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Abstract.

A strongly improved version of Lavallée & Roucairol's distributed asynchronous
algorithm for the construction of a minimum-weight spanning-tree in arbitrary

networks [LAV,ROU-86] is given. The present algorithm is shown to have -;-nlgn +
O(n) message complexity in the worst case and O(n) average message complexity in
complete meshed networks, and an upper bound of 2e + 7/2 nlgn + O(n) message
complexity in arbitrary networks, with size of messages O(lgi).

Résumé

L'algorithme que nous proposons est une amélioration trés substantielle de
l'algorithme distibué asynchrone de Lavallée et Roucairol [LAV,ROU-86] pour la
construction d'une arborescence couvrante de poids minimum dans les réseaux
d'interconnexion quelconques. Cet algorithme posséde, dans les réseaux A maillage

complet, une complexité en messages de -;-nlgn + O(n) dans le pire des cas et une

complexité en messages de O(n) en moyenne. Dans les réseaux d'interconnexion
quelconque, un bon majorant de sa complexité en messages est 2¢ + 7/2 nlgn + O(n).
La taille maximale des messages y est O(lgi).
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1. Introduction
1.1 Framework and Problem

A distributed system may be considered as a collection of n processes connected by e direct
communication links. Each process has a local non-shared memory and clock, and can
communicate by sending messages to and receiving messages from its neighbours. With
respect to the communication behaviour, distributed systems can be classified as asynchronous
or synchronous ones. In an asynchronous system, transmission and queuing delays
experienced by a message along a link are finite but unpredictable. In a synchronous network,
all clocks are assumed to tick simultaneously and any message sent at time ¢ is received and
processed. at time r+1 (the communication subsystem can be further refined and distinguish also
the cases of partial synchrony and partial asynchrony ; see [DWO,LYN,STO-88]). We also
assume throughout the processes and the communication subsystem to be error-free, and that
the links operate in a FIFO-manner.

Two closely related basic computations in a distributed environment are the election, and the
spanning tree construction processes (ST).

The distributed election procedure consists in changing from an initial system configuration
where every process is in the same state (say, candidate), to a final configuration where exactly
one process is in a predefined state (say, elected) and all other processes are in another
predetermined state (say, defeated). Note that, in such a symmetry breaking procedure, there is
no a priori restriction on which process should become elected.

The distributed spanning tree construction roughly operates as the construction of a certain
routing tree within a given interconnection network by choosing links which can be easily
determined during the election process. The elected node-process is thus the root of the
constructed spanning tree for the underlying graph of the network. These two distributed
processes are at the basis of most control and coordination mechanisms employed in distributed
systems (e.g. mutual exclusion,, synchronization, reset of a system after a possible failure,
etc.) ; they are also closely related to other basic distributed computations (e.g. minimum
finding, traversal, etc.). The election problem, and hence the ST problem, can be solved
deterministically only if the each node-process has associated a distinct identification value, its
identity, from a (possibly infinite) index universe I. With unique node-processes' identities, the
election problem and the ST problem can be solved.

Distributed election and Spanning Tree Algorithm
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Both problems have been extensively studied in the recent literature. However, an exact
average-case analysis of distributed election and/or ST algorithms in arbitrary networks remains
a challenging mathematical problem

The distributed algorithm for minimum-weight spanning trees (MST) of Gallager et al.
[GAL,HUM,SPI-85] is worst-case optimal (in ©(nlgn ) + O(e )) with at most Snlgn + 2e +
O(n) messages, and runs in at most O(nlgn) time. Lavallée & Roucairol's algorithm
[LAV,ROU-86], which worst-case message complexity is 3nlgn + 2¢ + O(n), represents only a
slight improvement (with respect to the constant factor of nlgn ) over the latter result, whereas
its O(lgn) time complexity really improves on Gallager's.

Distributed election and ST algorithms in arbitrary networks have been proposed, for example
in [LAV-86], [HEL,MAD,RAY-87] and [LAV-87], which also run in at most O(lgn) time and
use at most O(nlgn ) + O(e ) messages or O(n2) respectively. An attempt to compute the
average-case message complexity in [LAV-87], involving the notion of phase of an algorithm
(see subsection 3.2.1) and the diameter and the maximum degree of the underlying graph of the
network, achieves an O(nlgn ) average message complexity.

For MST and election algorithms, Santoro [SAN-84], Korach et al. [KOR,MOR,ZAK-84],
and Pachl et al. [PAC,KOR,ROT-84] (respectively) established Q(nlgn ) lower bounds on
messages in various networks, and in [GAF,LOU,TIW,WES,ZAK-86] a worst-case Q(e)

lower bound is proved for "common knowledge" distributed algorithms.

The most recent distributed synchronous election algorithm in complete networks [CHA ,CHI-
88] elects a leader using 2nlgn messages in the worst case, O(n) messages on the average, and
21gn + O(1) time. Up until now this is the best result achieved in a particular topology for
comparison election algorithms. Note that throughout, Ig denotes the logarithm to the base 2.

