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PARALLEL COMPUTING IN
COMBINATORIAL OPTIMIZATION

CALCUL PARALLELE EN
OPTIMISATION COMBINATOIRE

Catherine Roucairol

Abstract

The aim of this paper is to show the interest and the impact of parallel computers on the
field of non numerical algorithms. Many problems arising in Combinatorial Optimization need
much faster computers than those presently available. In order to illustrate this idea, we present
examples of parallel algorithms designed for problems of different diff iculty :

- "easy" problems (polynomial in complexity) coming from scheduling or graph theory,
- non polynomial problems solved by enumerative methods such as Branch and Bound procedures.

Keywords :  parallel computing, combinatorial optimization, parallel algorithms

Résumé

Notre but est de montrer Pintérét et Pimpact du calcul parallele dans le domaine de
I'algorithmique non numérique. En effet, des problemes d’optimisation combinatoire peuvent &tre
résolus par les machines actuelles (vectorielles, multiprocesseurs) plus rapidement et ainsi conduire
au traitement d’examples pratiques de plus grande taille que ceux mis en oeuvre sur une machine
séquentielle. Nous donnons des exemples d’algorithmes congus pour :

- des problémes "faciles”" (polynomiaux en complexité) issus du domaine des graphes et des
ordonnancements,

- des problémes "difficiles" (non polynomiaux) résolus par des méthodes énumératives (Branch and
Bound).

Mots clés :  calcul paralléle, optimisation combinatoire, algorithme paralléle.

presented at School on numerical methods for vector computers, Chexbres, Switzerland,
September 1988
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INTRODUCTION

The aim of this paper is to show the interest and the impact
of parallel computers on the field of non numerical algorithms.
Traditionally, emphasis has been put on numerical problems due to
numerous applications demand in computational aerodynamics,
weather prediction, satellite image processing, military uses

But, many problems arising in artificial intelligence or
combinatorial optimization, also need much faster computers than
presently available.

In combinatorial optimization problems, the need for higher
performance computers has two main purposes :

- to solve problems faster

- to solve larger problems.

This demand is due to the fact that pratical applications in
operations research (such as, for example, layout of VLSI circuit,
traveling salesman tours, theorem proving) are more and more
complex and solutions must be searched faster and faster, even
sometimes in real time.

The above goals can be reached not only by exploiting
performances (speed and wide space) of supercomputers but above
all by designing efficient algorithms well suited to the
architecture of parallel computer
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The paper is organized as follows.

Section | gives definition and examples of combinatorial

optimization problems (I.1); '

- proposes a few general statements about the process of
designing a parallel algorithm (1.2) and some notions of parallel
computing complexity for these problems (I.3)

- defines two measures of the efficiency of parallel
algorithms implemented on multiprocessors (1.4).

Sections Il and il respectively present examples of parallel
algorithms to solve combinatorial optimization problems of
different complexity

- polynomial problems coming from scheduling or graph

theory,

- non polynomial problems solved by enumerative methods
(Branch and Bound procedures). o
The first ones are designed to run on SIMD machines (often, with
unbounded parallelism) whereas the second are implemented on
commercial MIMD machines (Cray X-MP, Cray 2).

Primary sources of material are the book of M.J. Quinn [QUI87] and
[ROUS87].

|_-_ Parallel algorithms for combinatorial
optimization

1. Combinatorial optimization problem

1.1. Definition

A combinatorial optimization problem can be put into the
form of a constrained optimization :

find a solution x subjet to a set U of constraints that optimizes
some criterion function f(x)

min f(x)
{x e U



A solution that lies in U is called a feasible solution and a feasible
solution for which f(x) is optimized is called an optimal solution, )

denoted by f*.

The solutions space is combinatorially large : its cardinality is .
finite but not enumerable.

The table below shows the time necessary to enumerate all the

solutions of the solutions space with different cardinality,

whenever one solution is examined by microsecond.

Table 1 Comparaison of several polynomial and exponential time complexity
functions (GJ79)

Size
Time
complexity 10 20 30 40 . 50 &0
function
00001 | 00002 .00003 .00004 .00005 .00006
n
second | second | second second second second
) .0001 .0n04 .0009 0016 0025 0036
n
second | second second second second second
o 001 .008 027 064 128 216
second [ second | second second second second
n’ A 32 |} 243 1.7 52 13.0
second | seconds | seconds | minutes | minutes [ minutes
2+ 001 1.0 179 127 35.7 366
second | second | minutes days years cenluries
»
3 .059 58 6.5 3855 2x 10! 1.3x10"
second { minutes years centuries | centuries | centuries
1.2. Examples .

Representative examples of such problems are :

- minimum spanning tree (MST)
find a minimum cost connecting communication network
between n processors in a distributed system

Figure 2.

- linear assignment problem (LAP)
find a minimum cost assignment of n jobs to n men where
each job is assigned to a different man

P B
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Figure 3.



- traveling salesman problem (TSP)

a traveling salesman must make a tour of n cities (1, 2,...,n)
beginning and ending at city 1. His objective is to minimize
the total cost or distance of his tour.

LY S '

Y S
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Figure 4.

- quadratic assignment problem (QAP)
assign n plants to n locations in such a way that the total
cost of interplant transportation is minimized.

]

Figure 5.

According to the complexity theory for sequential computations
(table 2), the former problems belong to class P (solvable by a
sequential machine in polynomial time), while the latter are
problems - for which no polynomial time algorithm is known (NP
hard).

