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RESOLUTION PAR UNE METHODE D’ELEMENTS FINIS DES EQUATIONS
D’UN FLUIDE INCOMPRESSIBLE NON VISQUEUX EN GEOMETRIE AXISYM-
METRIQUE. APPLICATION AU CALCUL D’UNE POMPE HELICE.

Jacques-Hervé SAIAC
CNAM - INRIA

Résumé

Nous présentons dans cette étude une méthode d’élément finis pour le calcul de ’écoulement d’un
fluide incompressible, non visqueux, en géométrie axisymétrique. Notre approche utilise essentiellement
une formulation fonction de courant, vitesse angulaire et tourbillon des équations d’Euler et nous avons
résolu les problémes stationnaires et instationnaires. Dans le cadre d’une application au calcul d’une
pompe-hélice sur I'arriére corps d’un navire, nous avons développé un modéle de calcul complet de
Iinteraction entre le propulseur carenné et le corps du navire. Ce modéle utilise une version simple et
rapide de la méthode des caractéristiques dans un contexte éléments finis. La solution stationnaire.de
’écoulement s’obtient par itérations de Picard. Les tests numériques ont mis en évidence la rapidité et la
robustesse de la méthode. Des expériences réalisées au Bassin des Carénes ont révélé un trés bon accord
entre calcul et mesures.

FINITE ELEMENT SOLUTIONS OF AXISYMMETRIC EULER EQUATIONS
FOR AN INCOMPRESSIBLE AND INVISCID FLUID

ABSTRACT

In this paper, we present a finite element method for the numerical solution of azisymmetric flows.
The governing equations of the flow are the azisymmetric Euler equations. We use a stream-function
angular velocity and vorticily formulation of these equations, and we consider the non stationary and the
stationary problems.

For industrial applications, we have developed a general model which computes the flow past an an-
nular airfoil and a duct propeller. It is able 10 take into account jumps of angular velocity and vorticity in
order to model the flow in the presence of a propeller. Moreover we compute the complete flow around the
after body of a ship and the interaction between a ducted propeller and the stern. In the stationnary case,
we developped a simple and efficient version of the Characteristics / Finite element method. Numerical
tests have shown that this last method leads to a very fast solver of the Euler equations. The numerical
results are in good agreement with ezperimental data.
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"INTRODUCTION

The stream-function and vorticity formulation of the Euler equations governing an incompressible
and non viscous flow has been successfully used in two dimensional problems. In a finite element context,
it has been associated either with classical leap-frog or Crank-Nicolson time-differencing schemes | 1,2]
or with the method of characteristics [ 3,4, 5 ]

It is well known that in the axisymmetric case, there is also a stream-function formulation of Euler
equations. It uses the § components, in cylindrical coordinates, of the vector potential, the velocity and
the vorticity. The choice of this formulation has, in our case, many advantages. Among them we can
mention the following.

First,the axisymmetric flow is completely described by three scalar functions.

Moreover the incompressibility condition is exactly satisfied.

At last, from a computational point of view, this formulation gives a simple model leading to fast
solvers well adapted to our purpose: "trial and error ” procedures in engineering design.

Our model involve three equations. One elliptic equation for the stream function and two transport
equations for the angular velocity and the vorticity. A finite element method using non uniform meshes
has been chosen in order to get a general spatial discretization giving a soft treatment of geometry. Then,
the main difficulty of the numerical solution of Euler equations is to write a good solver of the transport
equations. Since for applications in "pump-jet” design, we have to model the convection of jumps of
angular velocity and vorticity, we need a robust method, especially well suited to difficult problems with
rough conditions. This has been the key-point of this work. :

One can find in [7] a general review of the numerical methods in turbomachinery flows, and in [§]
and [9] some finite element applications. The present work differs from the preceding by the choice of
triangular meshes, direct solutions by Choleski factorisations of the elliptic equation and an exact and
direct treatment of the Kutta-Joukovski condition, elsewhere obtained through an iterative process. Our
final choice of a stationary implementation of the characteristics method to solve the convection problem
is the original part of this work.