1.2 Results

In this paper, a distributed asynchronous algorithm is presented and analysed for building a
(possibly minimum-weight) ST in an asynchronous distributed system. At the same time the
algorithm is electing the root of the constructed spanning tree as the leader node-process in the
network. Thus, one and the same algorithm solves both the election problem and the ST
construction problem. There is no central controller in the distributed system and every process
only has local information about the network topology ; namely it a priori only knows its direct
neighbours in the network and the size n of the network is unknown to the processes.

Distributed election and Spanning Tree Algorithm
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The present algorithm is based upon a basic specific technique introduced in a previous
algorithm proposed in [LAV,ROU-86]. Yet, it represents a strong improvement over this latter
algorithm since the length of messages is here O(lgi), where i is the identity of the root of the
ST (the elected node), whereas the preceding algorithm used messages of length at most O(n),
while the message complexity is improved (in the worst case and on the average) and the time
complexity remains equivalent in arbitrary networks : viz. at most 7/2 nlgn + 2e + O(n) and
O(lgn), respectively. The previous algorithm presented in [LAV,ROU-86] could actually entail
the expense of an unbounded number of messages (for a given n), within a specific worst-case
configuration of the network.

Moreover, although it is designed for asynchronous arbitrary networks, this algorithm actually
achieves the worst-case, average message complexity and time complexity of [CHA,CHI-88] in
complete meshed networks : viz. %nlgn + O(n), O(n), and O(lgn), respectively. The algorithm

also performs quite well on a ring-based topology, since it uses at most 3nlgn + O(n) messages
and %nlgn + O(n) messages on the average, and runs in O(Ign) virtual time on rings.

2. The Algorithm

We adopt throughout the standard model of an asynchronous distributed system as described in
subsection 1.1.'Node-process may start executing the ST algorithm either voluntarily at any
arbitrary moment or upon receiving a méssage which triggers their execution of the algorithm.
The same algorithm is assumed to reside at all nodes.

2.1 Description of the Algorithm

The ST algorithm uses Sollin's local property [SOL-63]. It performs a progressive enlargement
of the subtrees in the network by successively combining larger and larger fragments (that is
directed subtrees), with respect to the strict total order relation existing in the universe I of the n
nodes' identities. Using the strict total order binary relation between nodes which is induced by
the son-to-father relation in the network, fragments may be considered as directed subtrees.
Within these fragments, the node without father is called the (unique) root of the corresponding
fragment. Thus, before the algorithm starts, each single node in itself constitutes an entire
fragment of which it is of course the root. '

2.1.1 The Combination of Fragments

In contrast with all other ST or MST algorithms we use a specific technique for the combination
of the fragments : (i) a given fragment F is a candidate for a merging process into some other
fragment G and the root of F makes a connection request to G (the combination process does

__ Distributed election and Spanning Tree Algorithm
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not work in the reverse direction), and (i) such a request to combining F into G is only
accepted (or rejected) by the first process of the fragment G which has received the request to
merging F into G initiated by the root of fragment F.

More precisely, at any stage of the algorithm, any fragment selects at random an outgoing edge
and sends a request-message of merging along the selected link to the node which is at the
extremity of this latter edge. This very node accepts or rejects the combination, according to the
strict order relation existing between the identities (all the fragments are uniquely identified by
the identy of their root ). Thus, the algorithm can perform the combination of rooted fragments.

2.1.2 The Steps of the Combination Process

Let the fragments F and G be connected by an edge (a,b). Merging F into G,which depends of
the order relation F < G, produces a new fragment in which the node a is a son of the node b.
This process reverses the order relation all along the path from the node a to the root of F (say,

i).
The combination process is thus completed in three steps :

1. The root i of F sends a combination request-message conn to node b in another
fragment G via some path in F ending with edge (a,b) (a being a node in fragment F).

2. Node b sends back to i a combination accept-message ok in the reverse direction
within fragment F.

3. The root i of fragment F sends a message merge to the root j of fragment G.

As a consequence, any node in a fragment should be able to identify : i) the fragments having a
larger identity, i.e. the fragments to which combination request-messages may possibly be sent,
and ii) the fragments having a smaller identity, i.e. the fragments which may possibly send a
combination request-message.

Note that whenever there eventually exist no more such fragments (as i) and ii)), the current
fragment actually is a spanning tree for the whole network and the algorithm is obviously
terminated.

Note also that in the case when both identities of the sending and the receiving node are equal
(without father-to-son relation), then the receiving node sends back the message cousin.

Whenever a root has sent a connection request-message it cannot send another connection
request-message before receiving an answer nok from the previous one.

