit BEEP (STOPWATCH_BEEP_VALUE);
do
every HS do
call INCREMENT_STOPWATCH_TIME (STOPWATCH_TIME) () ;
emit STOPVATCH_TIME (STOPWATCH_TIME);
emit BEEP (STOPWATCH_BEEP (STOPWATCH_TIME))
end
upto START_STOP_COMMAND;

% stopping the stopwatch
emit BEEP (STOPWATCH_BEEP_VALUE)
end
end.

Esterel v8 Code for the STOPWATCH Module

12.2. The LAPFILTER module

module LAP_FILTER :

12.2.1. Declarations of LAP_FILTER

type STOPWATCH_TIME_TYPE;

input LAP_COMMAND,
BASIC_STOPWATCH_TIME (STOPWATCH_TIME_TYPE);

output STOPWATCH_TIME (STOPWATCH_TIME_TYPE),
STOPWATCH_LAP_STATUS (boolean);

12.2.2. Body of LAP_FILTER

loop
emit STOPWATCH_LAP_STATUS (false);

% not in LAP mode
do

loop
enit STOPWATCH_TIME (? BASIC_STOPWATCH_TIME)
each BASIC_STOPWATCH_TIME

upto LAP_COMMAND;

% LAP_COMMAND received
emit STOPWATCH_LAP_STATUS (true);

% LAP mode
awvait LAP_COMMAND
end.

-31-

Esterel v8 Code for the STOPWATCH Module

12.8. The STOPWATCHRESET HANDLER module

module STOPWATCH_RESET_HANDLER :

12.3.1. Decalarations of STOPWATCHRESET HANDLER

input START_STOP_COMMAND,
LAP_COMMAND;

relation START_STOP_COMMAND # LAP_COMMAND;
output RESET_STOPWATCH_COMMAND;

12.3.2. Body of STOPWATCHRESET_HANDLER

loop
trap RESET in
signal ARE_YOU_IN_RUN_MODE,
NO_I_AM_NOT_IN_RUN_MODE in
[
loop
do

every ARE_YOU_IN_RUN_MODE do

emit NO_I_AM_NOT_IN_RUN_MODE
end

upto START_STOP_COMMAND;
await START_STOP_COMMAND
end
i
loop
await LAP_COMMAND do
% LAP_COMMAND received when not in LAP mode

emit ARE_YOU_IN_RUN_MODE;

present NO_I_AM_NOT_IN_RUN_MODE then
exit RESET

end

end;
await LAP_COMMAND
end
)|
end
end;
emit RESET_STOPWATCH_COMMAND
end.

-32-

Esterel v$ Code for the STOPWATCH Module

12.4. The main STOPWATCH module

module STOPWATCH :
12.4.1. Declarations of STOPWATCH

To handle the stopwatch time:

type STOPWATCH_TIME_TYPE;

input HS,
START_STOP_COMMAND,
LAP_COMMAND;

relation HS
START_STOP_COMMAND
LAP_COMMAND;

output STOPWATCH_TIME (STOPWATCH_TIME_TYPE),
STOPWATCH_RUN_STATUS (boolean),
STOPWATCH_LAP_STATUS (boolean);

To beep:

type BEEP_TYPE;
output BEEP (BEEP_TYPE);

12.4.2. Body of STOPWATCH

signal RESET_STOPWATCH_COMMAND,
BASIC_STOPWATCH_TIME (STOPWATCH_TIME_TYPE) in

[
loop

copymodule BASIC_STOPWATCH
[signal BASIC_STOPWATCH_TIME / STOPWATCH_TIME]
H
copymodule LAP_FILTER
each RESET_STOPWATCH_COMMAND
H
copymodule STOPWATCH_RESET_HANDLER

end.

