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Abstract: We show the existence of a travelling wave solution to the equation

Ju ou

T a(y)Tm = Au + g(u)

in the infinite cylindrical domain ¥ = {(z;,y) € R Xw}, where w is a bounded domain in
IRV-!. This equation describes the propagation of a curved premixed flame in the infinite
tube ¥, in the framework of the constant-density approximation and for a unit Lewis
number. The existence proof mainly uses elliptic a priori estimates, a topological degree
argument and monotonicity arguments. Moreover, we describe a somewhat non classical
physical behaviour: we construct travelling wave solutions of this flame propagation

model which have an “inversion of the velocity field”.

(*) This work was supported in part by DRET (Direction des Recherches, Etudes et
Techniques) under contract 87-209.
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SOLUTIONS D’ONDE SIMPLE
D’UN MODELE DE PROPAGATION DE FLAMME (*

H. BERESTYCKI®:?), B. LARROUTUROU(® and P. L. LIONS(®)

(1) Laboratoire d'analyse numérique, Université Paris V I, 4 Place Jussieu, 75252 PARIS
Cedex 05, FRANCE.

(2) INRIA, Sophia-Antipolis, 06560 VALBONNE, FRANCE.

| (3) CEREMADE, Université Paris IX Dauphine, Place du Maréchal de Lattre de Tas-
signy. 75775 PARIS Cedex 16, FRANCE.

Résumé: Nous montrons I'existence d'une solution d’onde simple de I'équation

Ou ou
e + (:a(y)éx—1 = Au + g(u)

dans le domaine cylindrique infini £ = (z1,y) € R X w}, ol w est un domaine borné de
IRN=1. Cette équation décrit la propagation d’une flamme plissée prémélangée dans le
tube infini £, dans le cadre de I'approximation de densité constante et pour un nombre
de Lewis égal 2 1. La démonstration de I'existence d’une solution d’onde simple utilise
essentiellement des estimations a priori pour une équation elliptique, des arguments de
monotonie et un argument de degré topologique. De plus, nous décrivons un comporte-
ment physique non classique: nous construisons des solutions stationnaires exhibant une
“inversion du champ de vitesse”.

(%) Cette étude a été partiellement financée par la DRET (Direction des Recherches,
Etudes et Techniques; contrat 87-209).




1. INTRODUCTION

In this paper, we show the existence of a travelling wave solution to the equation:

ou Ju
5t + a(y)-a:c—l = Au + g(u) , (1.1)

set in the infinite cylindrical domain £ = {(z,,y) € IR X w}, where w is a bounded and
smooth open domain in IRV ~!. This equation arises in combustion theory: it describes
the propagation of a curved premixed flame in the infinite tube ¥, in the framework
of the classical thermo-diffusive model, under the assumption that the Lewis number is

equal to unity.

Referring to e.g. [3], [4]. [12], [14] for more details, we simply recall here the equations
of the thermo-diffusive model, which is derived in the framework of the well-known
constant-density approximation. We consider a curved flame propagating in the infinite
cylindrical tube & = R x w C RN. For r € T, we write z = (z;,y) with ; € R and
y € w. With the assumption of a single one-step chemical reaction R — P, the equations
of the thermo-diffusive model read:

ue + afy)us, = Au+ f(u)v,

(1.2)
A ]
vt + a(y)vz, = L_: — f(u)v in X

Here, u is the normalized temperature and v is the mass fraction of the reactant. More-

over, a(y) is the r;-component of the velocity field V= (a(y),0) which is given, parallel
v

to the tube walls ¥ and divergence free. Lastly, the terms Au, To and f(u)v correspond

to the thermal diffusion, the molecular diffusion (the non-dimensional positive parameter
Le is the Lewis number of the reactant R), and the chemical reaction respectively.

The travelling-wave solutions u(z; + ct,y), v(z1 + ct, y) of (1.2) satisfy:

(¢ + a(y))us, = Au+ f(u)v,

1.3)
Av ) (
(c+ a(y))vg, = 7 f(u)v inZ,
and the following boundary conditions (which are classical in combustion theory):
0 0
=0, == =0 ond%, (1.4)

E.—
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9.