Distributed election and Spanning Tree Algorithm
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2.1.3 Messages and Variables
a)The Pattern of the Messages

The pattern of the messages sent from a node i is <a,b,c,d> with the following meaning of the
four records : a is the identity of a root, b is a keyword, c is the boolean value of (i is free), and
d is the boolean value of (i is open). In the following, MAJ denotes the procedure in which
booleans arrays and variables are handled at any node upon receipt of a keyword record. The
keyword is an element of the set {conn, ok, nok, merge, opening, newroot, cousin,
end}

c¢) The Variables free and open, the Arrays ACTIVE and
CANDIDATE

Definitions and Notations

The binary predicates "is active for " and "is candidate for" concemning two neighbour-nodes,
and the general unary predicates "is free" and "is open" are defined as follows.

If a node x has at least one out-neighbour (i.e. a neighbour which does not belong to the
fragment of x) or one free son, x free. In the reverse case, it is complete.

Out-neighbours and free sons of a node i are active for i.

If an out-neighbour of a node i belongs to a fragment which may absorbe the fragment of i, it is
candidate for i.

If a node i possesses a candidate for i out-neighbour or if at least one son of i is open, then the
node i is open. In the reverse case, i is closed.

Any open son of a node i is candidate for i.

Note that a connection request-message can only be sent from a node a to a node b iff b is open
fora.

For each node, handling the predicates free and open requires two boolean arrays (indexed on
its neighbours) and two boolean variables, viz. ACTIVE[ ], CANDIDATE] ], free, and open.

When the algorithm starts, the logical arrays CANDIDATE and ACTIVE at each node are the
characteristic vectors of its neighbours. In the initialization phase, (y is a neighbour of x ) < (

CANDIDATE(y) = true and ACTIVE(y) = true)

Distributed election and Spanning Tree Algorithm
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Also define the variables open and free as follows.:

true, if there is at least one element of the array CANDIDATE

which is set to true.

open =
false, if there is no element of the array CANDIDATE which is set to
true.
true, if there is at least one element of the array ACTIVE which is set
to true.

free =

false, if there is no element of the array ACTIVE with is set to true.

The value of an element of the logical array CANDIDATE is thus modified in the following

casces :

i) If node x sends back a message nok to node y, x sets CANDIDATEC(y) to true (if
necessary). If the variable open has to change value (from false to true), the corresponding
message opening must be sent to the father of x.

ii) Whenever node x receives a message opening from a son (say, z), x updates the
value CANDIDATEC(z) to true.

iii) Whenever node x receives a message nok from node y, x setsCANDIDATE(y) to
false and recomputes the value of the variable open := vV CANDIDATE(). If the value of open
happens to be false, it only means that no message conn can be sent to any neighbour. Hence,
x sends back a message noKk to its father.

The following first property.directly follows from the above rules.

Property 1. Let (a,b) be an outgoing edge and CANDIDATE4[b] and CANDIDATEp[a] be

the values of the items corresponding to the arrays CANDIDATE for both nodes a and b
indexed by b and a, respectively. We then have :
( CANDIDATEg[b] =0) = (CANDIDATEp[a]=1).

The value of an element of the logical array ACTIVE is modified upon receipt of the messages

Distributed election and Spanning Tree Algorithm
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- cousin. The current node both learns that no other message conn will ever be received from
port y, and that it is useless to send any message conn throught this port (the node connected
to y being a cousin). Hence, the current node sets ACTIVE(y) to false.

- ok. Whenever node x receives a message ok from node y, the identity of its new father is y,
and x sets ACTIVE(y) to false .

- merge & nok. Whenever node x receives a message merge (nok) from node (a son) y
(respectively), x updates ACTIVE(y). -

Clearly, if all items of an array ACTIVE at some node x are set to false, then every node in the
fragment of root x is connected to another fragment. Thus, we may claim the two following
properties.

Property 2. For any node, the formula (CANDIDATE[i] = 1) = ( ACTIVE[{] = 1) holds.

Proof. Immediate, since for any node x, CANDIDATE[{] = 1 means that the node at the other
side of the link connected with the port i belongs to another fragment than x. Q

Prbperty 3. Let r be the root of a fragment F. If (Vy ) ACTIVE(y) = false at the root r ,
then the computation is finished and r is the elected leader.

Proof. Direct consequence of how the array ACTIVE is handled. If ACTIVE(y) = false at the
root r, for all y, then there exists no outgoing edge connected to F. Hence, no modification of
the array ACTIVE is still possible ; such a root is called complete.Q

If, for a node x in a fragment F, CANDIDATE][{] = 0 and ACTIVE[i] =1,

ACTIVE[i] = 1 means that there exists at least one path of origin x which extremity is a
node in a fragment G#F containing the node i, and such that this path contains the node-process -
connected with x throught the port i (here and in the sequel, we consider the name of the port as
identical to the identity of the node to which it is connected). In other words, the path contains
an outgoing edge. In the case when the path contains one only edge, this must be (x,i) which is
then the outgoing edge.

CANDIDATEIi] = 0 means that, throught each path of origin x containing an outgoing
edge in its extremity which contains i, x has received a message nok.