-33-

Esterel v8 Code for the ALARM Module

13. The ALARM module

This is file “alarm.strl”.

module ALARM :

13.1. Declarations of ALARM

To handle the alarm time:

type ALARM_TIME_TYPE;
constant INITIAL_ALARM_TIME : ALARM_TIME_TYPE;

procedure TOGGLE_24H_MODE_IN_ALARM_TIME (ALARM_TIME_TYPE) ();
input TOGGLE_24H_MODE_COMMAND;

output ALARM_TIME (ALARM_TIME_TYPE);

To set the alarm time:

type ALARM_TIME_POSITION;
constant INITIAL_ALARM_TIME_POSITION : ALARM_TIME_POSITION:

function NEXT_ALARM_TIME_POSITION (ALARM_TIME_POSITION) : ALARM_TIME_POSITION;
% say from hours to 10-minutes to minutes and circularly
% (not relevant for ESTEREL)

procedure SET_ALARM_TIME (ALARM_TIME_TYPE) (ALARM_TIME_POSITION);
% applies a setting command
input ENTER_SET_ALARM_MODE_COMMAND,
SET_ALARM_COMMAND,
NEXT_ALARM_TIME_POSITION_COMMAND,
EXIT_SET_ALARM_MODE_COMMAND;
output START_ENHANCING (ALARM_TIME_POSITION),
STOP_ENHANCING (ALARM_TIME_POSITION);

To communicate with a watch:

type WATCH_TIME_TYPE;
function COMPARE_ALARM_TIME_TO_WATCH_TIME
(ALARM_TIME_TYPE, WATCH_TIME_TYPE) : boolean;

input VATCH_TIME (WATCH_TIME_TYPE),
WATCH_BEING_SET;

To beep:

type BEEP_TYPE;

constant ALARM_BEEP_VALUE : BEEP_TYPE,
ALARM_DURATION : integer;
input TOGGLE_ALARM_COMMAND,

s,
STOP_ALARM_BEEP_COMMAND;
output ALARM_STATUS (boolean),

BEEP (BEEP_TYPE);

Input relations:

relation WATCH_BEING_SET => WATCH_TIME,

all the other signals are pairwise incompatible,
except STOP_ALARM_BEEP_COMMAND that may appear anytime
S

TOGGLE_24H_MODE_COMMAND
TOGGLE_ALARM_COMMAND
ENTER_SET_ALARM_MODE_COMMAND
SET_ALARM_COMMAND
NEXT_ALARM_TIME_POSITION_COMMAND
EXIT_SET_ALARM_MODE_COMMAND;

LR R B SR

34—

Esterel v8 Code for the ALARM Module

13.2. Body of ALARM

signal START_BEEPING in

[
var ALARM_TIME := INITIAL_ALARM_TIME : ALARM_TIME_TYPE,
ALARM_STATUS := false : boolean in
% initializations
emit ALARM_TIME (ALARM_TIME) ;
emit ALARM_STATUS (ALARM_STATUS);

% main loop
loop
% normal mode

do % upto ENTER_SET_ALARM_MODE_COMMAND
loop
avait

case TOGGLE_24H_MODE_COMMAND do
call TOGGLE_24H_MODE_IN_ALARM_TIME (ALARM_TIME) () ;
emit ALARM_TIME (ALARM_TIME)
case TOGGLE_ALARM_COMMAND do
ALARM_STATUS := not ALARM_STATUS;
emit ALARM_STATUS (ALARM_STATUS)
case WATCH_TIME do
present WATCH_BEING_SET else
if COMPARE_ALARM_TIME_TO_WATCH_TIME

(ALARM_TIME, ? WATCH_TIME)
and ALARM_STATUS
then

emit START_BEEPING
end
end

end
end
upto ENTER_SET_ALARM_MODE_COMMAND;

% set-alarm mode

% (one might also accept TOGGLE_24H_MODE_COMMAND
% and TOGGLE_ALARM_COMMAND; for this one just has to

% copy the corresponding cases above into the next await).
% Notice that the alarm does not ring in set mode
var ALARM_TIME_POSITION : ALARM_TIME_POSITION in
do % upto EXIT_SET_ALARM_MODE_COMMAND
ALARM_TIME_POSITION := INITIAL_ALARM_TIME_POSITION;
emit START_ENHANCING (ALARM_TIME_POSITION);
loop
avait
case SET_ALARM_COMMAND do
call SET_ALARM_TIME (ALARM_TIME)
(ALARM_TIME_POSITION) ;
emit ALARM_TIME (ALARM_TIME)
case NEXT_ALARM_TIME_POSITION_COMMAND do
emit STOP_ENHANCING (ALARM_TIME_POSITION) :
ALARM_TIME_POSITION := NEXT_ALARM_TIME_POSITION

(ALARM_TIME_POSITION) ;
emit START_ENHANCING (ALARM_TIME_POSITION)

end
end

upto EXIT_SET_ALARM_MODE_COMMAND;

-35-

Esterel v8 Code for the ALARM Module

emit STOP_ENHANCING (ALARM_TIME_POSITION);
ALARM_STATUS := true;
emit ALARM_STATUS (ALARM_STATUS)
end
end
end

I
% how to beep
every START_BEEPING do
do
do
loop emit BEEP (ALARM_BEEP_VALUE) each S
upto STOP_ALARM_BEEP_COMMAND
watching ALARM_DURATION S
end

end.