More precisely, these two problems are in NP complete class ; they
have the property that it can be solved in polynomial time iff all
other NP complete problems can also be solved in polynomial time.

Table 2.

Problem Number of soluticns Class Computation time of algorithm

MST nn-2 P o(n) -
LAP n! , P . o(n)
TSP (n-1)! NP exponential

- QAP n! NP “exponential




We will see in section 3 how using parallel computers, can
affect the complexity of problems in P or NP classes.

3. Desiagn_of paraliel algorithms

From the programmer's point of view, existing computers offer
different form of parallelism (Figure 6)

- local parallelism (at low level) an instruction is put
instead of a sequence of program's instructions which
consist in repeating the same operation on several
different data.

SIMD machines, Cray 1, Cyber 205 ...

- global parallelism (at high level ) parallel execution of
independent sequences of program's instructions( called
processes)

MIMD machines, distributed networks ...

local parallelism |

vector computers Processors array

lobal paralielism}

shared memory local memory

multiprocessors data flow machines  synchrdnous asynchronous
systolic arrays computer networks

Figure 6. Local and global parallelisms

Of course, in both cases, the architecture of the selected
computer will influence the design of parallel algorithms
which are implemented .



In the first class (local parallelism), vector instructions
provided by software must be fully used. »

In the second, a decomposition of work in independant
processes must be find; necessary synchronization and
communication mecanisms between concurrent processes must
be established in order to assure a good trade-off between
communication and computation.

There are different ways to design a parallel algorithm and
solve a problem:
- parallelization of any sequential algorithm
- design of a new algorithm,
- adaptation of another parallel algorithm that solves a
similar program.
But, a serial algorithm has not necessarily an obvious or
inherent parallelization.

For example, Hanoi's towers problem

Figure 7. Hanof's towers
(minimize the number of necessary moves to rank disks in
decreasing order of diameters on the three "towers").

More, the fastest serial algorithm does not necessarily make
the most paralle! efficient algorithm :

in a graph with n nodes and non negative weighted arcs,
Dijkstra's algorithm finds a shortest path from one node to all
the other in a time proportional to at most n2 but does not lead
to an efficient parallelized algorithm, unlike Pape, d'Esopo and
Moore's algorithm whose complexity (0(n3)) is larger (Parallel
shortest path algorithm (CORS85)).

Furthermore, the architecture often requests a new approach.
As said before , what we expect solving combinatorial
optimization problems by using parallel computers is



to increase
- the speed of finding optimal solutions,

- the size of exactly solved problems.

This seems obvious for problems belonging to class NP;
algorithms associated are exponential in time and because
their computational requirements grow exponentially with the
problem size, problems (even of pratical size) cannot be solved
exactly. This is due to excessive running time and memory
requirements (as we will see for Branch & Bound procedures in
section i)

But, it is also a demand for problems in class P due to
different reasons. For example, a new adherent wants to know
if he can join an exchange market. Its problem is equivalent to
the search of transitive closure in the large graph of adherents
(n vertices) in order to test if there exists a possible circuit
between all the participants. A serial algorithm, with a worst
case complexity of 0(n3), exists but, in this pratical case, n
equals 20 000 nodes and the answer has to be given quickly..

A vectorized algorithm, implemented on a Cyber 205,
((FRA84]), computes the same problem in about 5 minutes for
this size.

An other example is the linear assignment problem. This
problem is a relaxation (some constraints are obmitted) of
various combinatorial optimization problems such as Traveling
Salesman problem, Quadratic Assignment problem... lts
solution yields a lower bound on the optimal solution of these
problems which is used several times in their resolution
algorithm. So, even if a polynomial algorithm (worst case
complexity 0(n3)) is known, for great value of n, a gain in time
is very appreciable.

Table 3. A vectorized algorithm for LAP [LMR88]

Time in millisecorids on Cray 2 with one processor

Size 100 200 300 400 500 600
Serial_algorithm 72 434. 1014 2386 3957 5165
Vectorized 15 77 157 375 612 790

Speed-up 47 56 64 6.3 64 85




Notion f rallel mplexi
([KL86], [LA8B])

A selection of results on parallel computation which is
relevant for combinatorial optimization, is presented in this
section.

A standard theoretical model of parallel computations is the
PRAM (Parallel Random Access Machine). It is a synchronized
machine with an unbounded number of processors and a shared
memory (unbounded sequence of registers) ; each processor is a
RAM (one-address computer).

Other variants of this model are EREW-PRAM (exclusive read,
exclusive write) or CREW-PRAM (concurrent read, exclusive
write).

An hypothesis known as the parallel computation thesis :

time bounded parallel machines are polynomially related to
space bounded sequential machines

holds, for example with the PRAM machine model.

The class of problems solvable by a PRAM in polynomial time is
equal to PSPACE , the class of problems solvable by a
sequential machine in polynomial space.

Many problems in P can be solved in polylogarithmic
parallel time (O(logn)) - i.e. in time that is polynomially
bounded in the logarithm of the problem size n.

So, easy problems become "very easy problems" :

a sorting algorithm requires O(logn) with 0(n2/logn)
processors.
a shortest path 0(log2n) with 0(n/logn).

But, some problems in P do not admit solution in polylog
parallel time; they have been shown to be log space complete
for P - i.e - they belong to P and any other problem in P is
reducible, by a transformation using logarithmic work space:
linear programming and maximum flow.