Property 4. Let (a,b) be an outgoing edge,l and ACTIVEg[bland ACTIVEp[a] be the values

of the items corresponding to the arrays ACTIVE for both nodes a and b indexed by b and a,
respectively We then have : ACTIVE4[b] = ACTIVEp([a].

Distributed election and Spanning Tree Algorithm
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Proof. Immediate from the definitions of ACTIVEg4[b] and ACTIVEp|[a] : ACTIVE,[b] =1 &
ACTIVEp[a] = 1. The reverse is also obvious, and ACTIVE,[b] =0 < ACTIVEp[a] =0.

Q
2.1.4 The Behaviour of Roots and non-Roots Nodes
a) Roots

As previously noted a complete root is the root of a completed ST. Hence, a complete root
broadcasts to all its sons the message end and stops. Conversely, an open root r selects one
candidate for r neighbour and sends it a connection request-message <i, conn, g, ¢>. It can
send no other connection request-message but upon receipt of the answer nok to its previous

message.
Three answer messages to a connection request-message sent from x to i are possible,

<@, cousin, false, false> : i and x are cousins, and i executes the procedure MAJ ;

<g¢, nok, ¢, @> : the connection request is rejected according to the strict total order relation in I ;

<j, ok, ¢, d> : the connection request is accepted ; x becomes the father of i, i executesthe
procedure MAJ, it broadcasts to all its sons the message <j, newroot, g, ¢>, and it sends its
father the message <g,merge, free, open>. From now on, i is a non-root node and will never
be root any more.

Independently, a root may receive the following other messages : <g, opening, ¢, true> and
<@g, merge, ¢, d>, then i executes the procedure MAJ, or <k, conn, ¢, ¢>, and then the
behaviour of root i is identical to a non-root node's.

b) Non-Roots Nodes

A non-root node i can only act upon receipt of a message. There are eight possible messages a
node i can receive from a node x.

1. <k, conn, g, g>. This message leads to three possible different situations :

- i and x are cousins. i sends the message <@, cousin, false, false> to x, and sets the
values of ACTIVE[x] and CANDIDATE(x] to false.

- x is the father of i. If i is open, it simply passes the message at random to an open
neighbour, else i sends back the message <@, nok, g, false> to its father.

Distributed election and Spanning Tree Algorithm
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- x and i are out-neighbours. According to their fragment identity, either i accepts the
connection request-message, x becomes the son of i, i sends the message <root_of_i, ok,
false, false> to its father and assigns the value false to CANDIDATE[x] (this implies that the
induced mérge message should péss through i), or i rejects the connection request-message, i
sends back the message <g,nok,g,8> to x, and assigns the value true to CANDIDAT[x]’; if the
variable open changes its value, i sends the message <g, opening, g, true> to its father.

2. < , cousin, false, false> or <, nok, g, false>. i executes the procedure MAJ. This
message is an answer to a connection request-message sent from i to x : if i is open, it passes
the connection message to an open neighbour, else i sends the message <g, nok, g, false> to
its father.

3. <, ok, false,false>. i executes the procedure MAJ and passes the message to its father. x
becomes the father of i, so i broadcasts to all its sons the message <k, newroot, g, g>.

4. < ,merge, g, h>. i executes MAJ and passes the message to its father.

5. < , opening, ¢, true>. i executes the MAJ, and if (but only if) the variable open changes its
value, i passes the message to its father.

6. <k, newroot, g, ¢>. i broadcasts the message to all its sons and changes its own root 's
identity, if it is was different from %.

7. < ,end, ¢, ¢>. i broadcasts the message to all its sons and stops.

Notice that the arrays ACTIVE[] and CANDIDATE[] make the conn messages move in the
reverse direction (backtracking) throught a fragment.

Note about the Termination.

There is another way to ensure a good termination of the algorithm. Assume each node-process
knows the size n of the distributed system. In that case, every root » knows at any time the size
of its own fragment F, and whenever F merges into another fragment G, r sends its size to the
root of G. Thus, whenever a fragment eventually achieves the size n, its root knows that it is
elected as the root of the constructed ST, and the algorithm is terminated. A local variable
counter of nodes replaces then the variable free and the array ACTIVE(] ; it is initialized to the
value one and updated for each combination between two fragments. =~

Distributed election and Spanning Tree Algorithm
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2.2 Specification of the Algorithm

The specification of the algorithm uses a C.S.P.-like syntax (see [LAV-86]). The differences
between the standard C.S.P. syntax of [HOA-78] lies in the fact that we consider
communication primitives as non-blocking primitives. Thus, the primitive P; !! <x> means that
the message x is sent to the process which identity is i (such a communication being non-
blocking). In other words, a FIFO-queue is attached to P; in which incoming messages are

stored. We only assume here that the size of such a queue remains "reasonable". Note that this
assumption has been fully verified in experimental tests of the algorithm on a network of

transputers.