—36—

Esterel v8 Code for the BUTTON Module

14. The BUTTON module

This is file “button.strl”.
module BUTTON :

14.1. Declarations of BUTTOY

Input buttons and input relations:

input UL, % upper-left button
UR, % upper-right button
LL, % lower-left button
LR; % lower-right button

relation UL # UR # LL # LR; % all buttons are incompatible

Outputs of the watch mode:

output WATCH_MODE_COMMAND,
TOGGLE_24H_MODE_COMMAND, % also to the alarm

ENTER_SET_WATCH_MODE_COMMAND,
SET_WATCH_COMMAND,
NEXT_WATCH_TIME_POSITION_COMMAND,
EXIT_SET_WATCH_MODE_COMMAND,

TOGGLE_CHIME_COMMAND;

Outputs of the stopwatch mode:

output STOPWATCH_MODE_COMMAND,
START_STOP_COMMAND,
LAP_COMMAND;

Outputs of the alarm mode:

output ALARM_MODE_COMMAND,
ENTER_SET_ALARM_MODE_COMMAND,
SET_ALARM_COMMAND,
NEXT_ALARM_TIME_POSITION_COMMAND,
EXIT_SET_ALARM_MODE_COMMAND,

TOGGLE_ALARM_COMMAND,
STOP_ALARM_BEEP_COMMAND;

-37—

Esterel v8 Code for the BUTTON Module

14.2. Body of BUTTON

[
loop

% Watch and set-watch mode (exit by LL in watch mode only, not in set-watch mode)
emit WATCH_MODE_COMMAND;
trap WATCH_AND_SET_WATCH_MODE in

loop
% watchmode
do % upto UL, that turns to set-watch mode

avait LL do exit WATCH_AND_SET_WATCH_MODE end

' every LR do emit TOGGLE_24H_MODE_COMMAND end
upto UL;
% set-watch-mode
emit ENTER_SET_WATCH_MODE_COMMAND;
do % upto UL, that brings back to watch mode
every LL do emit NEXT_WATCH_TIME_POSITION_COMMAND end
I
! every LR do emit SET_WATCH_COMMAND end
upto UL;
emit EXIT_SET_WATCH_MODE_COMMAND
end %loop
end;

% Stopwatch mode (exit by LL); LR is START/STOP, UR is LAP
emit STOPWATCH_MODE_COMMAND;
do % upto LL
every LR do emit START_STOP_COMMAND end
1

every UR do emit LAP_COMMAND end
upto LL;

% Alarm end set-alarm mode (exit by LL in alarm mode only, not in set-alarm mode)
trap ALARM_AND_SET_ALARM_MODE in
emit ALARM_MODE_COMMAND;

loop
% alarm mode
do % upto UL, that turns to set-alarm mode

avait LL do exit ALARM_AND_SET_ALARM_MODE end
3]

every LR do emit TOGGLE_CHIME_COMMAND end
i1

every UR do emit TOGGLE_ALARM_COMMAND end
upto UL;

% set-alarm mode
emit ENTER_SET_ALARM_MODE_COMMAND;
do) upto UL, that returns to alarm mode
every LL do emit NEXT_ALARM_TIME_POSITION_COMMAND end
M
every LR do emit SET_ALARM_COMMAND end
upto UL;
emit EXIT_SET_ALARM_MODE_COMMAND
end

end
end

% transforms permanently UR into STOP_ALARM_BEEP_COMMAND

every UR do emit STOP_ALARM_BEEP_COMMAND end
1.