This paper is organised as follows:

In sections 1 and 2 , we derive the mathematical formulations and the boundaries conditions of the
problem. We precise the treatment of the Kutta-Joukovski condition.

In section 3, we present the finite element spatial discretization and we give a convergence result in
a simpler model case without ”swirl”.

The section 4 deals with time discretizations using Leap-Frog and Semi-Implicit Crank-Nicolson
schemes. We derive theoretical stability results in both cases and we present some numerical tests
showing the inability of this classical approach to model correctly the flow.

The following sections 5 and 6 are devoted to our implementation of the characteritics method giving
the stationary solution of the flow by an iterative fixed-point algorithm.

At last, in section 7. we present numerical results in the case of the complete model of a duct
propeller. They reveal good agreement with experiments made by B. Goirand at the Bassin des Carenes
in Paris.



1 . The mathematical model

The general 3.dimensional Euler equations in cylindrical coordinates r , 4 , z read :

Ve OV,  VedV, VE 8V, 19p
5 Ve T T e e T
W Ve VedVs VoV 0V 13
ot "or " r 06 20z ~ proé
av, v, Vyav, v,  18p
IO e IR it
with
.18 18V 8V, _
div(V) = ;5;("‘/1-)'*' ;'Fo—-i" ke 0

Vi, Vs, V. are the components of the velocity, p is the density of the fluid, p is the pressure.

They reduce in the axisymmetric case to the following system

iAA ov; oV, V¢ 10p
a e Ve T T o
oVy Ve Ve _ VeVi
FRE TGy i
v, v, av, 18p
— 4+ V=V, ==
ot + or +V 8z p Oz
with
140 v,
FarV) g =0
Remark 1 :
We did not restrict ourselves to the case Vyp = 0. We just take the derivatives
i}
%= 0.

We introduce a stream-function 1y such that the meridian velocity

Vm =(V:, V)

(1,a)
(1,5)
(1,¢)

(1,d)

(2,a)
(2,6)

(2,0)

(2,d)



can be written :

_10(re) \, _ _10(r¢s)
V‘_;_(')r_’v'_ r Oz (3)

Thus the zero-divergence condition (2, d) is automatically satisfied.

Now, we consider the §—component of the vorticity vector

oV, 8V,
5 or ()

Wy =

Equations (2, a, b, ¢) lead through straight forward calculations to the following system in
d'ﬂ ’ ‘/0 y We .

8 10(rde), & 10(rs), _ ]
“5GTE ) T n e ) T we (5.9)
8(rve) |, 80Ve) . B(rVa)
o TV TV =0 , (5,8)
W [#9) W,
o o a
A P O e A (5.)

With the identities (3), the above system defines completely the flow. It is the basic model of this
work.

Remark 2 :

Equation (5, a) is a simple elliptic equation in ry, .
Equation (5, b) and (5, ¢) appear as transport equations of rV, and “ , respectively, along the
r
stream lines, with the presence of a left hand term in (5 , c).

2 . The boundary conditions

Let €2 denote in the sequel a bounded open set of R? with boundary I, such that for every point of
coordinates (z , r) in 2 we have :

O<ro<r<r | (6)

The classical inviscid boundary condition

un=20 (7)

leads to the following condition on Vg

curl(ryp)n =0 (8)



Thus we get

relni = i (9)

where the c¢; are constant, for each component I'; of the boundary I .

2.1 Model 1

As a theoretical model, we consider the case of a simply connected domain Q with the boundary
condition

rielr =0 (10)

2.2 Model 2

Now we turn to a more realistic case. 2 will denote the meridian section of an annular duct

out

— .

Figure 1.The axisymmetric duct

- T'o and T'y are supposed to be slipping walls.
- On the upstream boundary I, the velocity field is given.

- On the downstream boundary Ty, we only suppose that the radial component of the velocity is
zero.

This model represents the flow around an axisymmetric body. The boundary I'; is supposed far
enough from Iy to be an horizontal stream-surface. That leads to the following boundary conditions for
¥ , Vo and wy -



On F,‘n ) Fo and 1‘1 .