'U.(‘-OO,y) =0 ) ‘U(—OO,Z/) =1 ) (1 5)
u(+2,y) =1, v(+o0,y)=0 foryec w. , )

In (1.5), v is the outward unit normal on . When Le = 1, (1.3)-(1.5) obviously imply
u+ v =1. The travelling-wave solutions are then given by a single elliptic equation [we

set g(u) = (1 — u)f(u)):
(c+a(y))us, =Au+tg(u) inX, (1.6)

associated with the boundary conditions:

du
B—V_O on 9% | (1.7)
u(—oc,y) =0. u(4+o0,y)=1 fory€ew. (1.8)

This is the problem which we investigate in this paper. In (1.6)-(1.8), both u € Cz(i)
and ¢ € IR are unknown. We will use the following hypotheses [(1.10) corresponds to an

ignition temperature assumption]:

a is a continuous function from @ into IR , (1.9)
g is a Lipschitz — continuous function from [0,1] into IRy , ¢(1) =0, (1.10)
30 € (0,1) . such that g=0on [0,6] and g >0 on (6,1) . (1.11)
1
Denoting <a>= ————l/ y)dy, we can now state our main result:

Theorem 1.1:
For any functions a and g satisfying (1.9)- (1.11), there exists a solution (u,c) of
(1.6)-(1.8). This solution satisfies:

0<u<link, (1.12)
Uz, >0 in T, (1.13)
<a>+c>0.0 (1.14)

Remark 1.2: If (u,c) is a solution of (1.6)-(1.8), it is clear from the classical elliptic
estimates that u € W2P(T) for all p € (1,40) (see Agmon, Douglis, Nirenberg [1]).
Moreover, from classical Schauder'’s estimates, u ¢ C*(X) and therefore satisfies (1.6) in
the usual sense as soon as the function a(y) is Holder-continuous. e
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Remark 1.3: Uniqueness of the solution of (1.6)-(1.8) has been proved by Berestycki
and Nirenberg [7]. Assuming that g is a Lipschitz-continuous function in [0,1], is C?
in a neighbourhood of 1 and satisfies g'(1) < 0, it is shown in [7] that if (u,c) and
(u,¢’) are two solutions of (1.6)-(1.8), then ¢ = ¢’ and u(z1,y) = v'(z; + &1,y) for all
(x1,y) € £, for some 2, € IR. Furthermore, that any solution u of (1.6)-(1.8) (with
arbitrary ¢ € IR) is monotone has also been established by Berestycki and Nirenberg [6],
[7] under the assumptions (1.9)-(1.11). This last monotonicity result has been extended
to a somewhat more general class of nonlinearities by C. M. Li [13]. e

The existence of a solution (u,c) of (1.6)-(1.8) for any functions «a and g satisfying
(1.9)-(1.11) is proved in Section 2 below.

Problem (1.6)-(1.8) had been previously investigated by the first two authors in [3],
under the additional assumption essentially that a is not too far from being constant.

More precisely, under the assumption that:

yew yew

(maxa(y) - min a(y)) (<a> - mix_la(y)) <2 /0 ' o(s)ds | (1.15)

it was shown in [3] that there exists a solution (u, ¢) to (1.6)-(1.8), and that this solution

satisfies:
c+ meip a(y) > 0. (1.16)
yE®

This inequality, which is derived from the additional assumption (1.15), is crucially used
in [3] to derive some a priori estimates. In contrast with this situation, for the solutions we
construct here, ¢ + a(y) may in general change sign in the domain w. This phenomenon
may be interpreted as an “inversion of the velocity field”. Indeed, (1.2)-(1.3) show
that ¢ 4+ a(y) is the mixture velocity in the reference frame Ry in which the solution is
stationary (Ry is a reference frame attached to the flame and moves with the velocity
—c with respect to the original reference frame Rp). Then, (1.16) means that, at every
point, the velocity in the reference frame Ry points from left to right. i.e. from the
fresh mixture towards the burnt gases, a physically natural situation. Buf, for solutions
satisfying:

c+ meil_la(y) <0, (1.17)
yEw

there are regions of the tube (where ¢ + a(y) < 0) where the velocity is directed in the
opposite way, from the burnt gases towards the fresh mixture! It is important to realize
here that this non classical situation is by no means non physical: it has indeed been
known for a long time (not for a flame in a tube, but in other geometrical configurations,
such as for a counterflow diffusion flame; see Williams [15, p. 418]) that the mizture




velocity in the neighbourhood of the flame may be pointing from the burnt gases towards
the fresh mixture. This simply means that the convective effects are locally dominated by
the diffusive effects. Moreover, in these conditions, (1.14) says that the average velocity
in the reference frame Ry is necessarily positive.