Similarly, P; 77 <y> means that a current process reads in its queue the message y sent from

process P;.

The syntax of the algorithm is also simplified by the use of set notations as UjesoN P; Il <x>,

which means that the current process broadcasts message x to all elements of the set SON.

The value of the variable root is the identity of the root of the fragment which contains the
current node-process.

The value of the variable pred is the identity of the father of the current node-process.

The value of the variable req is true if the current node-process has previously sent a connection

message.
Algorithm
Procedure MAJ :: CANDIDATEL[y] := false;
open .= v CANDIDATE[y] :
ACTIVE]y] := false;
free :=v ACTIVE[];
Proci::

root :=1; pred :=nil ; req :=false ; fils:= @ ;
“je NEIGHBOUR ACTIVE(] i~ true ; free := true ;

Yje NEIGHBOUR CANDIDATE[]] := true ; open := true ;

*[(root =i A req = false A open = true) — x := select() ; P, ! <i,conn,g,@> ; req := true
1

(root =i A req = false A free = false) — Uy e soN Py !! <#.end,g.g>; STOP.

1

Distributed election and Spanning Tree Algorithm
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P,7?<ab,c.d>— [ b=end > Uy e SON Px ! <p,end,g,6> ; STOP.

Yy
1
b=conn A y=pred — [open = true - x := Select() ; P, !! <a,b,c.d>>
|
open = false — Py 1! <g,nok free,open>
]
]
b=conn A y # pred — [a = root —>Py !l <g,cousin,g,g> ; MAJ ;
1
a<root > Py ! <root,0k,p,8>; SON :=SON U (y} ;
CANDIDATE[y] := false ;
1 .
a>root > Py 11 <g,nok,p,6> ; CANDIDATE[y]:= true ;
[open = false A i #root — Ppr ed Il <g,opening.g,0>] ;
open = true
]
]

b=ok Aroot=i — [ye€ SON — SON :=SON - {y}] ;root:=a; pred: y ; MAJ ;
Uy € SON Px 1! <a,newroot,g,0> ; Py !! <g,merge free,open>

| .
b=ok Aroot#i — [ye SON — SON :=SON - {y}]; Ppred " <a, becd>;root=a;
Uy e sON Py !! <anewroot,g,g> ; SON := SON U {pred} ; pred :=y; MAJ ;
1
b =nok —» CANDIDATE[y] := false ; open := v CANDIDATE[4] ; »
[y € SON A ¢ =false > ACTIVE(y] := false ; free := v ACTIVE[k] ];

[root=i — req :=false

]

root #i — [ open=true — x := Select() ; P, ! <root,conn;g,p> ;
|
open=false — Ppre 4! <o.nok free >

l -
b = cousin A root #i — MAJ ; [open=true — x := Select() ;

Px 1! <root,conn,g,g> ;

open = false — ! <g.nok free,g>

Ppred

Distributed election and Spanning Tree Algorithm
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1
b = cousin A root =i — MAIJ ; req := false
1
b = opening A root #i — CANDIDATE[y] := true ;
[open=false — Ppre 4 !!<#.0pening,g.6>] ; open := true
1
b = opening A root =i — CANDIDATE[y] := true ; open := true
1

= oy "
b =newroot — root :=a; Uy € SON Px 1! <a,newroot,s,8>

b = merge — CANDIDATE[y] := h ; open := v, CANDIDATE[k] ; ACTIVE[y] :==g;

k
[free := \ ACTIVE[k] ; [root 2i — Ppred ! <a,b free,open>)

]

3. ANALYSIS
3.1 Correctness of the Algorithm

The correctness proof of the algorithm is completed in proving that the constructed pattern is a
forest, and then by proving the convergence of the algorithm.

3.1.1 Subtrees as Invariant.

To prove the correctness of this algorithm we must show that no cycle is built during the
computation, and that the result is indeed a spanning tree.

Lemma 1. When the algorithm starts, each single node in itself constitutes an entire fragment
of which it is the root .

Proof. Immediate. As consequence of definitions. O
Lemma 2. At any stage of the algorithm, no cycle can be built.

Proof. The strict total order relation existing in 7 makes the set of combining fragments a subset
of a superhalf lattice ordered by the accepting relation (see [BIR.]). The representative graph of
such a subset is a forest. Which implies that there is no cycle in the resulting graph. Q

Theorem 1. At any stage of the algorithm the pattern built in the network is a forest.

Distributed election and Spanning Tree Algorithm
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Proof. Immediate. Theorem 1 is a straightforward consequence of lemma 2. Q
3.1.2 Convergence of the Algorithm

Lemma 3. For any node in the network, if ACTIVE[i] = 1 then in a finite (but impredictible)
amount of time, ACTIVE[i] = 0 shall eventually hold.