-38—

Esterel v8 Code for the DISPLAY Module

15. The DISPLAY module

This is file “display.strl”
module DISPLAY :

15.1. Declarations of DISPLAY

For the main display:

type MAIN_DISPLAY_TYPE;

output MAIN_DISPLAY (MAIN_DISPLAY_TYPE);
For the mini display:

type MINI_DISPLAY_TYPE;

output MINI_DISPLAY (MINI_DISPLAY_TYPE);
For the alphabetic display:

output ALPHABETIC_DISPLAY (string);

For display positions:

type DISPLAY_POSITION;

output START_ENHANCING (DISPLAY_POSITION),
STOP_ENHANCING (DISPLAY_POSITION):

To handle the watch:
type WATCH_TIME_TYPE;

function WATCH_TIME_TO_MAIN_DISPLAY (WATCH_TIME_TYPE) : MAIN_DISPLAY_TYPE,
WATCH_TIME_TO_MINI_DISPLAY (WATCH_TIME_TYPE) : MINI_DISPLAY_TYPE,

WATCH_DATE_TO_MINI_DISPLAY (WATCH_TIME_TYPE) : MINI_DISPLAY_TYPE

WATCH_DAY_TO_ALPHABETIC_DISPLAY (WATCH_TIME_TYPE) : string;

type WATCH_TIME_POSITION;

function WATCH_DISPLAY_POSITION (WATCH_TIME_POSITION) : DISPLAY_POSITION;

input WATCH_MODE_COMMAND,
WATCH_TIME (WATCH_TIME_TYPE),

WATCH_START_ENHANCING (WATCH_TIME_POSITION),
WATCH_STOP_ENHANCING (WATCH_TIME_POSITION);

To handle the stopwatch:

type STOPWATCH_TIME_TYPE;
function STOPWATCH_TIME_TO_MAIN_DISPLAY

(STOPWATCH_TIME_TYPE) : MAIN_DISPLAY_TYPE;

input STOPWATCH_MODE_COMMAND,
STOPWATCH_TIME (STOPWATCH_TIME_TYPE)

To handle the alarm:
type ALARM_TIME_TYPE;

function ALARM_TIME_TO_MAIN_DISPLAY (ALARM_TIME_TYPE) : MAIN_DISPLAY_TYPE;

type ALARM_TIME_POSITION:

function ALARM_DISPLAY_POSITION (ALARM_TIME_POSITION) : DISPLAY_POSITION;

input ALARM_MODE_COMMAND,
ALARM_TIME (ALARM_TIME_TYPE),

ALARM_START_ENHANCING (ALARM_TIME_POSITION),
ALARM_STOP_ENHANCING (ALARM_TIME_PDSITION);

Global input relations; the 3 modes are mutually incompatible:
relation WATCH_MODE_COMMAND # STOPWATCH_MODE_COMMAND # ALARM_MODE_COMMAND ;

—39-

Esterel v8 Code for the DISPLAY Module

15.2. Body of DISPLAY

loop

% In watch mode, the main display shows the reguler time
% and the mini display shows the date

do % upto STOPWATCH_MODE_COMMAND

loop
emit MAIN_DISPLAY (WATCH_TIME_TO_MAIN_DISPLAY (? WATCH_TIME));
emit MINI_DISPLAY (WATCH_DATE_TO_MINI_DISPLAY (? VATCH_TIME));
emit ALPHABETIC_DISPLAY
(WATCH_DAY_TO_ALPHABETIC_DISPLAY (? WATCH_TIME))
each WATCH_TIME

every WATCH_START_ENHANCING do
emit START_ENHANCING (WATCH_DISPLAY_POSITION
(? WATCH_START_ENHANCING))
end

every WATCH_STOP_ENHANCING do
emit STOP_ENHANCING (WATCH_DISPLAY_POSITION
(? WATCH_STOP_ENHANCING))
end

upto STOPWATCH_MODE_COMMAND;

-4 0~

Esterel v8 Code for the DISPLAY Module

% Stopwatch and alarm modes

do

]
upto
end.

% upto WATCH_MODE_COMMAND

% The mini display contains the regular watch time

loop
emit MINI_DISPLAY (WATCH_TIME_TO_MINI_DISPLAY (? WATCH_TIME))
each WATCH_TIME

% Stopwatch mode
do
emit ALPHABETIC_DISPLAY("ST");
loop
emit MAIN_DISPLAY (STOPWATCH_TIME_TO_MAIN_DISPLAY

(? STOPWATCH_TIME))
each STOPWATCH_TIME

upto ALARM_MODE_COMMAND;

% Alarm mode
do
emit ALPHABETIC_DISPLAY (“AL");
loop
emit MAIN_DISPLAY

(ALARM_TIME_TO_MAIN_DISPLAY (? ALARM_TIME))
each ALARM_TIME

every ALARM_START_ENHANCING do
emit START_ENHANCING (ALARM_DISPLAY_POSITION

(? ALARM_START_ENHANCING))
end

every ALARM_STOP_ENHANCING do
emit STOP_ENHANCING (ALARM_DISPLAY_POSITION

(? ALARM_STOP_ENHANCING))
end

upto WATCH_MODE_COMMAND % for easy extensibility!