Several results in this direction are shown in Section 3. We prove there that, the
function g corresponding to the reaction term being given, one can choose the function
a (far enough from a constant) so that the corresponding solution (u.c) of (1.6)-(1.8)
actually satisfies (1.17) (such travelling wave solutions have been numerically computed
in [2]). Moreover, we show that condition (1.15) is, in some sense, optimal to insure that
the inversion of the velocity field does not occur (i.e. that property (1.16) is fulfilled).

2. PROOF OF THE EXISTENCE

This section is devoted to the proof of Theorem 1.1. As in (3], this proof consists in
studying an analogous problem posed on the bounded cylindrical domain R, = (—~a,a)xw
for a € IR and then in examining the passage to the limit as a — +00. Solving the
problem in R, is essentially the same here as in [3]. However [because the solution here
does not necessarily satisfy (1.16)], the arguments in [3] would fail to yield the limit
as a — +oc. Hence. we need here another approach to the derivation of the a priori
estimates and to the limiting procedure.

We first consider the problem:
(c+ a(y))uz, = Au+g(u) in R, , (2.1)

with the mixed boundary conditions:

% 0 on(—a,a)x 0w, (2.2)

> —
u(-a,y) =0, u(+a,y)=1 foryew. (2.3)

To this system we add the following normalization condition which we trade in against
the freedom to choose ¢:

max ulx y = 0 . 2.4
(z1,y)€R., 2, <0 (€1, 9) (2.4)

The role of this condition (and also analogous normalization conditions) is discussed in
Berestycki and Larrouturou [3] and in Berestycki, Nicolaenko and Scheurer [5].

On problem (2.1)-(2.4), we are going to prove:



Proposition 2.1:
Under the assumptions (1.9)-(1.11) and for any a > 0, there exists a solution (u,c) =
(uq,cq) of problem (2.1)-(2.4). o .

The proof follows the steps of the one given in [3] with a few minor modifications.
For the sake of completeness, we repeat it here. It rests on the following a priori estimates
(in what follows we always assume that the definition of g is extended to all of IR by

setting g(s) =0 for s ¢ [0, 1]):

Lemma 2.2:
Suppose g < M on [0,1] and a¢ < a(y) < a; for all y € ©. Then there exists a
constant K depending only on a, ag, a3 and M such that any solution (u,c) of (2.1)-(2.4)

satisfies:
lcl< K, (2.5)

and:
luller(gy S K -0 (2.6)

PROOF of Lemma 2.2: Since g(s) = 0 outside the interval [0,1], it follows from the
maximum principle that 0 < u < 1 in R,. Hence, by a result of Berestycki and Nirenberg
[6, Theorem 4.1]. we know that u,, > 0in (—a,a) x @ (actually, it is assumed in [6,
Theorem 4.1] that u satisfies Dirichlet data on the whole boundary of R,; but of course
the same result holds under the present conditions). Using this information, we infer some
inequalities from the maximum principle. Let ag and a3 be such that ag < a(y) < a; for
all y € @, and denote zg, 2; the solution of the following ordinary differential equations:

4 (c+ay)z, =0 in(—a,a), (2.7)

—z1' +(c+ ap)zy =M in (—a,a), (2.8)

together with t};e'boundary conditions:
2i(~a)=0, zf(4+a)=1 fori=0,1. (2.9)
The maximum principle then yields:
zo(z1) < u(z1,y) < 21(x1) in Rg; (2.10)
for instance, the first inequality in (2.10) follows from the relation:

—Au = 2) + (c+ a1)(u — 20)z, = g(u) + (a1 — afy))uz, 2 0. (2.11)




Now, since, for fixed a > 0:

lim 2(0)=1 and lirll z;(0) =0, (2.12)

the condition z0(0) < < 2;(0) which follows from (2.4) gives the a priori estimate (2.5)
on ¢, with a constant K only depending on a, ag, a; and M. Then, since 0 < u < 1
and c is bounded, we immediately derive by the elliptic estimates a C' bound on u:
luller(r,) S K. o

PROOF of Proposition 2.1: Consider the space F = CI(RQ) and £ = E x IR. For
(v,¢) € £ and for 7 € [0,1], let u = ¢+(v, c) be the unique solution of:

—Au+ (c+ afy))us, = 79(v) in R, , (2.13)

with u satisfying (2.2) and (2.3). Hence problem (2.1)-(2.3) has been translated into the
equation u = ¢;(u,c). Next, let:

h, v,c)= max (v,c). 214
() (z1,9)€Ra, z;god) (v,¢) ( )

Thus our problem (2.1)-(2.4) with unknowns u and c is now written as a fixed point
equation in the space &:

{ho ke, (215)

This problem is of the form (u,c) — F1(u,c) = 0 where, for 7 € [0,1]:
Fr(u,¢) = (¢r(u,¢),c = hr(u,c) + ) . (2.16)
Clearly the mapping (7. (u,c)) — F+(u,c) from [0,1]x € into & is continuous and compact.

Now, let the reals ag and a; be given by:

yew yEw

ap = min (min a(y),O) . a1 = max (maxa(y),O) , (2.17)
so that:
a0 < Ta(y) < (2.18)

for all y € @ and 7 € [0,1]. Let K be the constant introduced in Lemma 2.2; K depends
on a, ao, @y and M. Since 7g(s) < M, we know by the estimates in Lemma 2.2 that
(u,¢) = Fr(u,c) # 0 for all (u,¢) € 8 and all T € [0, 1], where:

Q= {(u,c) €€, “u”cl(fzn) <K, |c|< K} . (2.19)
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Hence, the Leray-Schauder degree d(I — F;,9,0) is well defined and:
d(I - F1,Q,0) =d(I — F,9,0) (2.20)

by homotopy invariance. Now for 7 = 0, ¢o(u, c) is independent of u. We perform a new
homotopy by substituting Ta(y) for a(y) in the definition (2.13) of ¢, and subsequently
in the definition (2.14) of h,. Continuity and compactness are left unchanged as are
our estimates in Lemma 2.2 by the choice we have made of ag and a;. Therefore, by
homotopy invariance:

d(I-F,92,0)=d(I - F{,9,0) , (2.21)

-

where 7 (u,c) = (d»c, c— h(c) + 0), with 9. = 9.(z1) the solution of:

-9y +cyl =0 in (-a,a),
¢ ¢ - 2.22
{2 ot (222
and:
h(c) = ¥.(0) . (2.23)
But h(c) = 1-e” and the equation (u,c) = F{(u,c) uniquely determines ¢ and

eCd —_— e—Cd

consequently u (¢ = ¢* € (—=K,K) and u = 9.-). Then by homotopy invariance, the
degree (2.21) is the same as the degree of the mapping:

(u, ¢) — (u — s, h(c) — o) . (2.24)

By using the product property of the degree we obtain (letting By stand for the ball of
radius K in E):

d(I - F1,9,0) = d(I — Yo, Bx,0). d (h(c) - 0,(—K,K),0) : (2.25)
Since Y- € Bg and h is decreasing with il.(—K) >0, fz(K) < 0, we finally get:
d(I - F%,2,0)=-1. (2.26)

Hence there exists a solution (u, ¢) of problem (2.1)-(2.4), which completes the proof of
Proposition 2.1. e

Remark 2.3: Under the same assumptions as in Remark 1.3, uniqueness of the solution
(u,c) of (2.1)-(2.4) has been proved by Berestycki and Nirenberg [7]. o

Now comes the newer part in the proof of Theorem 1.1. We will now derive the limit
of the solution (ug,c,) of (2.1)-(2.4) when a — +o0. '
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PROOF of Theorem 1.1: We divide it into several steps:
Step 1: A priori estimate on c,.