We deduce the values of 1y , V3 and ws from the given velocity field. riy being defined up to a
constant, we are able to choose r¢)s = 0 on I'g . Then the law of rig on Ty, is completely known and we
get the constant value c of ripg on Ty .

On Fout -

The condition V; = 0 leads to the homogenous Neumann boundary condition

Ir‘oll = 0 (11)

2.3 Model 3

Let us now consider the same annular duct but with an axisymmetric airfoil shape body inside

M
Tin
Fout
T )
0 \
i
L
Figure 2.The complete model geometry
On the airfoil boundary I', we have the inviscid boundary condition.
un =10 (12)
which leads to
r‘!/)oh,z = C2 (13)

The problem is then to determine the physically correct value of the constant ¢; . This has been
done by using a Kutta Joukovski condition. This condition implies the equality of the static pressures at,
the upper and the lower sides of the trailing edge.



We made the computation in the following manner [ F. Hecht : private communication] : we looked
for a stream function ry given by

e = Yo + ath (14)

with ¢ solution of equation (5 , a) at each time step, with the real boundary condition, except on
I'> where we take

Yo, =0 (15)
and ¥y, solution of the simple homogeneous equation

5 104, _ilawl)-_-o (16)

T8z'r 9z’ r'r or

with all the Dirichlet boundary conditions equal to zero except on I', where we take

¢1|r, =1 (17)

The parameter a is then computed at each time step in order to satisfy the equality of the static
pressures at the upper and lower sides of the trailing edge

P;"' =PS (18)
ie.

feurl(vo + at1)[? + |curl(yo + atyy)|? = %(P* - P7) (19)

where P* and P~ are the pressures on the upper and lower sides of the trailing edge.

P S

S T

Figure 3.The numerical treatment of the Kutta - Joukovski condition.
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This quadratic equation in a has two solutions. The right one is the root for which the normal
velocities are opposite.

3 . Finite element approximation

In order to derive a finite element approximation of the problem, we need to introduce a variational
form of the axisymmetric Euler equations.

3.1 Basic concepts and function spaces

Let (., ) denote the axisymmetric scalar product in L2 ().

(u,v) = / /n wv.rdrdz (20)

ll.lo,2  the associated norm in L} ()

and

For m € N and p € R with 1 < p < + oo we define the Sobolev spaces

W™P(Q) = {v € LP(Q);0% € LP(Q), V]| < m}

which is a Banach space for the norm

lollmpa = (3 / / 10°0(2)Prdrdz)} p < 4oo o)
lajgm 7 <8
or
lollm,ce.n = sup (supess|d®v(z)]) p=+oo (22)
laj<m z€Q

We also provide W™? (Q) with the following seminorm

Plrss = (Y [ 100 rirds)  for p< oo (23)
la)=m a
[vlm,co0 = sup (supess|0®v(z)]) for P = +o0o (24)
laf<m z€N
In the special case p = 2 , we obtain the Hilbert spaces H™ () with the norm || . ||m o and the

senunorm | . |, o .



Let us introduce the bilinear form on (H!(Q))?

a: (u,v)—a(u,v)

1 0ubv OBudv
a(u,v) = //r; ;(E-g;+ 6—2(—9-2—)drdz (25)
and the trilinear form on W1 () x H'(Q) x L* (Q)
b:(u,v,w) - (u,v,w)

Oudv Budv
b(u,v,w) = /'/9(5;5 - Eb—z-)wdrdz (26)

3.2 Properties of the linear forms a and b .
3.2.1 The linear form a

Since for every point (z , r) in Q we supposed that :

O<ro<r<m

the bilinear form a is, as in the two dimensional case, continuous in (H'(Q2))? and H(Q)— Elliptic

Moreover we have the following inequalities

o 1 -

;5”“”?,' < r—glulf,n <a(u,u) Yu € HJ(Q) (27)
i i
1

la(u, )| < = lulalele Yu,v € H(Q) (28)
0

3.2.2 The formm b
The trilinear form b satisfies the following properties
1) b is continuous in W (Q) x H! (Q) x L? (Q)

2) Vue W™ (Q),ve H! (Q) we have

b(u,v,v) = b(u,v,u) =0 (29)