WATCH_MODE_COMMAND

41~

Esterel v8 Code for the Main WRISTWATCH Module

16. The main WRISTWATCH module

This is file ‘wristwatch.strl”.

module WRISTWATCH :
16.1. Declarations of WRISTWATCH

16.1.1. The wristwatch input signals

The wristwatch buttons:

input UL, % upper-left button
UR, % upper-right button
LL, % lower-left button
LR; % lower-right button

The time units:

input HS, % quartz - 1/100 second
S; % quartz - second

The input relations:
relation UL # UR # LL # LR # HS,
S => HS;
16.1.2. The wristwatch output signals

The main display:

type MAIN_DISPLAY_TYPE;

output MAIN_DISPLAY (MAIN_DISPLAY_TYPE);
The mini display:

type MINI_DISPLAY_TYPE;

output MINI_DISPLAY (MINI_DISPLAY_TYPE);
The alphabetic display:

output ALPHABETIC_DISPLAY (string);

The display positions:

type DISPLAY_POSITION;

output START_ENHANCING (DISPLAY_POSITION),
STOP_ENHANCING (DISPLAY_POSITION);

The watch boolean indicators:
output CHIME_STATUS (boolean);

The stopwatch boolean indicators:

output STOPWATCH_RUN_STATUS (boolean),
STOPWATCH_LAP_STATUS (boolean);

The alarm boolean indicators:

output ALARM_STATUS (boolean);

The beeper and the beep combination function:
type BEEP_TYPE;

function COMBINE_BEEPS (BEEP_TYPE, BEEP_TYPE) : BEEP_TYPE:
output BEEP (combine BEEP_TYPE with COMBINE_BEEPS) ;

—42-

Esterel v8 Code for the Main WRISTWATCH Module
16.1.8. Internal types, used in submodule communication

For the watch:

type WATCH_TIME_TYPE,
WATCH_TIME_POSITION;

For the stopwatch:
type STOPWATCH_TIME_TYPE;

For the alarm:

type ALARM_TIME_TYPE,
ALARM_TIME_POSITION;

16.2. Body of WRISTWATCH

signal WATCH_MODE_COMMAND,
STOPWATCH_MODE_COMMAND,
ALARM_MODE_COMMAND,

TOGGLE_24H_MODE_COMMAND,
TOGGLE_CHIME_COMMAND,

ENTER_SET_WATCH_MODE_COMMAND,
SET_WATCH_COMMAND,
NEXT_WATCH_TIME_POSITION_COMMAND,
EXIT_SET_WATCH_MODE_COMMAND,

WATCH_TIME (WATCH_TIME_TYPE),
WATCH_BEING_SET,

WATCH_START_ENHANCING (WATCH_TIME_POSITION),
WATCH_STOP_ENHANCING (WATCH_TIME_POSITION),

START_STOP_COMMAND,

LAP_COMMAND,

STOPWATCH_TIME (STOPWATCH_TIME_TYPE),
TOGGLE_ALARM_COMMAND,

ENTER_SET_ALARM_MODE_COMMAND,
NEXT_ALARM_TIME_POSITION_COMMAND,
EXIT_SET_ALARM_MODE_COMMAND,
SET__ALARM_COMMAND,
STOP_ALARM_BEEP_COMMAND,

ALARM_TIME (ALARM_TIME_TYPE),

ALARM_START_ENHANCING (ALARM_TIME_POSITION),
ALARM_STOP_ENHANCING (ALARM_TIME_POSITION) in

copymodule BUTTON

copymodule WATCH [signal WATCH_START_ENHANCING / START_ENHANCING,
WATCH_STOP_ENHANCING / STOP_ENHANCING]

copymodule STOPWATCH

copymodule ALARM [signal ALARM_START_ENHANCING / START_ENHANCING,
ALARM_STOP_ENHANCING / STOP_ENHANCING]

copymodule DISPLAY

end.