4. Performance measures

Important measures of the efficiency of parallel algorithms
implemented on multiprocessors are speed-up and efficiency.



Speed-up
The speed-up S achieved by a parallel algorithm A executing an
instance of a problem =, is defined as the ratioc between T1 and

Th:

T
S(Am) =5
where Tp is the time taken by the parallel computer executing
the parallel algorithm using n processors, Tq is the time taken
by the execution of the optimal serial algorithm (best average
complexity) with only one processor.

Remarks

(i) This time is measured

- either theoretically (average number of operations, or
number of iterations between two synchronizations in
case of parallel synchronous algorithm);

In case of asynchronous machine, a parallel ‘aigorithm is
linked with several executions times, which is due to non-
determinism; thus, it would be preferable to compute the
average time; ]

- or experimentally (dedicated CPU time).

(i) Some authors take as Ti, the time of the parallel
algorithm with one processor. But, synchronization and
communication statements are included in the parallel
program and penalize the serial execution. It just gives an
easy way to compare experimentally parallel executives
with an increasing number of processors.

(iii) Average speed up on all the same instances size of a
combinatorial optimization problem can be usefully
considered.

Efficiency
The efficiency of a parallel algorithm running on n processors
is the speed-up divided by n.

10



Speed-up S is limited by a number of factors. Amdahl's law
gives the formula:

S = 1
' (1-f) + f/p

where f is the inherently sequential fraction of a computation
to be solved by p processors. ’
But this law assume that each processor will carry out
identical amounts of computation.
We will see in section Ill that superlinear speed-up are
possible; because it is not always possible to choose for a
given problem instance the best serial algorithm and because
in parallel extra processors may enable the parallel algorithm
to find the optimal solution very quickly. Of course , one can
say it is not possible because a sequential computer can
always emulate a parallel computer.

11
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II. Graph algorithms

In this section, we examine a number of parallel algorithms developed to
solve problems in graph theory . Section 1 presents the graph terminology
used in the rest of the paper; Section 2 a simple example of preemptive
scheduling; Section 3 some parallel algorithms for shortest path problem and
their implementation on a Cray X-MP computer.

Primary references for this section are (KL86), (DK83), (CORS85).

1. Graph terminology

A graph G =(V,E) consists of a finite set V of nodes (vertices) and a set E of
arcs (edges) joining the nodes.

In a directed graph, every arc is an ordered pair (i,j) and j is the successor
node of i.

A path {v] vg,....vj} from v] to vj is a sequence of nodes such that
(vi,v9), (V2,V3),...,(Vj-1, vj) are arcs of G. The length of a path is the number

of arcs on it.

A cycle (circuit in directed graph) is a path where first and last nodes are
identical.

A graph is connected if there is a path between any two nodes of the graph.

A tree is a connected undirected graph with no cycle.

In a weighted graph, a real number is assigned to each arc; this number
(which represents a length, a time, a cost or a probability...) is the value of the
arc.

2. Scheduling
(DK83)(KL86)

Classical methods of designing parallel algorithm for SIMD machines, as
recursive doubling and broadcasting of results, are illustrated on a relatively
simple example: preemptive scheduling.

The problem is to find a schedule that minimizes the finish time of n jobs
Jj. with processing time Pj, when m identical machines are available.

Preemption of jobs is allowed; it means that a job can be process on a
machine and the remainder further on another machine (nonoverlapping
intervals of time).

McNaughton's rule gives an optimal schedule of jobs in o(n) time. Using the
computation of an obvious lower bound of the finish time t*,

t*=max{max{pj/ lSan},sum{pj/lsj'Sn} / m}

an optimal schedule with a minimum finish time of t*, is constructed.
Job 1 is scheduled on machine 1 from 0 to pj and job 2 from pj to

min { p1+ pg , t*} . If py+ pg > t*, then the remainder of job 2 is done on
machine 2 starting at time 0. If pj+ po +p3 > t* then job 3 is scheduled on
machine 1 from pl+ p2 to min { p1+ po + p3 , t*} .



time s to time t, the sequential algorithm can be formally written:
e 1;

If the triple (Mj, s, t) indicates that job Jj is to be done by machine M;j from
t* max{max{pJ / 1<JSn},sum{pJ /1£j<n} /m}
S« 0 ;
forj « 1 tondo

if s + p j<t* then assign (Mj, s, s + P j) to Jj
S—S+ p
else
Jj,
endfor

assign (Mj, s, t*) and (Mj 4 1, O pj- (t*-s)) to
Se—pj-(t*-s) iei+1

Parallel algorithms using recursive doubling (see binary computation tree
below) computes maximum {max{ Pj / 1 <j<n} as well as partial sums
sum{ pj / 1<j<n }in o(logn) time

aj
8
1=1 a, a,
6 8
1=2 a, as ag ay
4 6 8 7
I=3 |a ag ap ay ap a ay ajs
2 4 3 6 1 8 5 7
Maximum finding: an instance with n = 8
=0 a b|
36 36
a, b, ™ ay b,
15 15 21 36
/" \\ p" B
a, b, L as b ag by a; b,
6 6 9 15 9 24 12 36
7 \ ’ A} ’ \ : ’ 1
£\ AR AR VR
ag bg| lag by| laigbid lay by lab] [a3b,d [a1ab,4 asbs
o~ e = b =1 fre =
2 2 4 6 39 6 15 1 16| 18 24] [5 29 17 36
Partial sums: an instance with