9



Proof

Sudv Oudv w
Dlb(u, v, w)| = |//ﬂ($5 - EE).;—.rdrdzl

so that :
1, 0udv Judv :
[b(u, v, w)| < E”E?}? - 5;5;“0,0”"’”0,0
and

1
Ib(u!v’w)l < Elu'l,w,ﬂlvll,ﬂ“wno,ﬂ (30)
2) The form b is exactly the same as the form of the convective term in the two dimensional Euler
equations and we refer to SAIAC [1] for the proof.
3.3 Variational formulation

‘Using a classical Green’s formula, we obtain, in the case of model 1, the following variational formu-
lation of equations (5;a, b, ¢)

Find a function t € [0, T] — (¥s(1) , vs(t) , we(t)) € H(Q) x HY(R) x HY(Q) such that :

a(ris (1), u) = (S2(),u) Vu € H(Q) (31,a)
(ditrvg(t), v) = b(ree(t), rvg(t),v) Vv e HY(Q) (31,8)
(%%(t), w) = b(rys(t), ‘%(t),w) + (,ég(vza»,w) Vw e H'(Q) (31,¢)

3.4 Conservations properties of problem E

Using the fondamental property (29) of the trilinear form b we derive the following results :

1) %Hf‘ve(t)ng,n =b(re(t),rve(t), rve(t)) =0  Vt € [0,T] (32)

N} —

Thus we get the conservation of the L? norm of rvg(t)

Hrve(t)|lo,0 = lirve(0)||o.w vt € [0,T]

-
pav
b

~

1d
2dt

2 2050 + (5 5030, 20) e

IS O10 = b(ra(2),

10



so that :

d  we 1,8
A2 Olba < Sl (F0)lbn (35)
and finally
w w 1 [0 )
15 Oloa < 1 Oloa+ 5 [ I3 (30 load (36)

Remark : In the particular case of an initial value of vy equal to zero, vy remains null for all t ¢
[0, T ] and the system E reduces to two coupled equations involving rys and f:—o

Moreover in that case, we get

Il = 1=20)lloa Ve [0,7]. NEL)

3.5 Generalization

3.5.1 In the case of model 2 the test function space in the first elliptic equation (31 , a) is replaced
by the space V defined by :

V={ve H(Q);v=0 on Finuyuly}

The unknown stream-function riyy satisfies the following boundary conditions
ryg given on Iy,

rY9 = 0 on Iy and ryyy = ¢ (given constant) on Iy

6(r¢9)
on

= 0 on Ty

3.5.2 In the case of model 3, we moreover have to take into account a Kutta Joukovski condition
(see paragraph 2.3). We made the computations as follows :

The stream function v, has been computed once and for all at the beginning of the program.
It does not depend on time. Then we just have to solve one elliptic equation at each time step to
get the complete stream-function.

11



3.6 Finite element spatial approximation

Figure 4. The computational mesh in the case of the complete model.

For i wied Uy be two finite dimensional spaces such that Uy € Wi'*°(Q) and V), C WhHe ().
Wz approximate the continuous problem (E) by the following approximate problem (Ew) .

Find a function t € [0, T] — ( Yan(t) , von(t) , won(t) ) € Un x Vi x V4 satisfying for all t € [0,T)

rtan(®un) = (SR, 00)  Vup €U, (38, a)
_ d
oo o) ) = bven(®), roea(thm)  Ven€Vy (38,)
if Wi L W 1 6 9 .
m 7»h (i),wh)z b(rd’g‘h(i),—:—h(t),wh)-i-(r—zg(lié"h(t)),wh) th € "), (38(‘)

3.6.1 Conscrvation properties of problem Ej

A . . We,n
W vt for the approximate solutions g , rvg and —— the same bounds as for the exact
r
.
SOt o,

For instance

[lrve n(@)]lo.00 = llrve,n(0)]l0,0 vt € [0,7]

12



3.6.2 A first convergence result

Let us consider the simplest model problem E* in the particular case of Vp = 0, (low without
*swirl”).