—43—

An ESTEREL v3 Wristwatch Simulation Session

WRISTWATCH> ; % empty event, for initializationms;

--- Qutput: MAIN_DISPLAY(1:00:00 24H) MINI_DISPLAY(1-1)
ALPHABETIC_DISPLAY("SU")
CHIME_STATUS(false) STOPWATCH_RUN_STATUS(false)
STOPWATCH_LAP_STATUS(false) ALARM_STATUS(false)

WRISTWATCH> HS, S; % a second
--- Qutput: MAIN_DISPLAY(1:00:01 24H) MINI_DISPLAY(1-1)
ALPHABETIC_DISPLAY(*SU") BEEP(0)

WRISTWATCH> LL; % enter stopwatch mode
--~ Output: MAIN_DISPLAY(0:00:00) MINI_DISPLAY(1:00) ALPHABETIC_DISPLAY("ST")

WRISTWATCH> LR; % start the stopwatch
--- Dutput: STOPWATCH_RUN_STATUS(true) BEEP(1)

WRISTWATCH> HS; % a hundredth
--- Qutput: MAIN_DISPLAY(0:00:01) BEEP(O)

WRISTWATCH> trace signals;

WRISTWATCH> UR; ¥ lap

--- Output: STOPWATCH_LAP_STATUS(true)

--- Local: LAP_COMMAND STOP_ALARM_BEEP_COMMAND ARE_YOU_IN_RUN_MODE
--- Exception:

--- Awaited: UR LL LR HS S

WRISTWATCH> HS; % a hundredth

--- Qutput: BEEP(0)

--- Local: BASIC_STOPWATCH_TIME(0:01:00)

--- Exception:

--- Awaited: UR LL LR HS §

WRISTWATCH> UR; % lap

--- Output: MAIN_DISPLAY(0:01:00) STOPWATCH_LAP_STATUS(false)

--- Local: LAP_COMMAND STOPWATCH_TIME(O:01:00) STOP_ALARM_BEEP_COMMAND
~--- Exception:

--- Awaited: UR LL LR HS §

WRISTWATCH> untrace signals;

WRISTWATCH> LL ; % enter alarm mode
--- Output: MAIN_DISPLAY(Q:00 24H) ALPHABETIC_DISPLAY(“AL")

WRISTWATCH> show variables;
--- Variables:

V6 = 0:00 24H (value of signal MAIN_DISPLAY)

V7 = 1:00 (value of signal MINI_DISPLAY)

V8 = "AL" (value of signal ALPHABETIC_DISPLAY)

V9 = -%- (value of signal START_ENHANCING)

V10 = -*- (value of signal STOP_ENHANCING)

Vi1l = false (value of signal CHIME_STATUS)

V12 = true (value of signal STOPWATCH_RUN_STATUS)
Vi3 = false (value of signal STOPWATCH_LAP_STATUS)
Vi4 = false (value of signal ALARM_STATUS)

Vi6 = 0 (value of signal BEEP)

V17 = SU 1-1 1:0:1 24H (value of signal WATCH_TIME)
Vi8 = -%- (value of signal WATCH_START_ENHANCING)
V19 = -%- (value of signal WATCH_STOP_ENHANCING)
V20 = 0:01:00 (value of signal STOPWATCH_TIME)

V21 = 0:00 24H (value of signal ALARM_TIME)

V22 = -x- (value of signal ALARM_START_ENHANCING)
V23 = -*- (value of signal ALARM_STOP_ENHANCING)
V24 = SU 1-1 1:0:1 24H (variable WATCH_TIME)

V26 = false (variable CHIME_STATUS)

V28 = -%- (variable WATCH_TIME_POSITION)

V27 = 0:01:00 (value of signal BASIC_STOPWATCH_TIME)
V28 = 0:01:00 (variable STOPWATCH_TIME)

44~

An Esterel v8 Wristwatch Simulation Session

V29 = 0:00 24H (variable ALARM_TIME)

V30 = false (variable ALARM_STATUS)

V31 = -%- (variable ALARM_TIME_POSITION)
V32 = -*- (**counter)

WRISTWATCH> UL; % enter set-alarm mode
--- Qutput: START_ENHANCING(hours)