= 8.
Figure 8, Max and paitial sums (KL86)
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As all starting time and machines indices can be calculated simultaneously,
the following parallel algorithm requires o(logn) time with (n/ logn)
processors.

t* max {max{ pj / I<j<n},sum{pj/1<j<n} /m}
for j «- 1 to n do in parallel qjsum{pk/1<k<j-1}
for j « 1 to n do in parallel
sj « qj mod t*; ij <—qu /t*] o+ 1;
if 55 + pj <t* then assign (Mjj , Sj. Sj+ pj)toJj
else assign (Mij, sj, t¥) and (Mij‘.,. 1. 0. pjy-(t*- sj)) to Jj

endfor

3. Shortest path

Parallel algorithms for two kinds of problems are reported:

(1) finding the shortest path between every pair of nodes,

(2) finding the shortest path from a specified node - source s - to all others
nodes in the graph.

3.1. All-pairs shortest path

Given a weighted directed graph with n nodes, Floyd's algorithm finds path
between all-pair (i,j) node, if the graph does not contain a negative circuit
(sum of arcs on it is negative).

Matrix D, D = (djj). gives the length djj of every arc (i,j).

for k «< 1tondo
fori «— 1 ton do
forj— 1tondo

d(i,j) « min {d(i,j) , d(i,k) + d(k.j) }
endfor
endfor
endfor

Deo proposes the following algorithm. For a given k, the two inner loops
access to line k and column k only for reading while they access other
coefficients of D for writting. Furthermore, these computations are
independant: new value depends on the precedent value and elements value
in range k. So these two loops can be parallelized.

fork <« 1 tondo
for 1 <(i,j) <n do in parallel

d(ij) « min {d(i,j) , d(i,k) + d(k,j) }
endfor
endfor

This yields to an o(n3/p) parallel CREW algorithm for p processors (p <n2).
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3.2.1. Implementation on a Cray X-MP

The Cray X-MP is configured with four identical CPUs that share an eight
million 64-bit word ECL bipolar central memory arranged in 64 interleaved
banks; each CPU has a 9.5 ns clock and a memory bank cycle time of 38 ns.

Processors communicate by simultaneous reading or exclusive writing on
the shared central memory. -

For our experiments, codes have been written in Fortran 77 and designed
in order to take advantage of automatic vectorization (it concerns the do
-statements which do not include any if or goto-statement). '

A multitasking library provides different mechanisms for parallel
processing: '

-to create or wait for termination of created task(s)TSKSTART(-), TSKWAIT(-)

-to control event created for synchronization EVPOST (-), EVWAIT (-}, EVCLEAR(-)

-to control communication LOCKON (-), LOCKOFF (-}

3.2.2. Algorithm

This algorithm avoids synchronization with busy-waiting processes at the
end of each iteration (new value of k).

Definition of variables:

NBACTIF is the number of active tasks

MUTEX semaphore for mutual exclusion on the share variable NBACTIF

DERNIER contains the name of the last active task

EVENT(-) event posted or cleared

IEVENT index of blocking event

Initially, nbtask is the number of tasks created,

NBACTIF <« nbtask EVENT(0) ¢ cleared
MUTEX « OFF EVENT(1) « posted
DERNIER « O IEVENT « O
Process(p)

Fork « 1 ton do

fori « p ton by step of nbtask do
if d(i.k) <+c° then
forj<— 1tondo
d(i,j) « min {d(ij), d(i,k) + d(k,j) }
endfor
endif

endfor
LOCKON (MUTEX)

NBACTIF « NBACTIF -1
if NBACTIF = O then p is the last active process

DERNIER « p
endif
nevent « IEVENT
LOCKOFF(MUTEX)
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if DERNIER = p then
DERNIER ¢ 0 ;

NBACTIF « nbtask:

IEVENT « 1 - IEVENT:
EVCLEAR (EVENT (IEVENT));
EVPOST (EVENT (1 - IEVENT))
else
EVWAIT(EVENT(n°event))
endif
endfor

3.3. Single-source shortest path
(QUI8B7)(CORS85)

Pape, d'Esopo and Moore proposes an algorithm where:
- a queue contains nodes for which further searching must be done; initially,

it contains s.

- while queue is non empty, node u from the head of the queue is removed,
all arcs (u,v) are examined. Length (here for value) of the path from s to v is
compared to length of a path from s to u arc (u,v) . If it is updated, v is added
to the tail of the queue (if not already in queue).

-algorithms terminate when queue is empty.

globai distance, {Eiement i contalns distance from s to i}

n, {Number of vertices In graph}
s, {Source vertex} i
wetght {Contains weight of every edge}
begin
fori—1tondo
INITIALIZE(3)
endfor

insert s into the queue
while the queue is not empty do

SEARCH
endwhile
end
SEARCH:
local new_distance, {Distance to v if pass through u}
u, {Examined edge leaves this vertex}
2 {Examined edge enters this vertex}
begin

dequeue vertex u
for every edge {u,v} in the graph do
new._distance — distance(u) + weight({u. v})

If new_distance < distance(v) then '’
distance(v) «— new._distance
If v is yet in the queue then

engueue vertex v

endif

endif

endfor
end
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Deo's parallel version is based upon a shared queue and a number of

asynchronous processes (QUI87)

global distance, {Element i contains distance from s to vertex i}

halt, {Set to true when it Is time for processes to stop}
n, {Number of vertices In graph}