The corresponding approximate problem E}, reduces to the following system of two equations in
and wy .

a(ren(t),un) = (22 (),u)  Vun € Up (39, a)
Ey
%w—f-"-(t),vh) = b(ree,n (), “%(f), ) Ve €V, (39, )

Assume that (g,ws) solution of the problem E* belongs to the space

L= (0, T5 [WH1=(Q) U Wy ™(@)] x W+i=(q))

Then under classical hypotheses of finite element interpolation we get the following error bound

[e(t) = Yo,n(1a + llws(t) —won(t)lon < ChE (40)

Proof :

The proof follows the same lines as the proof of the convergence of the finite element method in
the two dimensional case, see SAIAC [ 1 ]. In fact the form b here is exactly the same as in the two
dimensional case and there are just slight differences in the expressions of the bilinear form a and the
scalar product.

These differences are very easy to handle since we can assume that hypotheses (6) hold.

Remark : The general case.

The general case is more tricky because of the term

(2 5-(0hn0)),un)

in the equation (38 , c).

We did not succeed already to proove the convergence of the finite element scheme in that case.

13



4. Time discretization

Let us choose a positive integer N , let At denote the corresponding time-step

At =

z|3

and (1) the subdivision of {0 , T]

t, = n.At for 0<n<N

let ¢, , vg ), and wy ), denote approximations of ¥g(ts) , ve(tn) and wy (ta) respectively.

4.1 The Leap-frog scheme

The leap-frog scheme for the problem E can be written as follows

n

n Yo n
a(ryg p,up) = ( - yUR) Yup, € Uy
(regh! = rognt va) = 280 B(ryg,, mo7 4, vn) Vo € Vi
“’g,.;:l “’g,}:] . wih 10
(=== = wn) =22t M(ryj,, —= wh) + (ﬁg(vah)z»wh)l Ywp € Vi

with g, v, and W, given
and 95 ,, v; , and w} , solutions of

1

1 “a.n
a(”/’o,)n u'l) = ( " vuh) Vu, € Un
(rvg,n — rvg 4, vn) = At Wrign,rvdn,vn)  Yon € Vi
1 0 0
Won Wap 0 Yon 13,4 .2
_— = b(rih —_— —_— .
r r 1u)h) At [ (7'7, 8,k r ,UJ).) + (r2 62 (La,h) )wh)] vuh E V’l

The stability of the Leap-Frog scheme follows from the next lemma.
4.1.1 Lemma

Under the following stability hypotheses :

1 1
1) CAt[Z|r¢;‘,hll,oo.n + ;‘ervg,hll,oo,ﬂ] <1 VneO,N

14

(41, a)
(41,%)

(41,¢)

(41,d)
(41,¢)

(41,f1)

(42)



2) there exists a constant A > 0 such that

C

We have the following bound for every n = 0 ,

|lrvg h”on + "—"'“o a < C(llrvg h”on + ”"vo h”o ot “"'—‘“o o+ ||

Proof :

Let us introduce

n+1

Sn = |Irvgallz o+ Hrv, ||on+ || ||on+” ||o,n

n

. gh wy +1 1 6
—2Atb(rig,, TG, Tvp E') — 2ALb(r7 ,, —=, )—2At(

 We follow, as in ref [ ] the energy method used by Richtmyer and Morton.

We have :
n41

1o (rvg 5, T3 h TV 5 ) S Clrdd s lc0,nlrvl al1allrvg Tloa

and by use of the inverse inequality :

lb("'/’g,hx"”;,he”v"“)‘< "'I"‘% hhoon”"va wllo, ﬂ”"va ||0n

Similarly, we get :

5' Won v < C 2’;‘
&(rvg =) < —I"'/’a al1,00 n” =2 lo,all flo,0
and
1 3 wn+l n+1
(2 57 07" =290 < Salrobalico allrofallo all =2 lo.

15

- (4
FIr¥en = 1455 oo + a(realion +Irvgtthe,n) < A.