Proof. First assume that ACTIVE]i] = 1 affects a port i of a node x and that the edge (x,i) is an
outgoing edge. It follows from lemma 2 that no message can circulate forever in a loop.
Moreover, in any fragment there is a message conn alive. This implies that a message conn is
sent out of a fragment throught a port such that CANDIDATE]i] = 1, whence, by Property 2,
ACTIVE[i] = 1. Two possibilities might then arise.

Either the answer to message conn is ok and lemma 3 holds,

or the answer to message conn is nok, and the value of CANDIDATE][:] becomes 0 while
the value of ACTIVE(i] remains unchanged. In such a case, from Property 1, CANDIDATE[x]
= 1 at node i, and thus, a message conn is still alive in the fragment containing i. Hence, this
message conn will eventually pass throught port x at node i. Thus, the two previous
possibilities may still happen. Yet, the number of nodes in the network is finite, and whence the
number of fragments is finite too. As a consequence, the fist case shall eventually take place and
the first possibility is inevitable to occur.

Next, assume that (x,i) is not an outgoing edge and also assume that CANDIDATE[i] = 1
and ACTIVE[i] = 1 at node x, and CANDIDATE[x] = 1 and ACTIVE[x] = 1 at node i. Then, a
message conn shall eventually pass throught the link (x,i). The answer-message to conn is
cousin, whence CANDIDATE][{] =0 and ACTIVE[i] = 0 at node x, while CANDIDATE(x] =
0 and ACTIVE[x] =0 at node i. Q

Note that we can assume that there remains only two fragments connected by only one edge
(x,y) before the last stage of the algorithm. Since CANDIDATE[y] and CANDIDATE([x] cannot '
simultaneously be set to false, the algorithm can perform the last stage and stop.

Property 5. The algorithm is starvation free.
Proof. Direct consequence of Property 1 and Theorem 1. QO
From lemma 3, we may now claim the following

Theorem 2. In a connected network, the algorithm builds a spanning tree and elects a leader
within a finite time. The elected node is the root of the constructed spanning tree.

Distributed election and Spanning Tree Algorithm
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Proof. Consequence of lemma 3. Since the number of nodes is finite (and from lemma 3), the
number of fragments is strictly decreasing and their respective size is strictly increasing during
any execution of the algorithm. Hence, a unique fragment eventually remains within the last
stage of the algorithm, which contains the whole set of nodes of the network ; this last fragment
is the (finite time) constructed ST, and its root is the (unique) elected leader. Q

3.1.3 The minimum-weight Spanning Tree.

The previous algorithm is easily transformed into a MST algorithm. Assume that when the
algorithm starts, each node-process in the network knows the weight of its outgoing edges. The
algorithm must simply choose the minimum-weight outgoing edge (or possibly one of the
minimum-weight outgoing edges) for each node. Hence, every node has to handle a local
variable containing the minimum value of the outgoing edge of the fragment of which it is the
extremum, this according to the preorder father-to-son relation. The modification of the
algorithm only entails larger messages to contain one edge weight as a new record. The extra
number of bits is thus bounded from above by lgw, where w is the maximal value of an edge
weight

3.2 Complexity of the Algorithm

The complexity of a computation in a distributed system is evaluated with respect to two
basic parameters : communication and time. The communication complexity of an algorithm is
measured as the number of communication activities (i.e. message transmission) performed in
the system during the computation process of the algorithm, viz. the message complexity, or
alternatively the bit complexity, of the algorithm.

The time complexity of the algorithm is measured as the total delay from the time the first
process starts the computation to the time the last process terminates the computation.

Note that since the maximum number of bits contained in any message is O(lgi), where ie I,
denotes the identity of the root of the constructed spanning tree, we will only consider the
message complexity of the algorithm (indeed, the bit complexity of the algorithm can be
obviously derived from the latter). A

Consider an asynchronous distributed system. Each process is distinguished by a unique
identity, taken from some index universe I. We assume throughout that the processes work
fully asynchronously and cannot use global clocks nor time-outs. Hence, we can assume in the
following analysis that the algorithm is message-driven : except for the first message upon
initialization, any process can only perform actions as a result of the receipt of a message.

Distributed election and Spanning Tree Algorithm
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As to the notion of time, we assume in the analysis of the algorithm that all message delay times
are bounded and equal, i.e. each message takes unit time along any link of the distributed
system.

Further assume that whenever a process receives several messages (from several
neighbours) at the same moment, it handles the messages with respect to the strict total order
relation existing in I between the identities of these message-sending neighbours. This breaks
the implicit non-determinism associated with asynchrony, and thus, as far as complexity
measures are concerned, we may consider the algorithm as an asynchronous, message-driven
algorithm, running in synchronous distributed systems. Hence, the distributed asynchronous
algorithm is more easily analysed using the virtual notion of phases of the algorithm. A phase
may actually be considered as the equivalent of a (global) clock pulse, or simultaneous clocks'
ticks (as defined in the Introduction) in a synchronous distributed system. During each current
phase of the algorithm, nodes (posssibly) receive messages, perform local computation, and
send messages destined to be received at the beginning of the next phase.