», {Number of processes}

s, {Source vertex}

weight {Contains welght of every edge}
begin .
for all s, where 1 <i{<p do
for j +~ 1 to n step p do
INITIALIZE(y)
endfor
endfor

. .enqueue s
" halt — false
for alli, 1<i<pdo
repeat SEARCH (i) until hclt

endfor

end

SEARCH (i):

parameter 1 : {Process number}

local new.distance, {Distance to v if go through u}
u, {Edge is directed from this vertex}
v {Edge is directed to this vertex}

begin

lock the queue
if the queue is empty then
waiting(1) « true
if i =1 then
halt — waiting(2) and waiting(3) and ... and waiting{p)
endif
unlock the queue
else
dequeue u
waiting(i) — false
untock the queue
for every edge {u,v} in the graph do
new distance — distance(u) + weight({u,v})
lock (distance(v))
if new_distance < distance(v) then
distance(v) «— new.distance
unlock (distance(v))
If v is not in the queue then
lock the queue: enqueue v; uniock the queue
endif
else unlock (distance(v))
encif
endfor
endif
end

An other version of Pape, d'Esopo and Moore's algorithm has been

implemented on Cray X-MP{CORS85).



III.Tree search

1. Introduction

Branch and Bound (B&B) algorithms are the most efficient
know means for solving many NP-hard problems. They can also
be viewed as the most general technique for the search for
solutions in a combinatorially large problem space, which is a
major problem in Operations Research and also Artificial
Intelligence. Backtracking, dynamic programming, decision
trees like AND-OR tree,«.A search are variations of B&B
algorithms. But as the computational requirements of these
algorithms (time and space) grow exponentially in the problem
size, possibilities of overflowing storage and running out of
time can stop the program before reaching the optimal solution.
So, the idea to realize a parallel implicit enumeration of the
solutions has naturally emerged.

Section 2 gives a brief description of sequential B&B principles
while section 3 discusses different ways to parallelize them,
and gives two methods to design parallel asynchronous
algorithms. Computational results obtained on a Cray X-MP
with a wellknown combinatorial optimization problem - the
traveling salesman Problem - are reported in section 4

Proofs (theoretical and experimental) that they can exhibit
anomalous speed-up are presented in section 5.

2. Sequential B&B algorithm

Let us recall that the goal of the B&B algorithm is to solve a
constrained optimization problem :
min f(x)
X € X
where X represents the domain of optimization
X is a solution, x is feasible iff x ¢ X
f(x) is the value of the solution

The B&B method is based on the idea of intelligently
enumerating all the feasible solutions of a combinatorial
optimization problem ; we have seen in section L.1. that it is
hopeless to look at all the solutions !

The underlying idea of the B&B algorithm is to decompose a
given problem into two or more subproblems of smaller size.
Then, this partitionning process is repeatedly applied to the
generated subproblems until each unexamined one is either
partitioned, solved or shown not to yield an optimal solution of
the original problem.

18



- The process to exclude a subproblem from further consideration, is 19
based upon the computation of a lower bound on the value of solutions within
each subset: subproblems whose bounds exceeds the value of some known
solution can be discarded. '

The state of the partitionning process at any time can be represented as
a partial tree in which subproblems are represented by nodes.and the
decomposition of a problem into subproblems by arcs from father node to each
son node.

critical tree

optimal solution

Figure 9.

More precisely, a B & B algorithm has three major components:
a branching scheme. a bounding function, a search strategy.

Let B=(S, I') be the tree built, S the set of nodes and I the application
successor.

Branching principle I' .
The root of the tree Sg is the set X (or a set of solutions U with X included in

U). Successors I'(S) of every node Sk are defined by the branching scheme,

which must satisfy three conditions:

(c1) union of partitionned subsets is equal to the initial set

(c2) number of node partitions necessary to reach an optimal solution is
finite

(c3) a node -associated to a subset of solutions- cannot be partitionned
(expanded) when:
-this subset is reduced to only one feasible solution
-this subset does not contain any feasible solution or feasible solutions
whose cost is greater than the cost value of the best known feasible
solution. Such a node is called a leaf of the B&B tree.

Bounding function v

A lower bound function v assigns to each subset of solutions a real number
representing a lower bound cost for all complete solutions in the set.lt has
the following properties: ‘

(pl) v: S>R U (@}
(p2) for every Sk node of B associated with a set of solutions
v(Sk) < min { f(s) / s € Sk}

(p3) for every Sk leaf node of B, v(Sk)= min { f(s) / s € Sk}
(p4) if none feasible solution belongs to Sk, v(Sk)= + oo :
(p3)  vis non decreasing on S: if Sy is a successor of Sk then v(S)) > v(S)

(p6) let suppose that an upper bound UB of f* is known (for example UB
is the value of a feasible solution found by any heuristic method or the
cost of the cheapest solution yet seen ); whenever Sy is such that

v(Sk) 2 UB then Sk is not selected further for expansion.
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Search strategy h
A strategy is a rule for choosing to which of the currently active nodes the
branching principle should be applied. For conceptual simplicity and

uniformity of notation, we assume that a heuristic function h , h: SN, gives a
priority to each node and thus the selected node is the one with the smallest
heuristic value.

The choice of a heuristic function depends on the application; the most used
are:
depth first h(Sj)= I(Sj) where 1(Sj) is the level of node S; - length of the

path from Sg to S;-
best first  h(Sj)= v(Sj).