( 0h)2

llon)

n+1

Wo n

(43)

(44)



so that

At n+l
(I—C*—-I"w hlloon—c—lrthllooﬂ) (lrvg alid o + llrogh ||on+|| ”on+|| “on)
1
At At Wi h ?I
$Sa<(1+ C',Tl"'/’?,hh,oo,n teg 2 Irve al1,00,0)(lIrvE allo o + ”""o “o i3 a)-
But we also have
n+1 n—l
Sn = Sa-1 = |Irvg 5. — lirvg 1Ilon+|| ”on"“ 2 13.a
—2AL.b6(ryg 1, TG b, rv;‘};l) + 2Atb(r1/)9 o TUg ,rv?y,,)
5';; 3“ ‘*’"—1 Wy,
. —20tb(ryf,, Ay 4 2Atb(ryg3t, r-" ,%)
n+1 ?
~2A1.(; a(“;, ) oan(L o 57, 200
using then :
“7'1’3,:1 ||(2),n - ||7‘”2,§1||3,n = 2At~b(7"/’3,h,""?,h”‘”:,;1 + "”3,7;1)
and
n+1 n—l wh n+1 n—~1 n+1
+w 1 6 w w
Wih Won 0.h 9.h
“ ”on - || “on 2AL[(rYg 4, - '—';—") + (ﬁa(vah)zv —+— )
we get
. ”h n—l
o ) - y 0 h
Sn =~ Sacy =200 [blrapg, — "‘Pg,hlr"vg,h,""a A+ o(rvg, - "'r”o P b e )

14 ,,2“’;";1 14 12“’9h
+(r_25;(v8,h) "_r_")+(r2 32( 4.h ) r

16



So that we get

1
2cAt
S = Sn1 < Irven —r¥en heon [llrsgalloallrey 3 lon + || 2o n]ll 2 lo.q)
2cAl wpi! - wg
+—=[Irvg pl1,00,0lIrv5, ;.Iionll HO.n'*'l"U?,;.llx,oo,nll"v 71 llo.al| 222 Ho a)
0

cAt cAt
Sn=8n-1 £ [—"I"@/’oh - "l‘[’ehlhoon+ v, —(Irvgali,c0n + l"Uoh [1,00,02))-
W'
[lirvgallon + lIrvps +1l 113.0]
and by use of the stability hypotheses we derive
n—l
lIrvg alld o + llrvg 5 113 + ll Hon +]|2 30 < KSo
m—l
+AK At Z [Iregalle o + lrvgs i o + H Ilo A+l I13.0)
m=1

and the result

4.2 A Semi implicit scheme of order two

This scheme is a semi-implicit CRANK - NICOLSON scheme. It can be written as follow in a finite
element context :

wg h
a(rvfn un) = (—=,un) Vun € Uy (45,4)
2 wen At n Won 0
a(rwa h ’uh) = (_»uh) + -—[b(!‘w - ’uh) +( (vﬂ h) uh)] Yuy € Uy (45)1))
At
(rop k! = rvgn, o) = —b("%_%-,"vo r+rvgrlvn) Yun €Vh (45,¢)
ntl n Wil 3 s

(“’eh Wo n wh)‘—‘T[b( wli-‘- Wo b orh

1 " i
-, "o+ ,wh)+(;§(5;(v?,h)2 + g(va,tl)z),m)]\fwh € Vi(45,d)

This scheme is of order two in time and it satisfies the following stability property
Let us assume that it exists a constant A such that we get the inequality :

17



10,,, 10,,
H;fg;(va,h)z + ;ga(vo,’;l)zllo,n <A (46)

the preceding scheme is stable and we easily get :

lIrvg allo.q = lirv) 4lloa Vn=0,1,..N (4n
1288 o < 1982 o + AT (48
7 loa < ll—=lloa 5 )

4.3 Methods of characteristics

For the application of the method of characteristics to the transport equations (5,b) and (5,c) in a
finite element context we refer to El Dabaghi and Saiac [6)

‘4.4 Numerical tests

~ The numerical tests have shown that the explicit Leap-frog scheme requires very small time steps in
order to satisfy the stability condition. The semi-implicit scheme is better. Although it is more costly
for each time step, it can work with much larger At and globally, it is faster.