3.2.1 Number of Phases and Time Complexity of the Algorithm

As in [LAV-86], we will assume that the behaviour of the algorithm implies a well-balanced
growth of the successively combined fragments. So that, in any phase of the algorithm, the
number of answer to the connection request-messages is roughly equally distributed : one half
being composed of messages ok, and the the other half of messages nok. Now the number of
phases of the algorithm is easily evaluated.

General Lemma The maximum number of phases of the algorithm is at most[1gn]+ 1.

Proof. At phase zero, each single node constitutes an entire fragment : each fragment is of size
one. At phase one, a set of fragments with one edge each is constructed, and there are n/2
fragments. At the second phase, there are two edges in each fragment and n/4 fragments. At the
current phase ¢, there are 29 edges in n/29 fragments. Obviously, the algorithm eventually ends
when ¢ = |—lgn—|, and the algorithm builds the ST and elects a leader within at most rlgn-l +1

phases. Q

Theorem 3. Whatever assumptions on the network, the time complexity of the ST-Election
(and of the MST) algorithms is measured with at most the maximum number of phases of the
algorithrz, viz. G(gn .

Proof. Immediate from the above lemma. Yet, note that up to a constant factor, the time
complexity measure ranges between at least 2lgn +O(1) for the virtually synchronized algorithm

Distributed election and Spanning Tree Algorithm
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running in complete meshed networks (the time complexity of [CHAN,CHIN-88]), and at most
A lgn (A real) for arbitrary networks and general assumtions. Q

3.2.2 Upper Bound on the Message Complexity of the Algorithm in an
Arbitrary Network

We determine here an upper bound on the number of messages exchanges during any
execution of the algorithm. Note again that the most complex message contains O(lgi) bits.

Assume the size n of the network to be unknown to all the node-processes.

Theorem 4. In the case when all the node-processes have no knowledge ofn, the number of
messages required by the ST-Election algorithm is at most 2e + 7/2 nlgn + O(n).

Proof. Since an edge can be rejected only once, and each rejection requires one message , there
are at most e reject messages in any execution of the algorithm,

Next, at the first phase, each node sends a connection request-message conn, and thus »
messages are sent. Assuming the growth of the fragments to be well-balanced, there are n/2 ok
and n/2 nok answer messages. The n/2 ok messages yield n/2 merge messages and n/2
newroot messages as well. Taking this upper bound for each phase, and adding the » - 1 end
messages broadcasted at the end of the general computation yields a number of at most 3nlgn +
n - 1 messages (which is the upper bound obtained in [LAV,ROU-86]). Taking now also into
account the messages cousin and opening adds -%nlgn messages to our grand total. The

number of messages used by the algorithm is whence e + 7/2 nlgn + O(n). Q

Assume next the size n of the network to be known by at least one node-process. Note that
such a global information at only one node-process is enough to imply the global knowledge of
n in the whole network.

Theorem 5. In the case when one node-process knows n, the number of messages required
by the ST-Election algorithm is at most 7/2 nlgn + O(n).

Proof. In the case, the knowledge of n makes it unnecessary for the messages to traverse all the
edges of the network ; the amount of extra messages is here at most O(n). Hence, adding the
results of the previous computations of the algorithm without any knowledge of n leads to an
upper bound on the number of messages exchanged during any execution of the ST-Election
algorithm : viz. 7/2 nlgn + O(n). Q

Distributed election and Spanning Tree Algorithm
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3.2.3 Message Complexity and Time Complexity in Complete Meshed
Networks

In the pseudo-synchronized variant of the algorithm and with regard to the election process,
each candidate (root of a fragment) is either captured (by some other candidate) or (still being
candidate) increases the extend of its own fragment within each phase.

The current phase is denoted by ¢ (0 < ¢ <[lgn ) and the algorithm runs in at most O(lgn)
phases. ‘

a) Worst-case message complexity.

At phase ¢, the number of fragments is at most n/2? , and each fragment's node disjointly
owns 29 within its fragment (this for 0 < ¢ <[1gnl)

Lemma 4. The worst -case message complexity of the algorithm is -;-nl gn + O(n).

Proof. Each node will then send out at most n/2% messages conn in an attempt to merge its
fragment into some other fragment. Thus, in a similar process to section 3.2.1 : at phase ¢, the
number of fragments is n/2% which size is at most 2%. There are n/2® messages conn sent,
n/2%+! ok and n/29*! nok answer messages. The n/29*! messages ok yield n/2%*1 messages
merge and (n/29"1)x2¢ messages newroot (i.e. the current number of messages ok times the
maximum size of a current fragment). There are also n/29*! messages opening and o
messages cousin and 8 messages nok, with o + § < n/2%. Adding n - 1 messages end
broadcasted at the last phase of the computation to our grand total yields a number of messages
N such that

Ign
N < i { n2%+ a+ B+2n291 + 2029 + (029 )x29 } +n - 1

pran)
lgn Ign

< i {2n22+4n291 + 1n } +n-1 < Lnlgn+n/2 + i 4n/29+]
¢=0 ¢=0

Thus, N < dnlign+in +n+4n+0Q) =

%nlgn + 11/2n + O(1),

and the worst-case message complexity is -;-nlgn +0@m). Q
b) Average-case message complexity.