First strategy leads quickly to a feasible solution and is space-saving: a node at
a lower level will always be examined before a node at a higher level so the set
of active nodes can be maintened in a FIFO list.

Second strategy is not as blind; good solutions are first searched but all active
nodes not yet examined must be stored.

However, we will see further (in section 5) that the total number of nodes
expanded is minimum in the sense that any branching operation performed
under this strategy must also be performed under other strategies , provided
some condition on bound's values.

Dominance relation may also be introduced in B& B algorithms; it is a relation
on subproblems such that if S; dominates Sj. then S;j cannot contain a better

solution than S; and thus Sj can be eliminated .

Procedure B&B
liveset = set of active nodes
begin
liveset = { root};
if root is a solution node then UB = f(root) else UB = :
while liveset contains a node S with v(S) < UB do
begin
X = node in liveset with min h();
 delete x from liveset;
/ branching scheme /
create successors nodes of x;
/ evaluation /
for each successor y of x do
begin
if y is a solution and f(y) < UB then UB= f(y);
if y is not a leaf and v(y) < UB then add y to liveset;
end
end
end



21

3. Differents ways to parallelize B&B algorithm

While dividing the work - expanding parts of the B & B tree - among a
bounded number of processes, we have to avoid the following situations in
order to reduce enumeration:

- several processes expand the same part of the tree, _

- a process is working on node of the subtree whose lower bound 's value is
greater than the value of a solution found by an other process in an other part
of the tree.

So, each process must broadcast all information it obtained and upper bound
UB must be constantly updated. This can influence the choice of the next
expanded node and some branch which was developed with a sequential
algorithm, can be pruned.

It clearly appears that to synchronize processes for information exchange
(processes wait for others which have not completed their tasks) is a solution
more easy to handle but it will increase the overall complexity of the
algorithm. This hypothesis have been verified by experiments with parallel
synchronous B & B algorithms, conducted by Mohan on Cm* at Carnegie
Mellon (MOH 84), and Kindervater on ICL DAP at Manchester (KIN 85).

We retain two ways to distribute the B & B algorithm's operations on a
bounded number of processors(LAROU84,85, ROUS87).

Asynchronous parallel B & B algorithms

Vertical

Every process search a complete.

subtree independantly of the others.
The information exchanged between
various processes is reduced to one
value per complete solution. As soon
as this bound is communicated, this
the responsability of each process to
eliminate nodes with lower bound
greater than this value.

The principal difficulty comes from
necessary synchronizations between
processes which have terminated
their enumeration in order to obtain
quickly and consistently some other
work from their partners.

This kind of algorithm is dedicated to
computer networks or
multiprocessors with limited memory
space and slow interprocessor
communication.

The principal criticism is that some
processes may be working on node of
the subtree that could be eliminated if
a better communication (last upper
bound) was designed.

Horizontal

Each process works on one node of
the tree:

it generates iteratively the sons of one
node (branching ), '

it calculates a lower bound cost for all
complete solutions that can be
generated from this successor node
(bounding ).

A specialized process -the sheduler
process- keeps track of live nodes,
maintains the current value of the best
known feasible solution, schedules the
processes which expand either a live
node one or two levels or a small
number of nodes before returning for
re-scheduling.

The advantage is that the bound -
information is kept reasonably
up-to-date.

But as the number of processors
grows the scheduler process and
message transport mechanism will be
bootlenecks.

So, this algorithm is rather dedicated
to a system with a modest number of
processors and an efficient message
passing scheme, like a
multiprocessors with a shared
memory.



4. An horizontal parallel B & B algorithm for the Cray X-MP

We now give an adaptation of the previous ideas to a shared memory
multiprocessors machine.

4.1. Programming facilities on Cray X-MP

The Cray X-MP is configured with four identical CPUs that share an eight
million 64-bit word ECL bipolar central memory arranged in 64 interleaved
banks; each CPU has a 9.5 ns clock and a memory bank cycle time of 38 ns.
Processors communicate by simultaneous reading or exclusive writing on the
shared central memory.

For our experiments, codes have been written in Fortran 77 and designed in
order to take advantage of automatic vectorization (it concerns the do
-statements which do not include any if or goto-statement).

A multitasking library provides different mechanisms for parallel processing:
-to create or wait for termination of created task(s)TSKSTART(-), TSKWAIT(-) -to
control event created for synchronization EVPOST (-}, EVWAIT (-),EVCLEAR(-)

-to control communication LOCKON (-), LOCKOFF (-}

4.2. Main _characteristics of the algorithm

The distribution of work among the different processes (one process assigns
to one of the four processors) is done by giving access to a shared list which
contains information about every node to be expanded.

This list is implemented as a heap (binary tree) in order to use fast existing
algorithms to insert, sort and remove items.

A priority ( adapted to the problem to be solved) is associated to each node.
Nodes are ranking by decreasing priority: every active process finds at the
top of the list the node it has in charge.

Insertion of items is done whenever the expansion of a node generates
several successors whose evaluation is less than the best known upper bound.
The best known upper bound (BKUB) is a shared variable which is updated
whenever a local upper bound (lub), less than BKUB, is found at a node to be
expanded.

Items are suppressed either at the beginning or at the end of the list. The
former case occurs whenever an inactive process looks for a new job, the
latter case occurs whenever a lub is less than BKUB: every node whose
evaluation is greater than lub is eliminated because it cannot lead to an
optimal solution.