Figure 6.The vorticity (f;o_ ) field at t=1 computed by the semi-implicit scheme with At = 0.01
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However the best results for the time dependent transport equation were obtained by the use of the
characteristics method.See a comparison of this schemes in ref [6 ]

5. An iterative method for the stationary solution

In order to get the stationary solution of EULER equations (5.a, b, ¢) we can of course use the time
discretization schemes quoted above. But it is a better choice with respect to numerical stability and
computational time to use the following simple version of the characteristics method. This implementation
essentially uses our easy knowledge of the stream lines, which is the case for plane or axisymmetric flow

problems.

Let us consider the simplest model without swirl (i.e. with Vp = 0) to explain the method. In that
wg . . .
case the problem reduces to the problem E* , the vortex — is simply convected along the stream lines
r
rit = cste.

Thus to detemine ~2 at any point x of the domain Q we just have to find on which stream lines lies

the point x . Then we go back along this stream-line to the entry point on the upstream boundary where
the value of the vortex is given.

We can summarize the computational process by the following iteration method.

Suppose that '/’3,): 15 given at the time to. Then for any n > 0, define tb;‘;l from ¥}, by :

n+1 wa,n n '
a(”/)o,). yUR) = (T,Uh) = (wi(d)o,h);uh) Vup € Uy (49)

where w; is the numerical function, defined from the given upstream boundary values of the flow,
which gives the funciional law between the values of ripg and those of =2
r

More generally, we can consider the family of algorthms
¥  given at tp

Then 3% is computed from Vg by :

a(rdg it un) = a(rgfn, un) — p(a(ref p, un) = (@i(r5n), un)) Vup € Up (50)

If p =1 we recover (49)

Moreover, if w; is differentiable, we should be able to solve the problem by a Newton’s method such
as the following :

t/)g'h given at {g

a(righ’ un) = (wi(redn)-rptt un) = (@i(r95 ), un) = (@ (r¥8 )00 4, up)  Vup € Uy (51)
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This kind of iterations has been studied by many authors. One’s can find an interesting discussion
in Glowinski [10]. See also Eydeland and Turkington [11]

First of all we have the following theoretical result. See Brezis, Sibony [12]
Let us consider the following non linear problem.

Find u € U such that

a(u,v) = (w(u),v) YveU (52)

Where a is a bilinear, continuous and strongly elliptic form which satisfies :

ollul’ < a(u,u) YueU with a>0 (53)

la(u,v)| < M||ullv]] Yu and veU (54)

and w is a non linear operator in U

Let us define A : U — U by

(A(u),v) =a(u,v) — (w(u),v) Yu and wvelU (55)

We have the following result

Theorem :
Suppose A is Lipschitz continuous on the hounded sets of U and suppose that A is strongly elliptic,
i.e there exists a constant k > 0 such that

(A(u2) = Awy),ug — uy) > kjfuy - u|)? Vu; and wu, €U (56)

Then the problem ( 52 ) has a unique solution. Moreover the following iteration
u® given

u™*! defined from u™ by

a(u™,0) = au™,v) - p(a(u", v) - (W(u"),v) Vo EU (57

20



converge to the solution u of ( 52 ) for every constant p satisfying

O0<p<pm ' (58)

pm being a positive constant depending on u® in general
Let us make some comments on the ellipticity condition (56).

In our case, it implies there exists a positive number k such that, for all u; and ug in U we have :

a(uz = uy, uz = uy) — (wWi(uz) — wiur), uz — ug) > kljug — uy || (59)

But a is strongly elliptic, with :

a(uz ~ uy, up — uy) > alluy — uyl)? (60)

Then the inequality will be obtained if we can ensure that

(w;(u-_)) —w;(ul),ug - ‘Ux) <0 Vu, and wu, €U (61)

or if we can suppose that w; satisfies a Lipschitz condition

flwifeea) — wi(en)|| < Liluz — uy]| (62)

with a Lipschitz constant L such that L < o

Let us remark that in this last case, it is easy to proove the con;ergence of the iterations (49) by a
contraction argument, .