Lemma 2.4:
There exists a constant K > 0 independent of a such that for any a > 1 the solution
(Ua,ca) of (2.1)-(2.4) satisfies:
|ca|[<K .0 (2.27)

PROOF: We recall from the proof of Lemma 2.2 that the function:

e(cu+°‘1)1'l — e"'(Ca+al)a

2sinh ((ca + a;)a)

zo(T1 (2.28)
satisfies 29(z;) < uqo(z1,y) on R,. Hence 20(0) < 6, which implies (cq + oy Ja > —K’ for
some constant K’ > 0, or:

/
Ca > —aj — % . (2.29)

Let us now derive an upper bound for ¢,. To this end, we use the solution 2(zy) of:

{ ="+ (ca+ @)z’ = MH(z,) in (-a,a), (2.30)

x(-a)=0, z(+a)=1,

with M defined as before and H(z;) = 1 if z; > 0 and 0 otherwise. Clearly z(z;) >
uq(z1,y) on R, and therefore 2(0) > 6. A direct computation then yields the estimate
ca <K foralla>1. e

Step 2: Existence of a limit.

From the estimate (2.27) on ¢, we see by the classical elliptic estimates (see Agmon,
Douglis Nirenberg [1]) that, for any p > 1, u, is bounded in the W2® norm in any
rectangle (z;,z;, + 1) X w contained in R,, and this holds independently of a and z;. In
particular, there exists K > 0 independent of a such that:

llwallcir,) < K (2.31)

for all a > 1.

Moreover, we can find a sequence a, — +00 such that Ca, = cin IR and u,, — u
locally in C! norm. Obviously we obtain a solution of the equation in X:

(c+ a(y))uz, = Au+ g(u), (1.6)



which satisfies:

ou ,
i 0 ondX. (1.7)

, Ou .
Furthermore, since -5—5 > 0and 0 € u, <1 for all a > 0, we obtain u,, > 0 and
- I
0fu<linX. e
From now on in this section, (u,c) will always denote the limit of (u,,,cq,)-

It now remains to study the limits of u(z;,y) as z; — *oc. In particular, we want

to avoid u, converging locally to some constant p € [0,0] U {1}.
Step 3: Energy estimates

Lemma 2.5:
The following integral are bounded:

/ g(u) < +o0 , / | Vu |P< +00 . @ (2.32)
b >

Here and thereafter the measure dz;dy is understood for integrals taken over ¥ or

parts of .
PROOF: It is exactly the same as in [3]. For the sake of completeness we repeat it here.

On R_ x w, we have g(u) = 0 since u < 6. Besides, for z > 0, let Q. =0, z[xw and
U(z) = / u(z,y)dy. Integrating equation (1.6) on Q-, we have:

[ sw=46) - 400, (2.33)

with: :
A(z) = c/ a(y)u(z,y)dy — U'(z) . (2.34)

If/ g(u) — 400 when 2 — 400, then U’(+00) = —o0, which is impossible since U is
Q.

bounded. For the second integral in (2.32), we multiply (1.6) by u before integrating on
@, and we conclude in the same manner. o

Step 4: Existence of limits as ; — o0

Since uz, > 0, we know that the limits lim wu(z,,y) = B4(y) exist. By considering

2:1'—’i00
the sequence of functions:

ut(a1,9) = u(e1 £5,) (2.35)
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for (z1,y) in the fixed domain R;, we derive from the classical elliptic estimates that

qu.: — By in the C! sense. Since [ | Vu |2< 400, we find that, necessarily, V34 = 0, ie.

B+ and [_ are constants. Moreover, since u is monotone in the x;-direction, we have:

0< B <8=maxu(0,y) By <1. (2.36)
yew -

Using again the uniform convergence of uj’ to B and the finiteness of [ g(u), we infer
that g(84) = 0; thus, either 84 =6, 0r 3, =1.

Step 5: The case 8, = 4.