The algorithm terminates whenever the list is empty and all the processes
are inactive.

4.3. Definition of variables

Variables used in multitask code can be categorized as follows:

shared variables local variables event variable
LIST: list of items implemented lub: upper bound INSER: this event
is

as a heap; lIb: lower bound  sent when a

associated with process

NBLIST: number of nodes in LIST, a node. inserts items in
BKUB: value of best known feasible the
solution, list that was
empty.

COUNT: number of active processes.



Example (minimization problem - three processes)

SHARED MEMORY

list of nodes best known upper bound

PROCESSES

®
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4.4. The program

Initial process -

begin

COUNT = root of tletree; FIN = false

branch to this node and create its successors

compute its upper bound (lub)

compute lower bound (llb) for each successor of the root

BKUB = lub

for each successor node do

if 1Ib < BKUB then insert this node in LIST
NBLIST = NBLIST +1

start concurrently several node processes

end

Node process

begin

end = false
while end = false do
lock (NBLIST)
if NBLIST = O then
if COUNT = O then

end = true
unlock (NBLIST)
send event (INSER)
else .
unlock (NBLIST)
wait event (INSER)

else
COUNT = COUNT + 1
select the node at the top of LIST
delete top of LIST
NBLIST = NBLIST- 1
unlock (NBLIST)
create the successors of this elected node
compute upper bound (lub)
compute lower bound (llb) for each successor node
read BKUB
if lub < BKUB then

lock (NBLIST)
suppress in LIST each node

with 1Ib > BKUB

decrease NBLIST ; BKUB = lub

unlock (NBLIST)
lock (NBLIST)
for each successor node do

if lub < BKUB then

if NBLIST = O then send (INSER)

insert this successor in LIST
NBLIST = NBLIST + 1
COUNT = COUNT - 1

unlock (NBLIST)
end

4.5. Parallelization of a B & B algorithm for Traveling Salesman Problem

We have experimented this algorithm for various combinatorial problems:
Traveling salesman(ROU86 ), Quadratic assignment (ROU87), Multiknapsack
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(PR87, PRV88), but we present here results obtained with the parallelization
of the most efficient algorithm for the asymmetric TSP. ,,

4.5.1. Serial B & B algorithm

Given a complete oriented and weighted graph in which the weight of an arc
(i.j) represents the cost of traveling from i to j. the traveling salesman
problem is to find a circuit of minimum cost that goes through every node
exactly one. '

The TSP can also be formulated as:

[ min zizj Cij Xij

Tixij=1jed @)
1Zies Z_]e J/s Xij21 VS J (3)

xjj= 1 if arc (i,j) belongs to tour with minimum cost, (4)
= O otherwise.
\ where J={1,2,....n} and cijeN , cjj = ¢jj.

Carpateno and Toth (CT80) proposes an efficient algorithm for this
asymmetric problem(cjj # ¢jj). It is based on subtour elimination approach.

At a node k of the B & B tree, the lower bound is obtained by solving the
linear assignment problem defined by constraints (1), (2), (4) and ‘two sets of
additional constraints: Ek set of arcs excluded from the solution belonging to

node k, Ik set of arcs included in.

To compute this bound, the Hungarian algorithm (polynomial, O(n3)) is used.

The branching scheme is what we call a polytomic branching scheme
(ROU84):

a node is split into more than two nodes.

Let us suppose that the solution of the LAP at a node k of the subtree contains
several subtours(figure below). The subtour that is selected to be eliminated,
is one with the minimum of arcs not yet included in the current solution.
From node k, three successors nodes will be created:

. 6/ 1o

Fi&{rc 10. TSP B&B tree

We can observe that this kind of branching scheme increase the number of
parts that can be carried out in parallel.

4.5.2. Experimental results

We report here our experiments with the horizontal parallelization {other
results in (ROUS86)).



First results have been obtained on an emulator called CREM running on a
Multics machine BULL DPS68 at INRIA, France and last results on the Cray
X-MP 48 at CRAY RESEARCH, Minneapolis, USA. .

Two kinds of tests were conducted: ,

- in the first series the number of processes is increased from 1 to 3 on CREM,
from 1 to 4 on Cray in order to see the improvement;

- the second series compare various search strategies in the B & B algorithm
for a given number of processes.

Speed-up

Coefficients of matrix C are generated from a uniform distribution in a range
[o,B[. Best first strategy is used. Speed-up is computed here as: T/ Tj where
T is the solution time for one processand Tj the solution time for i processes.
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Number of processors Average simulated time Average number of nodes
in seconds (CREM) inthe B & B tree
1 373 ' 10
3 150 11
Average speed-up = 2.5 Average increase of nodes =N3/Ng =1.1

Table 4. 40 TSPs of size 200, Cij € [0,100[.

Moreover , with one processor it was impossible to find optimal solution for 6
problems of size 200 and 21 of size 150 in a time limited to 900 seconds.

Number of processors Average simulated time Average number of nodes
in seconds (CREM) inthe B & B tree
1 > 687 > 8
3 424 ’ 115
Average speed-up >1.6 Average increase of nodes =N1/N3 < 1.4

Table 5. 40 TSPs of size 150, cij € [0,1000].
But, these results hide a part of reality: worst speed-up is 0.5, best 12.5. The
next table shows the differences between problem instances.