We don’t know whether the condition (59) is a necessary condition for the existence or the stability
of the flow. And we refer to Arnold {13 ] for further considerations on stability of stationary solutions of
Euler equations . Let us however poiunt out the following problem - '

\

Figure 7.
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In the case of a flow with a given velocity profile such that w} is not bounded, we do have instability
of the flow . And this is one of the main difficulty of the modelization of a propeller .

6 . Fixed - point iteration algorithm versus time - dependent approach .

Let us denote by 1 » the stationary solution of the approximate problem E , . When the fixed-point
algorithm is convergent, we get the following error bound for every iteration n = 0,..N

l¥gn ~ Yenlha < CE™ 19§ — Yol (63)
with k <1

The convergence rate depends on the value of k, but we shall get for sufficiently large N

Hvga — vonllin <€ (64)

whatever ¢ be . Then the global error is only a finite element interpolation error.
On the contrary, in a time dependent approach, each iteration corresponds to a time step . We solve
a differential equation of the following kind .

d .
Fven = T(¥o,n) (63)

The best error bound we can get, by the use of the Gronwall Lemma, is the following :

Y51 = Yon(ta)llia < Cezp(Atn) [[1¥3 4 — o4 (0)]] + h*) (66)

Let us then suppose that the stationary solution is obtained at the time T = t, we then have the
following inequality :

H¥8's — Yenllia < Cezp(AT) (118 5 — 6,1 (0)]| + h¥) (67)

The initial error and the interpolation error are multiplied by a factor exp ( AT ) which is quickly
growing with T . This is an heuristic reason why the fixed point iteration algorithm gives much better
results that a time dependent approach when one’s is only interested by the stationary solution

°

Figure 8.The velocity field of the stationary solution computed by our iterative method.
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Figure 9.The vorticity (‘ﬂ ) field of the stationary solution computed by our iterative method.
T

7. Modelization of a Duct Propeller .

In order to modelize the presence of stators and rotors, we introduce Jumps of the angular velocity
Vg and, for the rotors only, a jump of the pressure .

Let us say a few words about the computation of the pressure in our model . Pressures are convected
along the stream lines from the upstream boundary to the downstream boundary . Then, when a stream
line go accross a rotor, we add a jump of pressure in order to modelize the propeller effect. That
increases the velocity in the duct through the Kutta-Joukovski condition. And we also need, in that case,
to introduce some viscosity effects at the trailing edge of the duct.

After many numerical experiments and computational works, we determined two practical solutions:

First, we introduce some amount of vorticity at the trailing edge in order to maintain the jump of
axial velocity up and down to the trailing edge of the duct . The physically correct value for that jump
was choosen as follow :

fws] 1 0P
Wyl = ——
TV o
This solution gives good results but it may lead to computational instabilities .

(68)

The second solution prevents instabilities . We make a first computation to determine the geometry
of the stream line passing by the trailing edge point . Then we completely compute the flow with this
imposed stream line .

Both methods have been compared and give similar results.

Figure 10.The stream lines of the stationary solution computed by our iterative method in the case
of a duct propeller.
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Figure 11.The velocity field of the stationary solution computed by our iterative method in the case
of a duct propeller.

Figure 12.The vorticity (w_g ) field of the stationary solution computed by our iterative method in
r
the case of a duct propeller.
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Figure 13. Comparison between computed and experimental velocity profiles before and after the
propeller made by B. Goirand at the Bessin des Carenes in Paris.

More detailled discussions, complete tests and a comparison with real experiments made at the
Bassin des Carenes in PARIS by B. Goirand are to appear .

Conclusion

In this paper, we presented a stable, precise, and very fast solver, based on the characteristics method,
of the stationary axisymmetric Euler equation. Its stability and computing time perfomances are well
adapted to "trial and error” procedures in engineering design. This scheme has been successfully used
to compute an internal-external axisymmetric flow and to determine the whole propulsive performances,
specially duct thrust and interaction betwen propulsor and stern. Comparisons with experiments made
at the Bassin des Carenes in Paris have shown very good agreement between measures and calculus.

We are now developing a finite element blade to blade flows calculation in order to produce an
automatic complete quasi 3 d solver. Our purpose is again to obtain a low time consuming, simple,
stable, numerical code in order to use it in a engineering design context.
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