Lemma 2.6:
If3, =6,then3_ =6 andu=49. o

PROOF: If B, = 6, then u < 0 and g(u) = 0. Integrating the equation (1.6) over the

domain R,, and letting m — +oc, we find (because lin; | Vu(zy,y) |= 0 uniformly
T3] — 00

for y € w from Step 4):
(By =B-)(c+<a>)=0, (2.37)

1 .. oy .
where <a>= |_| / a(y)dy. Similarly, multiplying the equation by u, we find:
w (5%

_/): | Vu 2 _|_§_| (3% = B%)(c + <a>)=0. (2.38)

Hence, using (2.37), it follows that:

/ | Vu =0, (2.39)
b

and we have proved the claim: u must be constant,and S_ = 6. e
Step 6: An estimate for ¢ + <a>.

We will now show that ¢ + <a> is bounded away from 0 by a positive number. We
first need the next result on the solution (ua,€q) of (2.1)-(2.4):

Lemma 2.7:
There exists a constant § > 0 independent of a such that for any a > 1 the solution
(Ua,ca) of (2.1)-(2.4) satisfies:

/ 9(ta) 26>0. 0 o (2.40)
R,
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PROOF: Choose a number A with § < A < 1. Let @ > 1. For some zo € (0,a) and
Yo € w we have u,(zo,y0) = A. Since | Vu, |[< K in R, with K independent of a, we see

that a — zg > ——, 7o > N Then we can find 5 > 0, ¢ > 0 and € > 0 independent
of a such that: :
g(u(xy,y)) > o forall (z1,y) € EN B,y(To,y0) , (2.41)
and:
‘ | 2N B,(zo,90) |> € . (2.42)
We thus obtain:
/ g(uq) > €0, (2.43)

which completes the proof. e
A consequence of Lemma 2.7 is the following result:

Lemma 2.8: °
Let & > 0 be the constant defined in Lemma 2.7. Then, c satisfies:

<a>+c¢> ) (2.44)

]
jw |’
PROOF: We will separately consider both cases 3y = 6 and 84 = 1.

a) Assume first that 3; = 6, and integrate the equation (2.1) satisfied by u,, on
“the domain R} = (0,a,) x w. We get:

[, o0a) = (cat <a>) ] = [ (cay +(0) e (0,8)dy
R “ (2.45)

Oug,

du,, '
- w"g;;(amy)dy-P/w oz, (0,y)dy .

But we know from Lemma 2.6 that u,, converges in the C! sense to § on any compact
subset of £. Then the third and fifth terms in (2.45) converge to (c+ <a>)8 | w | and 0

respectively. Moreover, using the fact that %1—5'—"- > 0 and Lemma 2.7, we get:
L1
1-0)|w|(c+<a>)>6, (2.46)

whence (2.44).

b) Assuming now that 3, = 1, we can argue as in the proof of Lemma 2.7 to show
that u (and not u,) also satisfies:

/EQ(U) >6>0. (2.47)
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Integrating now equation (1.6) on all of £ (as in the proof of Lemma 2.6), we get:

@] (Bs - B-) (c + <a>) = A ou) , (2.48)

from which (2.44) again follows.
Step 7: Conclusion.
We can now conclude the proof of Theorem 1.1, using the following result:

Lemma 2.9:
Under the assumption <a> + ¢ > 0, there exists a unique A > 0 and a corresponding
“eigenfunction” ¥ = W(y) (which is strictly positive in @ ) solution of:

AU+ Me+ a(y)P = AT inw,

. (2.49)

— =0 ondw.e

Oov

This result is a particular case of Theorem 3.4 in Berestycki and Nirenberg [7]. We
refer the reader to [7] for the complete proof.