Anomaly Class Number of TSPs Average speed-up S N3/N1
S <08 ’ 3 0.7 2.8
detrimental Se[0.8,1.2] 11 1 2.8
deceleration Se[1.2, 28] 11 1.8 1.5
Se[2.8, 4] 7 3.1 0.9
acceleration S >4 8 6.9 0.5
Table 6. Anomalies

This table indicates that time is directly related to the number of nodes
expanded in the search tree.



For problems of class (1) and (2), the number of examined nodes is increased
by a factor 3 so there is no improvement by using parallelism.

For problems of class (5), this number is divided by 2 and the experimental
speedup is greater than the number of processes used; it is a case of
"super-linear" speed-up ! -

Such effects of parallel B & B algorithms with a given problem's instance are
called anomalies: _

detrimental anomaly Sp <1 where speed-up S p equals T/ Tp
deceleration anomaly S p <D ratio of time with 1 and p processors
acceleration anomaly Sp>p for the parallel B & B algorithm

These anomalies are due to the fact that, for a problem's instance, the search
strategy which leads to the best serial B & B algorithm is not known "a priori".
Causes will be studied in more details in the next section.
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Number of nodes ' Speed—up Time (seconds) dedicated time
Sizz ProcessarP} Py BB P B P3 P4 L gV
50 18 20 1 1 1.8 16.2 144 0.21 0.014
100 2 5 5 7 0.5 0.5 0.4 0.04 0.01
200 6 13 11 14 1.6 1.6 1.6 1.8 1.3

Table 7 .Running time for some problems on Cray X-MP

Testing of strategies

According to the fact that the nodes in the list are ranked in increasing order .
of their lower bounds, four strategies are used:

"best lower bound first" selects a node at the top of the list, the second
"deepest parent node first” at the bottom, the third randomly, the fourth
chooses a node at the bottom with probability po= (BKUB - binf )/BKUB

and at the top with probability 1-pg, where binf= v{first node inlist).

Best Boitom Random Binamial
Stze N T N T N T N T
50 6.3 10.5 8 17.2 7.3 12 6 11.6
100 9.3 40 15.3 76.7 - 127 60.8 9.3 57.8
150 13 96 18.7 363 27 221 15 111
200 11.7 148 19 273 27.3 385 16.3 188
250 14.7 421 19.3 484 13.3 291 15 432

Table 8. Strategies with 3 processes on CREM, N = number of nodes, T= simulated time in seconds.

It is interesting to stress two points:

- even with a single processor machine and a simulated parallelism, optimal
results have been obtained for problems which were not solved in sequential.
It means that just asynchronous or merely non determinism of choice can
improve the performance of a pure sequential and deterministic algorithm. Of
course, performances can be improved with a real parallel machine.

- speed-up is almost linear with respect to the number of processors.
However, this have to be refine a bit; there exist speed-up which are more
than linear and these cases are more frequent in this experiment than
sub-linear speed-up. .



5. Anomalies

Anomalious behaviours of B &B algorithms under parallel processing have been
studied by many authors:

The computational efficiency of these algorithms depends on the bounding
function, the data structure and the search strategy.

Let call B & B tree the tree generated by the B & B algorithm,
critical tree subtree whose nodes S; are such that v(S;) < f*,

minimum tree  subtree whose nodes Sj are such that v(S;) < f*
(contains minimal number of nodes to expand in order to find an optimal solution)

A B &B algorithm, A = (T bounding principle, v bounding function, h strategy), is
h-optimal if the B & B tree is minimum.

Theorem: if T"] is the time with a h-optimal B & B (called A) to expand all
the nodes of the minimum tree, T p the time with a parallelization of A on p
processors, the speed-up is:

This theorem shows that anomaly can occurs when the serial B & B algorithm
is not h-optimal.

Let define now some properties of the bounding function:

v is discriminating if V(Si. S v(Sy) = v Sj)
h consistent with v h(S;) < h( Sj) = v(Sy < v Sy)
v weak V 54 which is not an optimal solution  v(S;) # f*,

Theorical results have ben obtained under some assumptions:

- horizontal parallelization,

- all processors are synchronized.

Time is measured as number of iterations required; at each iteration,

P processes expand in parallel the p first priority nodes of the list (provided
this list contains at least p nodes) and add their children to the share list.

We summarize the contains of several theorems whose proofs can be found in
Lai and Sahni(Lais83), Lai and Sprague(LAI85),Li and Wah(LIW84),Wah and
Yu(WAY82,85), (Rou87):

- for a sequential B & B algorithm, if v is discriminating, a best first strategy h
build the critical tree,

- with a parallel B &B algorithm, if h is a best first strategy and v is

discriminating, the speed-up Sps<p,

- moreover, under these conditions, this strategy is robust Sp =p,
(p-t(p-1)/Tp< T1/Tp < p, t height of the B & B tree with 1 processor)
- necessary condition for good anomalies is : h inconsistent with v ,

- sufficient conditions for bad anomalies are : v discriminating and h
consistent with v.



Next figures give examples of anomaly when increasing the number of
processors increase the number of iterations.

(number in a node = lower bound)

Best first strategy
Parallel horizontal synchronous algorithm
4 processors , 5 processors
First step ‘ First step A
a ° o E F a o e r

vertice A
Scan of vertice A Scan of

Second step

Second step

Ihird step

Scan of vertices K.L,M, N

Figure 11. Anomalies
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