WRISTWATCH> LR; % set command (setting hours)
--- Output: MAIN_DISPLAY(1:00 24H)

WRISTWATCH> LL; % next position
-~~- Output: START_ENHANCING(10 minutes) STOP_ENHANCING (hours)

WRISTWATCH> LL; % next position
~-- Output: START_ENHANCING(minutes) STOP_ENHANCING(10 minutes)

WRISTWATCH> LR; % set command (setting minutes)
--- Output: MAIN_DISPLAY(1:01 24H)

WRISTWATCH> UL; % back to alarm mode
~-- Output: STOP_ENHANCING(minutes) ALARM_STATUS(true)

WRISTWATCH> LL; % back to watch mode
--- Output: MAIN_DISPLAY(1:00:01 24H) MINI_DISPLAY(1-1) ALPHABETIC_DISPLAY(“SU")

WRISTWATCH> UL; % enter set watch mode
--- Qutput: START_ENHANCING(seconds)

WRISTWATCH> LL; % next position
--- Output: START_ENHANCING(hours) STOP_ENHANCING(seconds)

WRISTWATCH> LR; % set hours
-=-- COutput: MAIN_DISPLAY(0:00:01 24H) MINI_DISPLAY(1-1) ALPHABETIC_DISPLAY("SU")

WRISTWATCH> UL; % back to watch mode
--- Output: STOP_ENHANCING(hours)

WRISTWATCH> HS, S; % a correct second
--- Qutput: MAIN_DISPLAY(0:01:00 24H) MINI_DISPLAY(1-1) ALPHABETIC_DISPLAY("SU") BEEP(0)

WRISTWATCH> S; % incorrect, HS should be there too
**% Error: implication violated: S => HS

WRISTWATCH> LR; % go to 12H mode
--- Output: MAIN_DISPLAY(1:01:00) MINI_DISPLAY(1-1) ALPHABETIC_DISPLAY("SU")

WRISTWATCH> reset; % We start a new simulation to get multiple beeps
--- Automaton WRISTWATCH reset

% in the simulation, the watch beeps every minute,

% a minute is 2 seconds, and the stopwatch

% beeps every 2 hundredth of a second!

WRISTWATCH> ; % empty event, for initializations

--- Output: MAIN_DISPLAY(1:00:00 24H) MINI_DISPLAY(1-1)
ALPHABETIC_DISPLAY ("SU*)
CHIME_STATUS(false) STOPWATCH_RUN_STATUS (false)
STOPWATCH_LAP_STATUS(false) ALARM_STATUS(false)

WRISTWATCH> LL; % to stopwatch mode
--- Output: MAIN_DISPLAY(0:00:00) MINI_DISPLAY(1:00) ALPHABETIC_DISPLAY("ST")

WRISTWATCH> LR; % starts the stopwatch
--- Output: STOPWATCH_RUN_STATUS(true) BEEP(1)

WRISTWATCH> LL; % to alarm mode
--- Qutput: MAIN_DISPLAY(0:00 24H) ALPHABETIC_DISPLAY("AL")

WRISTWATCH> LR; % sets chime on
--- Output: CHIME_STATUS(true)

WRISTWATCH> UR; % sets alarm on
--- Qutput: ALARM_STATUS(true)

WRISTWATCH> HS, S; % time passes
--- Output: MINI_DISPLAY(1:00) BEEP(0)

WRISTWATCH> HS, S; % again
--- Qutput: MINI_DISPLAY(1:01) BEEP(0)

45—

An Esterel v8 Wristwaich Simulation Session

WRISTWATCH> HS, S; % and again
--- Output: MINI_DISPLAY(1:01) BEEP(0)

WRISTWATCH> HS, 5; % a big beep: watch, stopwatch, and alarm beep together
--- Dutput: MINI_DISPLAY(0:00) BEEP(7)

WRISTWATCH> HS,S; % the alarm keeps beeping

--- Output: MINI_DISPLAY(0:00) BEEP(4)

WRISTWATCH> UR; % we stop it

--- Output: ALARM_STATUS(false)

WRISTWATCH> HS, S; % to check that beeping is over
-~- Qutput: MINI_DISPLAY(0:01) BEEP(0)

Imprimé en France
. . Par . .
I'Institut National de Recherche en Informatique et en Automatique

<«