Here we use Lemma 2.9 to define a barrier function for u. Since ¥ is defined up toa
multiplicative constant, we may as well assume that ¥(y) > 6 on @. Then, the function
® defined by:

B(1,y) = X1 U(y) (2:50)

satisfies:

—A(® ~ua) + (c+ a(y)(® ~ ua)z, =0 in (—a,0) x w, (2.51)

together with the boundary inequalities:

(@ ~ug)—a,y) >0, (- u.)(0,y) >0 foryew, (2.52)
and: 5( )
— Uq _ _
% = 0 on(-a,0)x dw. (2.53)

The maximum principle then yields:

Ua(Z1,y) < B(z1,y) (2.54)

for all —a < z; <0and y € w. Hence:

u(z1,y) < ™1 Y(y) (2.55)
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for all z; < 0 and y € w. Since A > 0, this shows that 8_ = 0; Step 5 then shows that
B+ cannot be equal to §. Thus 3, = 1 and the proof of Theorem 1.1 is complete. o

3. INVERSION OF THE VELOCITY FIELD

As we said in the introduction, we consider in this section the question of the inver-
sion of the velocity field ¢ + a(y) in the reference frame Ry attached to the flame; that
is, we examine the sign of ¢ + meip a(y), (u,c) being the solution of (1.6)-(1.8).

yew

The existence of solutions with ¢ + meip a(y) < 0 rests on the following observation
YyEW

concerning a sequence (u,, ¢,) of solutions to:

du

(cn + an(y))_g = Aup +g(un) inX, (3.1)
31:1
Oun, .
-a—l/ =0 ondX , (32)
Un(—20,y) =0, up(+00,y)=1 forycw, (3.3)
max un(zr1,y) =46 . (3.4)

(Il,y)ei, r1 <0

Proposition 3.1:
Let ap and a; be two real numbers with ag < a;. Forn > 2, let a,, be a continuous
function on &, such that lim a,(y) exists for almost all y in w:

n—4oc
nliToo an(y) = a(y) ae inw, (3.5)
and that, for all n > 2:
ap < ap(y)<a; ind. (3.6)

Let g satisfy the hypotheses (1.10)-(1.11), and let (un,cy,) be the solution of (3.1)-(3.4).
Then (un,cn) converges in Cj, (£) x IR towards (u, c) satisfying (1.6)-(1.8). e

PROOF: From Section 2, the estimates on u, in W2P(Ry) for any positive b, on ¢, in IR

)
|w | _
can therefore extract a subsequence (un,,cn, ) which converges in C, () x IR to (u,c).
Then (u, ) satisfies the boundary condition (1.7) on % and:

and the estimate <a,> + ¢, > only depend on ag, a; and g (and not on n). We

max u(z,y) =0, ugy >0. 3.7
(z1,¥)€Z, £, <0 (21,9) o (3.7)
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Moreover (using Lebesgue’s bounded convergence theorem), it is easy to see that (u,c)
satisfies (1.6) in the sense of the distributions in . Lastly, we have u(+00,y) = B4 €
{0,1} and u(—o0,y) = 3- € [0,6] for all y € w as in Steps 3 and 4 above. But we also
know that:

. )
<a>+C=nEToo(<a"">+c"’°)Zm>O' (3.8)
Arguing as in Step 7 above, this shows that f_ =0, 8, =1 and it completes the proof:
using the uniqueness result of Remark 1.3 above, it is classical to show that the whole

sequence (u,, ¢, ) converges to (u,c). o

It easily follows from Proposition 3.1 that there exist solutions (u,c) of (1.6)-(1.8)
having an inversion of the velocity field, i.e. such that ¢ + a(y) changes sign in w, or
equivalently:

c+m€ipa(y) <0. (1.17)
yE®w

Indeed, starting with a solution (u,c) for some «a, one can modify o about some point
Yo € w without changing ¢ much. Hence one obtains a solution with ¢ + a(yo) < 0. This
procedure is detailed below:

Proposition 3.2:
Let g satisfy (1.10)-(1.11). Then there exists a continuous function a(y) such that
the corresponding solution (u,c) of (1.6)-(1.8) satisfies (1.17). @

PROOF: Let a; be a positive real, to be chosen later. Let Yo € w. For any integer n we
define the function a, by: :

a, if|ly—yo |>

y

an(y) = (3.9)

Si—= 3=

naly-w | iffy-yol<
For all n, ay, is continuous on @; furthermore, rneig an(y) =0, max an(y) = ai, and:
yEw yEw
Vy€o—{w}, lim an(y)=ar. (3.10)