The crux of the proof lies in determining an upper bound on the expected number of roots to
survive each phase, from phase 0 to phase [1gnl.

Distributed election and Spanning Tree Algorithm
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Lemma 5. Let p be the number of nodes disjointly belonging to each of the (at most) n/2?
candidate fragments at the start of phase ¢, and q the number of messages sent by each of these
candidate fragments at the start of phase ¢. Then, the expected number of fragments to start

phase o+ lisatmost1 + (n-p —q)/p(q- 1.

Proof. Letry, ry, ..., y, be the candidates to start phase ¢ arranged in decreasing identity order
(mp < n) and p; the probability that r; survives phase ¢. If 7; is to survive phase ¢, it must
send messages to ¢ nodes other than those already belonging to fragments Fy, Fy, ... ,F; 1.

Hence, p; < (n 4 p) , and the expected number of candidates to start phase ¢ + 1 is :
q

sey
Spicteyn S1+E__
i=1 i=2 (” 7 )
The expected number of candidates is whence at most
20D
GO ")

(with mp < q).

20D 20
e " ¢")
Now, PIGUE f:(q) (G:7)

Hence, the expected number of candidates is

l(q+1 _ n—p-lq 0
p(nqp) p(g-1)
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Theorem 6. The algorithm constructs a ST and elects a leader in a complete meshed network
using %nlgn + O(n) messages in the worst case, O(n) messages on the average, and O(lgn)

time.

Proof. The time complexity and the worst-case message complexity of the algorithm in
complete meshed networks are already determined in the above Theorem 3 and lemma 3

An upper bound on the number of roots (candidates) is known from lemma 5. Now, since
the roots send more messages than the other nodes, which number of propagated messages is
certainly at most O(n), an upper bound on the number of messages sent by the roots is given
from lemma 5 with p =2? and q = n/29, '

: lgn lgn
(n +4n2) + i {1 +“‘—2"“-’1L2ﬁ}(1 +29) < 31 + i2(1+2¢)
o=2 29 xn/2® ¢=2

< 3n + 2lgn + n + O(1).

Hence, the average complexity of the algorithm is bounded from above by O(n). Q

3.2.4 Message Complexity in a Ring-Based Topology

Theorem 7. On a bidirectional ring without the global sense of direction and without
knowledge of n, the present algorithm uses at most 3nlgn + O(n) messages, and -;-nlgn + O(n)

messages on the average.

Proof. The only available messages on a bidirectional ring are the messages conn, ok, nok,
merge, newroot and end, since the messages cousin and opening cannot be used on a
circular configuration of processes. '

The number of each of these messages is bounded from above by n/2 in each phase of the
algorithm, and the number of messages exchanged is at most (4xn/2) times the number of
phases minus 1 plus O(n).

In other words, an upper bound on the number of propagated messages is 3nlgn + O(n) (i.e.
4.328... nlnn + O(n)).

Next, the average number of messages conn, ok, nok, merge, newroot and end is
respectively : (at phase @, 0 < @ < [1gn]- 1) n/2%, n/29+1 029+, 2941, [n/29*11x2, and (n-
1) in the last phase.
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Hence, the expected number of messages is

Mgnl-1 Mgnl1
{ n/2° + 30291 + (2PNH)x29 )} +n-1 = inlgn + 3n 2% + O(n);
¢=0 ¢=0

and since the sum is O(n), the average number of messages exchanged in the algorithm is %nlgn
+ O(n) (ie. 0.721... nlnn + O(n)). Q

4. Conclusions

The present algorithm is a strong improvement of [LAV,ROU-86], both within sparse and
dense network topologies. In using the new variables free and open and the new messages
opening and cousin, the algorithm is more efficient in arbitrary networks.

With regard to the upper bound on the number of messages, the algorithm strongly improves
on [LAV,ROU-86] in arbitrary networks, since the latter algorithm could actually entail the
expense of an unbounded number of messages (for a given n) for speciﬁcA network topologies.
In complete meshed networks, it also matches the algorithm of [CHI,CHA-88] in the worst
case and on the average. Finally, with an average message complexity %nlgn + O(n) (i.e.
0.721... nlnn + O(n)), the algorithm roughly matches the best distributed leader finding
algorithms on bidirectional rings so far known : viz. the bidirectional variant of Chang-Roberts

algorithm which uses 1 v 2 nH, (ie. 0.707... nlnn + O(n)) messages on the average.

2
Moreover, the (virtual) time complexity of the algorithm O(lgn) is identical to the efficient ST-

Election algorithms.
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