Then, we know from Proposition 3.1 that the solution (un,cn) of (3.1)-(3.4) converges
as n — 400 to (u,c) satisfying (1.7)-(1.8) and:

(c+ar)us, = Au+ g(u) . (3.11)
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Besides, it is known (see Berestycki, Nicolaenko and Scheurer [5], Johnson [8], Johnson
and Nachbar [9]. and Kanel’ [10], [11]) that the one-dimensional problem:

—ﬂzlzl + éﬂzl = g(ﬁ) in IR ,
{ﬂ(—oo) =0, 4(0)=6, d(+o0)=1, (3.12)

(where @ = @(z;) and ¢ are unknown) has a unique solution (#,¢&). The uniqueness
statement recalled in Remark 1.3 then implies:

u(ry,y) = @(x;) forall (z;,y)€ X, (3.13)

and: \ ,
c+ap =¢. (3.14)

Observe that ¢ only depends on the function g. If we choose from the outstart to take
ay > ¢, then (3.14) says that ¢ < 0. For n large enough, we have ¢, < 0, whence:

cn t+ meil_'l an(y) =cn <0, (3.15)
yEw

which completes the proof: the choice a(y) = a,(y) for n large enough gives a solution
of (1.6)-(1.8) which satisfies (1.17), i.e. which exhibits the inversion of the velocity field.
®

We conclude this section by deriving conditions for the inversion of the velocity field

to occur. First we recall from [3] that this inversion never occurs when the condition:

(mexot) - mize)) (<o> -mina) <2 [ grds (19

yew yew
is fulfilled.
Proposition 3.3 [3]:
Let a and g satisfy (1.10)-(1.11) and (1.15). Then the solution (u,c) of (1.6)-(1.8)

satisfies:
c+a(y)>0 Vyecw.e (3.16)

PROOF: We give here a more direct proof of this property than in [3]. Multiply-
ing (1.6) by 1 — u > 0 and integrating in X, we get (we recall from Section 2 that
lim | Vu(z;,y) |= 0 uniformly for y € w):

T -—Oﬂ:

I——;’—I (c + <a>) ~—/ | Vul?>0. (3.17)
T
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Notice that this inequality again shows that <a> + ¢ > 0. Besides, multiplying (1.6) by
uz, and integrating in ¥ yields:

1
] / o(0)ds = [ (c+au)ed, (3.18)
0 2
1
This implies that | w | / g(s)ds < <c + max a(y)) / | Vu [?, whence, using (3.17):
0 yew z

1
2/ g(s)ds < <c + métg(a(y)) e+ <a>) . (3.19)
0 yew
When (1.15) holds, this inequality shows that ¢ > —I’n€i[l a(y), which concludes the proof.
. v
Our last result says that condition (1.15) is optimal, in the following sense:

Proposition 3.4:
Let € > 0 be given. One can find two functions a and g satisfying the assumptions
(1.9)-(1.11) and the inequalities:

2/01g(s)ds < (max a(y) — min a(y)) (<a> - rynelg a(y)) < 2/01 g(s)ds + €, (3.20)

yEw yE@

such that the corresponding solution (u,c) of (1.6)-(1.8) has the inversion of the velocity
field (i.e. satisfies (1.17)). o

PROOF: The proof is mainly analogous to the previous one, and uses the asymptotic
analysis for high activation energies of the one-dimensional problem (3.12). Referring to
[5] for the details, we just recall here that the solution (@,¢) of (3.12) always satisfies:

2/; g(s)ds < & . (3.21)

This can also be inferred from the proof of Proposition 3.3. Moreover, it is shown in [5]
that one can choose g (corresponding to a high activation energy) such that:

1 1
2/ g(s)ds < & < 2/ g(s)ds + % .o (3.22)
0 0

Having chosen g such that (3.22) holds, we set:

1
a = \[2/0 g(s)ds + ¢, (3.23)
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and define the sequence of functions a, as in (3.9). Again the corresponding solution
(un,c,) of (3.1)-(3.4) converges to (t,¢ — ay). For n large enough, a,, satisfies (3.20),
and c, is strictly negative since ¢ — a; < 0 from (3.22)-(3.23); we can then conclude as

in the preceding proof. e
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